1
|
Huang W, Zhang Z, Li X, Zheng Q, Wu C, Liu L, Chen Y, Zhang J, Jiang X. CD9 promotes TβR2-TβR1 association driving the transition of human dermal fibroblasts to myofibroblast under hypoxia. Mol Med 2024; 30:162. [PMID: 39333849 PMCID: PMC11428569 DOI: 10.1186/s10020-024-00925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND During wound healing, fibroblast to myofibroblast transition is required for wound contraction and remodeling. While hypoxia is an important biophysical factor in wound microenvironment, the exact regulatory mechanism underlying hypoxia and fibroblast-to-myofibroblast transition remains unclear. We previously found that tetraspanin CD9 plays an important role in oxygen sensing and wound healing. Herein, we investigated the effects of physiological hypoxia on fibroblast-to-myofibroblast transition and the biological function and mechanism of CD9 in it. METHODS Human skin fibroblasts (HSF) and mouse dermis wounds model were established under physiological hypoxia (2% O2). The cell viability and contractility of HSF under hypoxia were evaluated by CCK8 and collagen gel retraction, respectively. The expression and distribution of fibroblast-to-myofibroblast transition markers and CD9 in HSF were detected by Western blotting and immunofluorescence. CD9 slicing and overexpressing HSFs were constructed to determine the role of CD9 by small interfering RNA and recombinant adenovirus vector. The association of TβR2 and TβR1 was measured by immunoprecipitation to explore the regulatory mechanism. Additionally, further validation was conducted on mouse dermis wounds model through histological analysis. RESULTS Enhanced fibroblast-to-myofibroblast transition and upregulated CD9 expression was observed under hypoxia in vitro and in vivo. Besides, reversal of fibroblast-to-myofibroblast transition under hypoxia was observed when silencing CD9, suggesting that CD9 played a key role in this hypoxia-induced transition. Moreover, hypoxia increased fibroblast-to-myofibroblast transition by activating TGF-β1/Smad2/3 signaling, especially increased interaction of TβR2 and TβR1. Ultimately, CD9 was determined to directly affect TβR1-TβR2 association in hypoxic fibroblast. CONCLUSION Collectively, these findings suggest that CD9 promotes TβR2-TβR1 association, thus driving the transition of human dermal fibroblasts to myofibroblast under hypoxia.
Collapse
Affiliation(s)
- Wanqi Huang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ze Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xin Li
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qingqing Zheng
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chao Wu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Luojia Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
2
|
Yu Z, Zhang H, Li L, Li Z, Chen D, Pang X, Ji Y, Wang Y. Microglia-mediated pericytes migration and fibroblast transition via S1P/S1P3/YAP signaling pathway after spinal cord injury. Exp Neurol 2024; 379:114864. [PMID: 38866101 DOI: 10.1016/j.expneurol.2024.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Platelet-derived growth factor receptor β positive (PDGFRβ+) pericytes detach from the microvascular wall and migrate into the injury center following spinal cord injury (SCI), which has been widely regarded as the main source of fibrotic scar, but the mechanism of migration and fibroblast transition remains elusive. Here we show the associated spatiotemporal distribution between microglia and pericytes at three and seven days post-injury (dpi). The increased expression of Sphingosine kinase-1 (SPHK1) in microglia significantly raised the concentration of Sphingosine-1-phosphate (S1P) in the spinal cord, which promotes migration and fibroblast transition of pericyte. In vitro experiments, we found the elevated Sphingosine 1-phosphate receptor 3 (S1P3), the S1P/S1PR3 axis inhibited the phosphorylation of YAP and promoted its nuclear translocation, which contributed to the formation of alpha-smooth muscle actin (α-SMA) and collagen type I (COL1) protein, This process can be blocked by an S1P3 specific inhibitor TY52156 in vitro. The S1P/S1P3/YAP pathway might be a potential target for treatment in SCI.
Collapse
Affiliation(s)
- Ziyuan Yu
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Huabin Zhang
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Linxi Li
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Zhi Li
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Danmin Chen
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Xiao Pang
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Yunxiang Ji
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China
| | - Yezhong Wang
- Guangzhou Med Univ, Inst Neurosci, Dept Neurosurg, Affiliated Hosp 2, Guangzhou 510260, PR China.
