1
|
Luo D, Lu X, Li H, Li Y, Wang Y, Jiang S, Li G, Xu Y, Wu K, Dou X, Liu Q, Chen W, Zhou Y, Mao H. The Spermine Oxidase/Spermine Axis Coordinates ATG5-Mediated Autophagy to Orchestrate Renal Senescence and Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306912. [PMID: 38775007 PMCID: PMC11304251 DOI: 10.1002/advs.202306912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/09/2024] [Indexed: 08/09/2024]
Abstract
Decreased plasma spermine levels are associated with kidney dysfunction. However, the role of spermine in kidney disease remains largely unknown. Herein, it is demonstrated that spermine oxidase (SMOX), a key enzyme governing polyamine metabolism, is predominantly induced in tubular epithelium of human and mouse fibrotic kidneys, alongside a reduction in renal spermine content in mice. Moreover, renal SMOX expression is positively correlated with kidney fibrosis and function decline in patients with chronic kidney disease. Importantly, supplementation with exogenous spermine or genetically deficient SMOX markedly improves autophagy, reduces senescence, and attenuates fibrosis in mouse kidneys. Further, downregulation of ATG5, a critical component of autophagy, in tubular epithelial cells enhances SMOX expression and reduces spermine in TGF-β1-induced fibrogenesis in vitro and kidney fibrosis in vivo. Mechanically, ATG5 readily interacts with SMOX under physiological conditions and in TGF-β1-induced fibrogenic responses to preserve cellular spermine levels. Collectively, the findings suggest SMOX/spermine axis is a potential novel therapy to antagonize renal fibrosis, possibly by coordinating autophagy and suppressing senescence.
Collapse
Affiliation(s)
- Dan Luo
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
- Department of NephrologyShunde HospitalSouthern Medical University (The First People's Hospital of Shunde)FoshanGuangdong528308China
| | - Xiaohui Lu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Hongyu Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Yi Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Yating Wang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Simin Jiang
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Guanglan Li
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Yiping Xu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Kefei Wu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Xianrui Dou
- Department of NephrologyShunde HospitalSouthern Medical University (The First People's Hospital of Shunde)FoshanGuangdong528308China
| | - Qinghua Liu
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Wei Chen
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Yi Zhou
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| | - Haiping Mao
- Department of NephrologyThe First Affiliated HospitalSun Yat‐sen UniversityNHC Key Laboratory of Clinical NephrologyGuangdong Provincial Key Laboratory of NephrologyGuangzhouGuangdong510080China
| |
Collapse
|
2
|
Barla I, Dagla IV, Daskalopoulou A, Panagiotopoulou M, Kritikaki M, Dalezis P, Thomaidis N, Tsarbopoulos A, Trafalis D, Gikas E. Metabolomics highlights biochemical perturbations occurring in the kidney and liver of mice administered a human dose of colistin. Front Mol Biosci 2024; 11:1338497. [PMID: 39050734 PMCID: PMC11266156 DOI: 10.3389/fmolb.2024.1338497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/23/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction: Colistin (CMS) is used for the curation of infections caused by multidrug-resistant bacteria. CMS is constrained by toxicity, particularly in kidney and neuronal cells. The recommended human doses are 2.5-5 mg/kg/day, and the toxicity is linked to higher doses. So far, the in vivo toxicity studies have used doses even 10-fold higher than human doses. It is essential to investigate the impact of metabolic response of doses, that are comparable to human doses, to identify biomarkers of latent toxicity. The innovation of the current study is the in vivo stimulation of CMS's impact using a range of CMS doses that have never been investigated before, i.e., 1 and 1.5 mg/kg. The 1 and 1.5 mg/kg, administered in mice, correspond to the therapeutic and toxic human doses, based on previous expertise of our team, regarding the human exposure. The study mainly focused on the biochemical impact of CMS on the metabolome, and on the alterations provoked by 50%-fold of dose increase. The main objectives were i) the comprehension of the biochemical changes resulting after CMS administration and ii) from its dose increase; and iii) the determination of dose-related metabolites that could be considered as toxicity monitoring biomarkers. Methods: The in vivo experiment employed two doses of CMS versus a control group treated with normal saline, and samples of plasma, kidney, and liver were analysed with a UPLC-MS-based metabolomics protocol. Both univariate and multivariate statistical approaches (PCA, OPLS-DA, PLS regression, ROC) and pathway analysis were combined for the data interpretation. Results: The results pointed out six dose-responding metabolites (PAA, DA4S, 2,8-DHA, etc.), dysregulation of renal dopamine, and extended perturbations in renal purine metabolism. Also, the study determined altered levels of liver suberylglycine, a metabolite linked to hepatic steatosis. One of the most intriguing findings was the detection of elevated levels of renal xanthine and uric acid, that act as AChE activators, leading to the rapid degradation of acetylcholine. This evidence provides a naïve hypothesis, for the potential association between the CMS induced nephrotoxicity and CMS induced 39 neurotoxicity, that should be further investigated.
