1
|
Ghaneialvar H, Jahani S, Hashemi E, Khalilzad MA, Falahi S, Rashidi MA, Majidpoor J, Najafi S. Combining anti-checkpoint immunotherapies and cancer vaccines as a novel strategy in oncological therapy: A review. Hum Immunol 2025; 86:111209. [PMID: 39662393 DOI: 10.1016/j.humimm.2024.111209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
The field of cancer immunotherapy has experienced remarkable advancements in the treatment of human cancers over recent decades. Therapeutic cancer vaccines have been employed to elicit antitumor immune responses through the generation of specific reactions against tumor-associated antigens. Although preclinical studies have demonstrated hopeful results and at least one product is approved for clinical use, the overall efficacy of cancer vaccines remains restricted. The co-administration of anti-checkpoint antibodies alongside cancer vaccines is proposed as a potential strategy to enhance the clinical efficacy of immunotherapies. Among the various anti-checkpoint agents, monoclonal antibodies targeting CD127, OX40, and CD40 have been further investigated in combined administration with cancer vaccines, demonstrating a synergistic impact on disease outcomes in both animal models and human subjects. This combinational approach has been shown to suppress tumor regression, improve survival rates, and promote the efficacy of cancer vaccines via multiple mechanisms, including the augmentation of generation, activation, and expansion of CD8+ T cells, as well as the production of tumor-inhibitory cytokines. Importantly, the impact of the concurrent administration of anti-checkpoint agents and cancer vaccines surpass those observed with the sole vaccine, indicating that this strategy may offer significant advantages for clinical application in cancer patients. In this review, we aim to provide a comprehensive overview of the significance and therapeutic potential of the combined administration of checkpoint agonist/antagonist antibodies and cancer vaccines for human tumors.
Collapse
Affiliation(s)
- Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Saleheh Jahani
- Department of Pathology, School of Medicine, University of California, San Diego, USA
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Amin Rashidi
- Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Pourhashem Z, Nourani L, Pirahmadi S, Yousefi H, J. Sani J, Raz A, Zakeri S, Dinparast Djadid N, Abouie Mehrizi A. Malaria transmission blocking activity of Anopheles stephensi alanyl aminopeptidase N antigen formulated with MPL, CpG, and QS21 adjuvants. PLoS One 2024; 19:e0306664. [PMID: 38968270 PMCID: PMC11226095 DOI: 10.1371/journal.pone.0306664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/29/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUNDS Malaria, a preventive and treatable disease, is still responsible for annual deaths reported in most tropical regions, principally in sub-Saharan Africa. Subunit recombinant transmission-blocking vaccines (TBVs) have been proposed as promising vaccines to succeed in malaria elimination and eradication. Here, a provisional study was designed to assess the immunogenicity and functional activity of alanyl aminopeptidase N (APN1) of Anopheles stephensi, as a TBV candidate, administered with MPL, CpG, and QS21 adjuvants in the murine model. METHODOLOGY/PRINCIPAL FINDINGS The mouse groups were immunized with recombinant APN1 (rAPN1) alone or formulated with CpG, MPL, QS-21, or a combination of adjuvants (CMQ), and the elicited immune responses were evaluated after the third immunization. The standard membrane feeding assay (SMFA) measured the functional activity of antibodies against bacterial-expressed APN1 protein in adjuvanted vaccine groups on transmission of P. falciparum (NF54) to An. stephensi mosquitoes. Evaluation of mice vaccinated with rAPN1 formulated with distinct adjuvants manifested a significant increase in the high-avidity level of anti-APN1 IgG and IgG subclasses; however, rAPN1 induced the highest level of high-avidity anti-APN1 IgG1, IgG2a, and IgG2b antibodies in the immunized vaccine group 5 (APN1/CMQ). In addition, vaccine group 5 (receiving APN1/CMQ), had still the highest level of anti-APN1 IgG antibodies relative to other immunized groups after six months, on day 180. The SMFA data indicates a trend towards higher transmission-reducing activity in groups 2 and 5, which received the antigen formulated with CpG or a combination of three adjuvants. CONCLUSIONS/SIGNIFICANCE The results have shown the capability of admixture to stimulate high-affinity and long-lasting antibodies against the target antigen to hinder Plasmodium parasite development in the mid-gut of An. stephensi. The attained results authenticated APN1/CMQ and APN1/CpG as a potent APN1-based TBV formulation which will be helpful in designing a vaccine in the future.
Collapse
Affiliation(s)
- Zeinab Pourhashem
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Leila Nourani
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Sakineh Pirahmadi
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Hemn Yousefi
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Jafar J. Sani
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Abbasali Raz
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Sedigheh Zakeri
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Navid Dinparast Djadid
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| | - Akram Abouie Mehrizi
- Pasteur Institute of Iran, Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Tehran, Iran
| |
Collapse
|
3
|
Liu L, Cai L, Du X, Zhao J, Zhao Y, Zou C, Yu S, Zhang C, Ye P, Su X, Yan X, Li W. Anti-tumour effect of in situ vaccines combined with VEGFR inhibitors in the treatment of metastatic cervical cancer. Int Immunopharmacol 2021; 101:108302. [PMID: 34717193 DOI: 10.1016/j.intimp.2021.108302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/05/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
Abstract
Cervical cancer is the fourth most common malignant tumor in the world, for advanced cervical cancer, more than 30% of patients continue to have tumor and relapse or metastasis after the traditional treatment (concurrent chemoradiotherapy), and the response rate of immune checkpoint inhibitor (PD-1) is less 15%, so additional approaches are required. In situ vaccine is a very promising immunotherapy strategy. In the preclinical study, the combination of CPG and anti-Ox40 antibody can completely resolve injection site tumours and distant tumours and leads to the recovery of most mice with lymphoma. However, our early exploration process found that the effect of CpG + OX40 in the treatment of advanced cervical cancer is not ideal. Hence, we explored the anti-tumor effect of CpG + OX40 combined with anti-angiogenic therapy for the first time. The results showed that the combination significantly inhibited the proliferation of primary and secondary tumor volume and prolonged the survival time of mice, compared with the control group, CD3+, CD4 + and CD8 + T cells in the combined group showed an increasing trend. In addition, in terms of metabolism, the anti-vascular effect of anlotinib can significantly reduce the blood supply and metabolic level of tumor, the expression of Ki67 and CD31 in the control group was significantly higher than that in each administration group. In conclusion, our preclinical research results showed that the combination of in situ vaccine and anti-angiogenic therapy has a good anti-tumor effect, and may potentially offer an effective treatment option for patients with advanced cervical cancer.
Collapse
Affiliation(s)
- Lixiao Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Luya Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xuedan Du
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Jinduo Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Ye Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Chengyang Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Shanshan Yu
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Chunhong Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Piaopiao Ye
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xiaoping Su
- School of Basic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China; Department of Gastroenterology, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China.
| | - Xiaojian Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China; Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Hospital and Institute of Translation Medicine, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Wenfeng Li
- Department of Chemoradiation Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|