| |
Collapse
|
3
|
Qin T, Song X, Shao Q, Zhang J, Sui H. Resveratrol ameliorates pathological fibrosis of the myodural bridge by regulating the SIRT3/TGF-β1/Smad pathway. Heliyon 2024; 10:e34974. [PMID: 39145011 PMCID: PMC11320322 DOI: 10.1016/j.heliyon.2024.e34974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Purpose Pathological fibrosis of the myodural bridge (MDB) affects cerebrospinal fluid circulation. However, no optimal drug treatments are available. We aimed to explore the antifibrotic effect of resveratrol on bleomycin-induced pathological fibrosis of the MDB and its underlying mechanisms. Methods Genes common to the potential targets of resveratrol were determined using network pharmacology, genes related to muscle and tendon fibrosis were acquired from the GeneCards database, and genes related to MDB development were determined using Venny. These genes were considered potential resveratrol treatment targets in bleomycin-induced pathological fibrosis of the MDB and were annotated using bioinformatics methods. We validated the intersected genes using quantitative real-time polymerase chain reaction (qRT-PCR) and performed molecular docking analysis to calculate the binding activity between the target gene and resveratrol. Hematoxylin and eosin and Masson staining were used to detect the morphological changes in bleomycin-induced fibrosis of the MDB following resveratrol treatment. We used qRT-PCR and immunohistochemistry to evaluate the expression of the sirtuin 3 (SIRT3)/transforming growth factor-β1 (TGF-β1)/Smad pathway and the profibrotic markers α-smooth muscle actin (α-SMA) and Collagen Ⅰ. Results Through network pharmacology and bioinformatics analyses, we identified four core intersected genes, and SIRT3 expression was validated using qRT-PCR. Molecular docking analysis revealed that resveratrol had good binding affinity for SIRT3. Resveratrol ameliorated morphological abnormalities in bleomycin-induced pathological fibrosis of the MDB by inhibiting fibroblast activation and excessive collagen fiber deposition. Resveratrol exerted its antifibrotic effect by regulating the SIRT3/TGF-β1/Smad pathway. Conclusion Resveratrol has an antifibrotic effect in bleomycin-induced pathological fibrosis of the MDB in vivo and may be considered a novel therapeutic strategy.
Collapse
Affiliation(s)
- Tao Qin
- Department of Anatomy, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
- Graduate School, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
| | - Xue Song
- Department of Anatomy, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
- Graduate School, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
| | - Qing Shao
- Department of Anatomy, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
- Graduate School, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
| | - Jianfei Zhang
- Department of Anatomy, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
| | - Hongjin Sui
- Department of Anatomy, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
- Dalian Hoffen Preservation Technique Institution, No.36, Guangyuan Street, Lushunkou Economic Development Zone, Dalian, 116052, China
| |
Collapse
|
4
|
Chen H, Zhou Y, Hao H, Xiong J. Emerging mechanisms of non-alcoholic steatohepatitis and novel drug therapies. Chin J Nat Med 2024; 22:724-745. [PMID: 39197963 DOI: 10.1016/s1875-5364(24)60690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 09/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver disease globally. It initiates with simple steatosis (NAFL) and can progress to the more severe condition of non-alcoholic steatohepatitis (NASH). NASH often advances to end-stage liver diseases such as liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Notably, the transition from NASH to end-stage liver diseases is irreversible, and the precise mechanisms driving this progression are not yet fully understood. Consequently, there is a critical need for the development of effective therapies to arrest or reverse this progression. This review provides a comprehensive overview of the pathogenesis of NASH, examines the current therapeutic targets and pharmacological treatments, and offers insights for future drug discovery and development strategies for NASH therapy.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
5
|
Stanwick M, Fenesha F, Hamid A, Kang K, Kanniard D, Kim I, Mandarano N, Schumacher FL, Peters SB. Impaired Tertiary Dentin Secretion after Shallow Injury in Tgfbr2-Deficient Dental Pulp Cells Is Rescued by Extended CGRP Signaling. Int J Mol Sci 2024; 25:6847. [PMID: 38999956 PMCID: PMC11241056 DOI: 10.3390/ijms25136847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
The transforming growth factor β (TGFβ) superfamily is a master regulator of development, adult homeostasis, and wound repair. Dysregulated TGFβ signaling can lead to cancer, fibrosis, and musculoskeletal malformations. We previously demonstrated that TGFβ receptor 2 (Tgfbr2) signaling regulates odontoblast differentiation, dentin mineralization, root elongation, and sensory innervation during tooth development. Sensory innervation also modulates the homeostasis and repair response in adult teeth. We hypothesized that Tgfbr2 regulates the neuro-pulpal responses to dentin injury. To test this, we performed a shallow dentin injury with a timed deletion of Tgfbr2 in the dental pulp mesenchyme of mice and analyzed the levels of tertiary dentin and calcitonin gene-related peptide (CGRP) axon sprouting. Microcomputed tomography imaging and histology indicated lower dentin volume in Tgfbr2cko M1s compared to WT M1s 21 days post-injury, but the volume was comparable by day 56. Immunofluorescent imaging of peptidergic afferents demonstrated that the duration of axon sprouting was longer in injured Tgfbr2cko compared to WT M1s. Thus, CGRP+ sensory afferents may provide Tgfbr2-deficient odontoblasts with compensatory signals for healing. Harnessing these neuro-pulpal signals has the potential to guide the development of treatments for enhanced dental healing and to help patients with TGFβ-related diseases.