Collapse
Affiliation(s)
- I. Barla
- Laboratory of Analytical Chemistry, Department of Chemistry, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - I. V. Dagla
- GAIA Research Center, The Goulandris Natural History Museum, Kifissia, Greece
| | - A. Daskalopoulou
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, School of Health Science, National and Kapodistrian University of Athens, Athens, Greece
| | - M. Panagiotopoulou
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, School of Health Science, National and Kapodistrian University of Athens, Athens, Greece
| | - M. Kritikaki
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, School of Health Science, National and Kapodistrian University of Athens, Athens, Greece
| | - P. Dalezis
- Laboratory of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - N. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - A. Tsarbopoulos
- Laboratory of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - D. Trafalis
- Laboratory of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - E. Gikas
- Laboratory of Analytical Chemistry, Department of Chemistry, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Zaman I, Liaqat A, Athar S, Mujahid A, Afzal A. Electrocatalytic FeFe 2O 4 embedded, spermine-imprinted polypyrrole (Fe/MIPpy) nanozymes for cancer diagnosis and prognosis. J Mater Chem B 2024; 12:5898-5906. [PMID: 38779948 DOI: 10.1039/d4tb00190g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Developing synthetic materials, with enzyme-like molecular recognition capabilities, as functional receptors in electronic or electrochemical devices for the timely diagnosis of major diseases is a great challenge. Herein, we present the development of Fe/MIPpy nanozymes, characterized as enzyme-like artificial receptors, for the precise and non-invasive monitoring of cancer biomarkers in aqueous solutions and human saliva. Through the integration of PVA-stabilized FeFe2O4 nanocrystals in a molecularly imprinted conducting polypyrrole matrix, the Fe/MIPpy nanozymes demonstrate 424 nA cm-2 nM-1 sensitivity and 220 pM detection limit. Charge-transfer mechanisms, Fe/MIPpy-spermine interactions, and the principle of spermine recognition are investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The disposable Fe/MIPpy sensor operates wirelessly and offers rapid and remote quantification of spermine, making it a promising material for the development of cost-effective tools for non-invasive cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Iqra Zaman
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan.
| | - Amna Liaqat
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan.
| | - Sadaf Athar
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan.
| | - Adnan Mujahid
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan.
| | - Adeel Afzal
- Sensors and Diagnostics Lab, School of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
4
|
Kashyap B, Kullaa A. Salivary Metabolites Produced by Oral Microbes in Oral Diseases and Oral Squamous Cell Carcinoma: A Review. Metabolites 2024; 14:277. [PMID: 38786754 PMCID: PMC11122927 DOI: 10.3390/metabo14050277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
In recent years, salivary metabolome studies have provided new biological information and salivary biomarkers to diagnose different diseases at early stages. The saliva in the oral cavity is influenced by many factors that are reflected in the salivary metabolite profile. Oral microbes can alter the salivary metabolite profile and may express oral inflammation or oral diseases. The released microbial metabolites in the saliva represent the altered biochemical pathways in the oral cavity. This review highlights the oral microbial profile and microbial metabolites released in saliva and its use as a diagnostic biofluid for different oral diseases. The importance of salivary metabolites produced by oral microbes as risk factors for oral diseases and their possible relationship in oral carcinogenesis is discussed.