Collapse
Affiliation(s)
- Monica Stanwick
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; (M.S.); (F.F.); (A.H.); (K.K.); (D.K.); (I.K.)
| | - Fatma Fenesha
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; (M.S.); (F.F.); (A.H.); (K.K.); (D.K.); (I.K.)
| | - Ahmed Hamid
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; (M.S.); (F.F.); (A.H.); (K.K.); (D.K.); (I.K.)
| | - Khushroop Kang
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; (M.S.); (F.F.); (A.H.); (K.K.); (D.K.); (I.K.)
| | - Dane Kanniard
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; (M.S.); (F.F.); (A.H.); (K.K.); (D.K.); (I.K.)
| | - Irene Kim
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA; (M.S.); (F.F.); (A.H.); (K.K.); (D.K.); (I.K.)
| | - Nicholas Mandarano
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH 43210, USA; (N.M.); (F.L.S.)
| | - Fernanda L. Schumacher
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH 43210, USA; (N.M.); (F.L.S.)
| | - Sarah B. Peters
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH 43210, USA; (N.M.); (F.L.S.)
| |
Collapse
|
6
|
Xia Y, Luo Q, Gao Q, Huang C, Chen P, Zou Y, Chen X, Liu W, Chen Z. SIRT1 activation ameliorates rhesus monkey liver fibrosis by inhibiting the TGF-β/smad signaling pathway. Chem Biol Interact 2024; 394:110979. [PMID: 38555046 DOI: 10.1016/j.cbi.2024.110979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
TGF-β/Smad signaling pathway plays an important role in the pathogenesis and progression of liver fibrosis. Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+) dependent enzyme and responsible for deacetylating the proteins. Increasing numbers of reports have shown that the molecular mechanism of SIRT1 as an effective therapeutic target for liver fibrosis but the transformation is not very clear. In the present study, liver fibrotic tissues were screened by staining with Masson, hematoxylin-eosin staining (H&E) and Immunohistochemistry (IHC) for histopathological observation from the liver biopsy of seventy-seven rhesus monkey, which fixed with 4% paraformaldehyde (PFA) after treatment with high-fat diet (HFD) for two years. And the liver function was further determined by serum biochemical tests. The mRNA levels and protein expression of rat hepatic stellate (HSC-T6) cells were determined after treatment with Resveratrol (RSV) and Nicotinamide (NAM), respectively. The results showed that with the increasing of hepatic fibrosis in rhesus monkeys, the liver function impaired, and the transforming growth factor-β1 (TGF-β1), p-Smad3 (p-Smad3) and alpha-smooth muscle actin (α-SMA) was up-regulated, while SIRT1 and Smad7 were down-regulated. Moreover, when stimulated the HSC-T6 with RSV to activate SIRT1 for 6, 12, and 24 h, the results showed that RSV promoted the expression of smad7, while the expression of TGF-β1, p-Smad3 and α-SMA were inhibited. In contrast, when the cells stimulated with NAM to inhibit SIRT1 for 6, 12, and 24 h, the Smad7 expression was decreased, while TGF-β1, p-Smad3, and α-SMA expressions were increased. These results indicate that SIRT1 acts as an important protective factor for liver fibrosis, which may be attributed to inhibiting the signaling pathway of TGF-β/Smad in hepatic fibrosis of the rhesus monkey.
Collapse
Affiliation(s)
- Yu Xia
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Animal Disease Prevention and Control and Healthy Breeding Engineering Technology, Research Centre, Mianyang Normal University, Mianyang, 621000, China
| | - Qihui Luo
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Primed Bio-Tech Group Co., Ltd., Chengdu, 610041, China
| | - Qi Gao
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chao Huang
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yao Zou
- Wanzhou District Livestock Industry Development Center, Chongqing, 404120, China
| | - Xiwen Chen
- Animal Disease Prevention and Control and Healthy Breeding Engineering Technology, Research Centre, Mianyang Normal University, Mianyang, 621000, China
| | - Wentao Liu
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhengli Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Primed Bio-Tech Group Co., Ltd., Chengdu, 610041, China.
| |
Collapse
|
7
|
Cao Z, Zhang K, Liu J, Pan Y, Shi J, Li L, Sun X, Li S, Yuan X, Wu D. F127-SE-tLAP thermosensitive hydrogel alleviates bleomycin-induced skin fibrosis via TGF-β/Smad pathway. Mol Med 2024; 30:52. [PMID: 38641575 PMCID: PMC11031956 DOI: 10.1186/s10020-024-00815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/30/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Skin fibrosis affects the normal function of the skin. TGF-β1 is a key cytokine that affects organ fibrosis. The latency-associated peptide (LAP) is essential for TGF-β1 activation. We previously constructed and prepared truncated LAP (tLAP), and confirmed that tLAP inhibited liver fibrosis by affecting TGF-β1. SPACE peptide has both transdermal and transmembrane functions. SPACE promotes the delivery of macromolecules through the stratum corneum into the dermis. This study aimed to alleviate skin fibrosis through the delivery of tLAP by SPACE. METHODS The SPACE-tLAP (SE-tLAP) recombinant plasmid was constructed. SE-tLAP was purified by nickel affinity chromatography. The effects of SE-tLAP on the proliferation, migration, and expression of fibrosis-related and inflammatory factors were evaluated in TGF-β1-induced NIH-3T3 cells. F127-SE-tLAP hydrogel was constructed by using F127 as a carrier to load SE-tLAP polypeptide. The degradation, drug release, and biocompatibility of F127-SE-tLAP were evaluated. Bleomycin was used to induce skin fibrosis in mice. HE, Masson, and immunohistochemistry were used to observe the skin histological characteristics. RESULTS SE-tLAP inhibited the proliferation, migration, and expression of fibrosis-related and inflammatory factors in NIH-3T3 cells. F127-SE-tLAP significantly reduced ECM production, collagen deposition, and fibrotic pathological changes, thereby alleviating skin fibrosis. CONCLUSION F127-SE-tLAP could increase the transdermal delivery of LAP, reduce the production and deposition of ECM, inhibit the formation of dermal collagen fibers, and alleviate the progression of skin fibrosis. It may provide a new idea for the therapy of skin fibrosis.
Collapse
Affiliation(s)
- Zhiqin Cao
- Heilongjiang Province Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, 157011, Mudanjiang, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, 157011, Mudanjiang, Heilongjiang, China
| | - Keke Zhang
- Heilongjiang Province Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, 157011, Mudanjiang, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, 157011, Mudanjiang, Heilongjiang, China
| | - Jingruo Liu
- Heilongjiang Province Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, 157011, Mudanjiang, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, 157011, Mudanjiang, Heilongjiang, China
| | - Yu Pan
- Heilongjiang Province Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, 157011, Mudanjiang, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, 157011, Mudanjiang, Heilongjiang, China
| | - Jiayi Shi
- Heilongjiang Province Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, 157011, Mudanjiang, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, 157011, Mudanjiang, Heilongjiang, China
| | - Luxin Li
- Heilongjiang Province Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, 157011, Mudanjiang, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, 157011, Mudanjiang, Heilongjiang, China
| | - Xiaocan Sun
- Heilongjiang Province Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, 157011, Mudanjiang, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, 157011, Mudanjiang, Heilongjiang, China
| | - Shiqi Li
- Heilongjiang Province Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, 157011, Mudanjiang, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, 157011, Mudanjiang, Heilongjiang, China
| | - Xiaohuan Yuan
- Heilongjiang Province Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, 157011, Mudanjiang, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, 157011, Mudanjiang, Heilongjiang, China
| | - Dan Wu
- Heilongjiang Province Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University, No. 3, Tongxiang Street, Aimin District, 157011, Mudanjiang, Heilongjiang, China.
- College of Life Sciences, Mudanjiang Medical University, 157011, Mudanjiang, Heilongjiang, China.
| |
Collapse
|
8
|
Bhat AA, Moglad E, Bansal P, Kaur H, Deorari M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Ali H. Pollutants to pathogens: The role of heavy metals in modulating TGF-β signaling and lung cancer risk. Pathol Res Pract 2024; 256:155260. [PMID: 38493726 DOI: 10.1016/j.prp.2024.155260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Lung cancer is a malignant tumor that develops in the lungs due to the uncontrolled growth of aberrant cells. Heavy metals, such as arsenic, cadmium, mercury, and lead, are metallic elements characterized by their high atomic weights and densities. Anthropogenic activities, such as industrial operations and pollution, have the potential to discharge heavy metals into the environment, hence presenting hazards to ecosystems and human well-being. The TGF-β signalling pathways have a crucial function in controlling several cellular processes, with the ability to both prevent and promote tumor growth. TGF-β regulates cellular responses by interacting in both canonical and non-canonical signalling pathways. Research employing both in vitro and in vivo models has shown that heavy metals may trigger TGF-β signalling via complex molecular pathways. Experiments conducted in a controlled laboratory environment show that heavy metals like cadmium and arsenic may directly bind to TGF-β receptors, leading to alterations in their structure that enable the receptor to be phosphorylated. Activation of this route sets in motion subsequent signalling cascades, most notably the canonical Smad pathway. The development of lung cancer has been linked to heavy metals, which are ubiquitous environmental pollutants. To grasp the underlying processes, it is necessary to comprehend their molecular effect on TGF-β pathways. With a particular emphasis on its consequences for lung cancer, this abstract delves into the complex connection between exposure to heavy metals and the stimulation of TGF-β signalling.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan.