Collapse
Affiliation(s)
| | - Arja Kullaa
- Institute of Dentistry, University of Eastern Finland, 70211 Kuopio, Finland;
| |
Collapse
|
5
|
Li B, Li Q, Qi Z, Li Z, Yan X, Chen Y, Xu X, Pan Q, Chen Y, Huang F, Ping Y. Supramolecular Genome Editing: Targeted Delivery and Endogenous Activation of CRISPR/Cas9 by Dynamic Host-Guest Recognition. Angew Chem Int Ed Engl 2024; 63:e202316323. [PMID: 38317057 DOI: 10.1002/anie.202316323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
We synthesize supramolecular poly(disulfide) (CPS) containing covalently attached cucurbit[7]uril (CB[7]), which is exploited not only as a carrier to deliver plasmid DNA encoding destabilized Cas9 (dsCas9), but also as a host to include trimethoprim (TMP) by CB[7] moieties through the supramolecular complexation to form TMP@CPS/dsCas9. Once the plasmid is transfected into tumor cells by CPS, the presence of polyamines can competitively trigger the decomplexation of TMP@CPS, thereby displacing and releasing TMP from CB[7] to stabilize dsCas9 that can target and edit the genomic locus of PLK1 to inhibit the growth of tumor cells. Following the systemic administration of TMP@CPS/dsCas9 decorated with hyaluronic acid (HA), tumor-specific editing of PLK1 is detected due to the elevated polyamines in tumor microenvironment, greatly minimizing off-target editing in healthy tissues and non-targeted organs. As the metabolism of polyamines is dysregulated in a wide range of disorders, this study offers a supramolecular approach to precisely control CRISPR/Cas9 functions under particular pathological contexts.
Collapse
Affiliation(s)
- Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, P. R. China
| | - Qing Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Zidan Qi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhiyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiaojie Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiaojie Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, P. R. China
| | - Qi Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuxuan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P. R. China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, P. R. China
| |
Collapse
|
6
|
Ji XT, Yu WL, Jin MJ, Lu LJ, Yin HP, Wang HH. Possible Role of Cellular Polyamine Metabolism in Neuronal Apoptosis. Curr Med Sci 2024; 44:281-290. [PMID: 38453792 DOI: 10.1007/s11596-024-2843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 01/19/2024] [Indexed: 03/09/2024]
Abstract
Recent studies have shown that cellular levels of polyamines (PAs) are significantly altered in neurodegenerative diseases. Evidence from in vivo animal and in vitro cell experiments suggests that the cellular levels of various PAs may play important roles in the central nervous system through the regulation of oxidative stress, mitochondrial metabolism, cellular immunity, and ion channel functions. Dysfunction of PA metabolism related enzymes also contributes to neuronal injury and cognitive impairment in many neurodegenerative diseases. Therefore, in the current work, evidence was collected to determine the possible associations between cellular levels of PAs, and related enzymes and the development of several neurodegenerative diseases, which could provide a new idea for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Xin-Tong Ji
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Wen-Lei Yu
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- Department of Stomatology, Huzhou Wuxing District People's Hospital, Huzhou Wuxing District Maternal and Child Health Hospital, Huzhou, 313008, China
| | - Meng-Jia Jin
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- School of Pharmacy, Zhejiang University, Hangzhou, 310030, China
| | - Lin-Jie Lu
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
- Department of Stomatology, Haining Hospital of Traditional Chinese Medicine, Jiaxing, 314400, China
| | - Hong-Ping Yin
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huan-Huan Wang
- School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
7
|