| |
Collapse
|
9
|
Guo W, Liu H, Yan Y, Wu D, Yao H, Lin K, Li X. Targeting the TGF-β signaling pathway: an updated patent review (2021-present). Expert Opin Ther Pat 2024; 34:99-126. [PMID: 38648107 DOI: 10.1080/13543776.2024.2346325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION The TGF-β signaling pathway is a complex network that plays a crucial role in regulating essential biological functions and is implicated in the onset and progression of multiple diseases. This review highlights the recent advancements in developing inhibitors targeting the TGF-β signaling pathway and their potential therapeutic applications in various diseases. AREA COVERED The review discusses patents on active molecules related to the TGF-β signaling pathway, focusing on three strategies: TGF-β activity inhibition, blocking TGF-β receptor binding, and disruption of the signaling pathway using small molecule inhibitors. Combination therapies and the development of fusion proteins targeting multiple pathways are also explored. The literature search was conducted using the Cortellis Drug Discovery Intelligence database, covering patents from 2021 onwards. EXPERT OPINION The development of drugs targeting the TGF-β signaling pathway has made significant progress in recent years. However, addressing challenges such as specificity, systemic toxicity, and patient selection is crucial for their successful clinical application. Targeting the TGF-β signaling pathway holds promise as a promising approach for the treatment of various diseases.
Collapse
Affiliation(s)
- Wenhao Guo
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanwen Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yong Yan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Di Wu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hequan Yao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kejiang Lin
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuanyi Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
10
|
Gong L, Si MS. SLIT3-mediated fibroblast signaling: a promising target for antifibrotic therapies. Am J Physiol Heart Circ Physiol 2023; 325:H1400-H1411. [PMID: 37830982 DOI: 10.1152/ajpheart.00216.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
The SLIT family (SLIT1-3) of highly conserved glycoproteins was originally identified as ligands for the Roundabout (ROBO) family of single-pass transmembrane receptors, serving to provide repulsive axon guidance cues in the nervous system. Intriguingly, studies involving SLIT3 mutant mice suggest that SLIT3 might have crucial biological functions outside the neural context. Although these mutant mice display no noticeable neurological abnormalities, they present pronounced connective tissue defects, including congenital central diaphragmatic hernia, membranous ventricular septal defect, and osteopenia. We recently hypothesized that the phenotype observed in SLIT3-deficient mice may be tied to abnormalities in fibrillar collagen-rich connective tissue. Further research by our group indicates that both SLIT3 and its primary receptor, ROBO1, are expressed in fibrillar collagen-producing cells across various nonneural tissues. Global and constitutive SLIT3 deficiency not only reduces the synthesis and content of fibrillar collagen in various organs but also alleviates pressure overload-induced fibrosis in both the left and right ventricles. This review delves into the known phenotypes of SLIT3 mutants and the debated role of SLIT3 in vasculature and bone. Present evidence hints at SLIT3 acting as an autocrine regulator of fibrillar collagen synthesis, suggesting it as a potential antifibrotic treatment. However, the precise pathway and mechanisms through which SLIT3 regulates fibrillar collagen synthesis remain uncertain, presenting an intriguing avenue for future research.
Collapse
Affiliation(s)
- Lianghui Gong
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Ming-Sing Si
- Division of Cardiac Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| |
Collapse
|
11
|
Li H, Li P, Li S, Zhang X, Dong X, Yang M, Shen W. Mechanism of transforming growth factor- β1 induce renal fibrosis based on transcriptome sequencing analysis. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:594-604. [PMID: 37916309 PMCID: PMC10630056 DOI: 10.3724/zdxbyxb-2022-0672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/24/2023] [Indexed: 10/08/2023]
Abstract
OBJECTIVES To explore the mechanism of transforming growth factor-β1 (TGF-β1) induce renal fibrosis. METHODS Renal fibroblast NRK-49F cells treated with and without TGF-β1 were subjected to RNA-seq analysis. DESeq2 was used for analysis. Differentially expressed genes were screened with the criteria of false discovery rate<0.05 and l o g 2 F C >1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for differentially expressed genes. Genes encoding transcription factors were further screened for differential expression genes. Then, the expression of these genes during renal fibrosis was verified using unilateral ureteral obstruction (UUO)-induced mouse renal fibrosis model and a public gene expression dataset (GSE104954). RESULTS After TGF-β1 treatment for 6, 12 and 24 h, 552, 1209 and 1028 differentially expressed genes were identified, respectively. GO analysis indicated that these genes were significantly enriched in development, cell death, and cell migration. KEGG pathway analysis showed that in the early stage of TGF-β1 induction (TGF-β1 treatment for 6 h), the changes in Hippo, TGF-β and Wnt signaling pathways were observed, while in the late stage of TGF-β1 induction (TGF-β1 treatment for 24 h), the changes of extracellular matrix-receptor interaction, focal adhesion and adherens junction were mainly enriched. Among the 291 up-regulated differentially expressed genes treated with TGF-β1 for 6 h, 13 genes (Snai1, Irf8, Bhlhe40, Junb, Arid5a, Vdr, Lef1, Ahr, Foxo1, Myc, Tcf7, Foxc2, Glis1) encoded transcription factors. Validation in a cell model showed that TGF-β1 induced expression of 9 transcription factors (encoded by Snai1, Irf8, Bhlhe40, Junb, Arid5a, Vdr, Lef1, Myc, Tcf7), while the expression levels of the other 4 genes did not significantly change after TGF-β1 treatment. Validation results in UUO-induced mouse renal fibrosis model showed that Snai1, Irf8, Bhlhe40, Junb, Arid5a, Myc and Tcf7 were up-regulated after UUO, Vdr was down-regulated and there was no significant change in Lef1. Validation based on the GSE104954 dataset showed that IRF8 was significantly overexpressed in the renal tubulointerstitium of patients with diabetic nephropathy or IgA nephropathy, MYC was highly expressed in diabetic nephropathy, and the expressions of the other 7 genes were not significantly different compared with the control group. CONCLUSIONS TGF-β1 induces differentially expressed genes in renal fibroblasts, among which Irf8 and Myc were identified as potential targets of chronic kidney disease and renal fibrosis.
Collapse
Affiliation(s)
- Huanan Li
- Department of Cell Biology, School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China.
| | - Peifen Li
- Department of Cell Biology, School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China
| | - Shanyi Li
- Department of Cell Biology, School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China
| | - Xueying Zhang
- Department of Cell Biology, School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China
| | - Xinru Dong
- Department of Cell Biology, School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China
| | - Ming Yang
- Department of Nephrology, Affiliated Hospital of Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Weigan Shen
- Department of Cell Biology, School of Medicine, Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, Jiangsu Province, China.
| |
Collapse
|
12
|
Yao M, Lian D, Wu M, Zhou Y, Fang Y, Zhang S, Zhang W, Yang Y, Li R, Chen H, Chen Y, Shen A, Peng J. Isoliensinine Attenuates Renal Fibrosis and Inhibits TGF-β1/Smad2/3 Signaling Pathway in Spontaneously Hypertensive Rats. Drug Des Devel Ther 2023; 17:2749-2762. [PMID: 37701045 PMCID: PMC10494865 DOI: 10.2147/dddt.s414179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/18/2023] [Indexed: 09/14/2023] Open
Abstract
Purpose This study aimed to investigate the molecular mechanisms of isoliensinine, a kind of bibenzyl isoquinoline alkaloid which isolated from a TCM named Lotus Plumule (Nelumbo nucifera Gaertn), in treating renal interstitial fibrosis (RIF) by using RNA sequencing, KEGG analysis and in vivo experimental approaches. Methods Spontaneous hypertension rats (SHRs) were randomly assigned into five groups, consisting of SHR, SHR+Isoliensinine-L (2.5 mg/kg/day), SHR+Isoliensinine-M (5 mg/kg/day), SHR+Isoliensinine-H (10 mg/kg/day), and SHR+Valsartan (10 mg/kg/day) groups (n = 6 for each group). A control group of Wistar Kyoto rats (n = 6) was also included. Rats were treated intragastrically with isoliensinine, valsartan, or double-distilled water of equal volume for 10 weeks. To examine the therapeutic impact on hypertensive renal injury, fibrosis, and its underlying mechanisms, multiple techniques were employed, including hematoxylin and eosin staining, Masson trichrome staining, RNA sequencing, gene ontology (GO) function and pathway enrichment analysis and immunohistochemistry. Results Resultantly, the use of isoliensinine at different concentrations or valsartan showed significant improvement in renal pathological injury in SHRs. RNA sequencing and KEGG analysis uncovered 583 differentially expressed transcripts and pathways enriched in collagen formation and ECM-receptor interaction after treatment with isoliensinine. There was also a reduction in the increase of collagen and upregulation of collagen I & III, TGF-β1, p-Smad2, and p-Smad3 in the renal tissue of SHRs. Thus, isoliensinine ameliorated renal injury and collagen deposition in hypertensive rats, and inhibiting the activation of the TGF-β1/Smad2/3 pathway might be one of the underlying mechanisms. Conclusion This study showed that treatment with isoliensinine effectively reduced the renal injury and fibrosis in SHRs. In addition, isoliensinine inhibited the TGF-β1/Smad2/3 signaling in-vivo. These findings provided strong evidence for the therapeutic benefits of isoliensinine in combating renal injury and fibrosis.
Collapse
Affiliation(s)
- Mengying Yao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
| | - Dawei Lian
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
| | - Yuting Zhou
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
| | - Yi Fang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Siyu Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
| | - Wenqiang Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
| | - Yanyan Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Renfeng Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
| | - Hong Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
13
|
Zhu J, Fan J, Xia Y, Wang H, Li Y, Feng Z, Fu C. Potential therapeutic targets of macrophages in inhibiting immune damage and fibrotic processes in musculoskeletal diseases. Front Immunol 2023; 14:1219487. [PMID: 37545490 PMCID: PMC10400722 DOI: 10.3389/fimmu.2023.1219487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Macrophages are a heterogeneous cell type with high plasticity, exhibiting unique activation characteristics that modulate the progression and resolution of diseases, serving as a key mediator in maintaining tissue homeostasis. Macrophages display a variety of activation states in response to stimuli in the local environment, with their subpopulations and biological functions being dependent on the local microenvironment. Resident tissue macrophages exhibit distinct transcriptional profiles and functions, all of which are essential for maintaining internal homeostasis. Dysfunctional macrophage subpopulations, or an imbalance in the M1/M2 subpopulation ratio, contribute to the pathogenesis of diseases. In skeletal muscle disorders, immune and inflammatory damage, as well as fibrosis induced by macrophages, are prominent pathological features. Therefore, targeting macrophages is of great significance for maintaining tissue homeostasis and treating skeletal muscle disorders. In this review, we discuss the receptor-ligand interactions regulating macrophages and identify potential targets for inhibiting collateral damage and fibrosis in skeletal muscle disorders. Furthermore, we explore strategies for modulating macrophages to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zijia Feng
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Fan J, Wei S, Zhang X, Chen L, Zhang X, Jiang Y, Sheng M, Chen Y. Resveratrol inhibits TGF-β1-induced fibrotic effects in human pterygium fibroblasts. Environ Health Prev Med 2023; 28:59. [PMID: 37866886 PMCID: PMC10613557 DOI: 10.1265/ehpm.23-00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/02/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Resveratrol is a polyphenolic phytoalexin which has the properties of anti-oxidant, anti-inflammatory and anti-fibrotic effects. The aim of this study was to investigate the anti-fibrotic effects of resveratrol in primary human pterygium fibroblasts (HPFs) and elucidate the underlying mechanisms. METHOD Profibrotic activation was induced by transforming growth factor-beta1 (TGF-β1). The expression of profibrotic markers, including type 1 collagen (COL1), α-smooth muscle actin (α-SMA), and fibronectin, were detected by western blot and quantitative real-time-PCR after treatment with various concentrations of resveratrol in HPFs to investigate the anti-fibrotic effects. Relative signaling pathways downstream of TGF-β1 were detected by Western blot to assess the underlying mechanism. Cell viability and apoptosis were assessed using CCK-8 assay and flow cytometry to evaluate proliferation and drug-induced cytotoxicity. Cell migration and contractile phenotype were detected through wound healing assay and collagen gel contraction assay. RESULTS The expression of α-SMA, FN and COL1 induced by TGF-β1 were suppressed by treatment with resveratrol in dose-dependent manner. The Smad3, mitogen-activated protein kinase (p38 MAPK) and phosphatidylinositol-3-kinase (PI3K) / protein kinase B (AKT) pathways were activated by TGF-β1, while resveratrol attenuated those pathways. Resveratrol also inhibited cellular proliferation, migration and contractile phenotype, and induced apoptosis in HPFs. CONCLUSIONS Resveratrol inhibit TGF-β1-induced myofibroblast activation and extra cellular matrix synthesis in HPFs, at least partly, by regulating the TGF-β/Smad3, p38 MAPK and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Jianwu Fan
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Shuang Wei
- Department of Ophthalmology, Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai 201600, China
| | - Xiaoyan Zhang
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Li Chen
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Xin Zhang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Yaping Jiang
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Minjie Sheng
- Department of Ophthalmology, Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai 201600, China
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| |
Collapse
|
15
|
Gu Z, Yan Y, Yao H, Lin K, Li X. Targeting the LPA1 signalling pathway for fibrosis therapy: a patent review (2010-present). Expert Opin Ther Pat 2022; 32:1097-1122. [PMID: 36175357 DOI: 10.1080/13543776.2022.2130753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Fibrosis is a disease that damages organs and even causes death. Because of the complicated pathogenesis, the development of drugs for fibrosis is challenging. In the lysophosphatidic acid receptor type 1 (LPA1) signalling pathway, LPA1 and its downstream Rho-associated coiled-coil forming protein kinase (ROCK) are related to the process of fibrosis. Targeting LPA1 signalling pathway is a potential strategy for the treatment of fibrosis. AREA COVERED This review describes the process of fibrosis mediated by the LPA1 signalling pathway and then summarizes LPA1 antagonist patents reported since 2010 and ROCK inhibitor patents since 2017 according to their scaffolds based on the Cortellis Drug Discovery Intelligence database. Information on LPA1 antagonists entering clinical trials is integrated. EXPERT OPINION Over the past decade, a large number of antagonists targeting the LPA1 signalling pathway have been patented for fibrosis therapy. A limited number of compounds have entered clinical trials. Different companies and research groups have used different scaffolds when designing compounds for fibrosis therapy. Therefore, LPA1 and ROCK are competitive targets for the development of new therapies for fibrosis to provide a potential treatment method for fibrosis in the future.
Collapse
Affiliation(s)
- Zhihao Gu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yong Yan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hequan Yao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kejiang Lin
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuanyi Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Tang M, Guo C, Sun M, Zhou H, Peng X, Dai J, Ding Q, Wang Y, Yang C. Effective delivery of osteopontin small interference RNA using exosomes suppresses liver fibrosis via TGF-β1 signaling. Front Pharmacol 2022; 13:882243. [PMID: 36120332 PMCID: PMC9478741 DOI: 10.3389/fphar.2022.882243] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
Objective and aims: Osteopontin (OPN), an oxidant stress sensitive cytokine, plays a central role in liver fibrosis. While OPN expression can be reduced by small interfering RNA (siRNA), the challenge to deliver siRNA safely and effectively into liver remains unresolved. Exosomes are promising natural nanocarriers for drug delivery that are able to enter cells with different biological barriers efficiently. In this study, we used exosomes as a delivery vehicle to target OPN in liver fibrosis. Methods: Exosomes selectively home to fibrotic liver according to small animal imaging system. Electroporation technique was used to engineer exosomes to carry siRNA targeting OPN (ExosiRNA−OPN). Primary hepatic stellate cells (HSCs) were isolated and treated with ExosiRNA−OPN to assess the effect on activated HSCs (aHSCs). Immunofluorescence for α−SMA, an aHSCs marker, and sirius red staining were performed to assess ECM deposition. Finally, plasma OPN from patients with liver fibrosis was identified by ELISA assay. Results: Exosome-mediated siRNA delivery systems show high uptake and low toxicity. Besides, ExosiRNA−OPN suppressed HSCs activation and ECM deposition and more efficiently improved liver function when compared to naked siRNA-OPN. Moreover, ExosiRNA−OPN was assumed inhibiting TGF-β1 signaling activation, along with other fibrotic-related genes based on a GEO datasheet of liver fibrosis samples for correlation analyzes. ExosiRNA−OPN inhibited TGF-β1 signaling by decreasing high-mobility group box-1 (HMGB1). Plasma proteins from chronic HBV-induced fibrosis patients were identified that patients with high OPN expression correlates with more advanced fibrosis progression. Discussion: This study shows that exosome-mediated siRNA-OPN delivery may be an effective option for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Min Tang
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cheng Guo
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji UniversityShanghai, China
| | - Mengxue Sun
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Zhou
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Peng
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Jianli Dai
- Biology Department of Pharmaron Beijing Co., Ltd., Beijing, China
| | - Qin Ding
- Nutrition Department, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai, China
| | - Ying Wang
- Department of Infection Management, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- *Correspondence: Changqing Yang, ; Ying Wang,
| | - Changqing Yang
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Changqing Yang, ; Ying Wang,
| |
Collapse
|
17
|
Qiu JL, Zhang GF, Chai YN, Han XY, Zheng HT, Li XF, Duan F, Chen LY. Ligustrazine attenuates liver fibrosis by targeting miR-145 mediated TGF-β/Smad signaling in an animal model of biliary atresia. J Pharmacol Exp Ther 2022; 381:257-265. [DOI: 10.1124/jpet.121.001020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
|
18
|
Yeung V, Sriram S, Tran JA, Guo X, Hutcheon AEK, Zieske JD, Karamichos D, Ciolino JB. FAK Inhibition Attenuates Corneal Fibroblast Differentiation In Vitro. Biomolecules 2021; 11:1682. [PMID: 34827680 PMCID: PMC8616004 DOI: 10.3390/biom11111682] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Corneal fibrosis (or scarring) occurs in response to ocular trauma or infection, and by reducing corneal transparency, it can lead to visual impairment and blindness. Studies highlight important roles for transforming growth factor (TGF)-β1 and -β3 as modulators in corneal wound healing and fibrosis, leading to increased extracellular matrix (ECM) components and expression of α-smooth muscle actin (αSMA), a myofibroblast marker. In this study, human corneal fibroblasts (hCF) were cultured as a monolayer culture (2D) or on poly-transwell membranes to generate corneal stromal constructs (3D) that were treated with TGF-β1, TGF-β3, or TGF-β1 + FAK inhibitor (FAKi). Results show that hCF 3D constructs treated with TGF-β1 or TGF-β3 impart distinct effects on genes involved in wound healing and fibrosis-ITGAV, ITGB1, SRC and ACTA2. Notably, in the 3D construct model, TGF-β1 enhanced αSMA and focal adhesion kinase (FAK) protein expression, whereas TGF-β3 did not. In addition, in both the hCF 2D cell and 3D construct models, we found that TGF-β1 + FAKi attenuated TGF-β1-mediated myofibroblast differentiation, as shown by abrogated αSMA expression. This study concludes that FAK signaling is important for the onset of TGF-β1-mediated myofibroblast differentiation, and FAK inhibition may provide a novel beneficial therapeutic avenue to reduce corneal scarring.
Collapse
Affiliation(s)
- Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Sriniwas Sriram
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Jennifer A. Tran
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Xiaoqing Guo
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Audrey E. K. Hutcheon
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - James D. Zieske
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA;
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Joseph B. Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| |
Collapse
|