Zhang L, Zhai BZ, Wu YJ, Wang Y. Recent progress in the development of nanomaterials targeting multiple cancer metabolic pathways: a review of mechanistic approaches for cancer treatment. Drug Deliv 2023; 30:1-18. [PMID: 36597205 PMCID: PMC9943254 DOI: 10.1080/10717544.2022.2144541] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cancer is a very heterogeneous disease, and uncontrolled cell division is the main characteristic of cancer. Cancerous cells need a high nutrition intake to enable aberrant growth and survival. To do so, cancer cells modify metabolic pathways to produce energy and anabolic precursors and preserve redox balance. Due to the importance of metabolic pathways in tumor growth and malignant transformation, metabolic pathways have also been given promising perspectives for cancer treatment, providing more effective treatment strategies, and target-specific with minimum side effects. Metabolism-based therapeutic nanomaterials for targeted cancer treatment are a promising option. Numerous types of nanoparticles (NPs) are employed in the research and analysis of various cancer therapies. The current review focuses on cutting-edge strategies and current cancer therapy methods based on nanomaterials that target various cancer metabolisms. Additionally, it highlighted the primacy of NPs-based cancer therapies over traditional ones, the challenges, and the future potential.
Collapse
Affiliation(s)
- Ling Zhang
- Reproductive Medicine Center, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China,CONTACT Ling Zhang Reproductive Medicine Center, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou310014, Zhejiang, China
| | - Bing-Zhong Zhai
- Hangzhou Municipal Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310021, China
| | - Yue-Jin Wu
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Yin Wang
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China,; Yin Wang Institute of Food Science and Engineering, Hangzhou Medical College, 182 Tianmushan Road, Hangzhou310013, Zhejiang, China
| |
Collapse
|
8
|
Jasbi P, Nikolich-Žugich J, Patterson J, Knox KS, Jin Y, Weinstock GM, Smith P, Twigg HL, Gu H. Targeted metabolomics reveals plasma biomarkers and metabolic alterations of the aging process in healthy young and older adults. GeroScience 2023; 45:3131-3146. [PMID: 37195387 PMCID: PMC10643785 DOI: 10.1007/s11357-023-00823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023] Open
Abstract
With the exponential growth in the older population in the coming years, many studies have aimed to further investigate potential biomarkers associated with the aging process and its incumbent morbidities. Age is the largest risk factor for chronic disease, likely due to younger individuals possessing more competent adaptive metabolic networks that result in overall health and homeostasis. With aging, physiological alterations occur throughout the metabolic system that contribute to functional decline. In this cross-sectional analysis, a targeted metabolomic approach was applied to investigate the plasma metabolome of young (21-40y; n = 75) and older adults (65y + ; n = 76). A corrected general linear model (GLM) was generated, with covariates of gender, BMI, and chronic condition score (CCS), to compare the metabolome of the two populations. Among the 109 targeted metabolites, those associated with impaired fatty acid metabolism in the older population were found to be most significant: palmitic acid (p < 0.001), 3-hexenedioic acid (p < 0.001), stearic acid (p = 0.005), and decanoylcarnitine (p = 0.036). Derivatives of amino acid metabolism, 1-methlyhistidine (p = 0.035) and methylhistamine (p = 0.027), were found to be increased in the younger population and several novel metabolites were identified, such as cadaverine (p = 0.034) and 4-ethylbenzoic acid (p = 0.029). Principal component analysis was conducted and highlighted a shift in the metabolome for both groups. Receiver operating characteristic analyses of partial least squares-discriminant analysis models showed the candidate markers to be more powerful indicators of age than chronic disease. Pathway and enrichment analyses uncovered several pathways and enzymes predicted to underlie the aging process, and an integrated hypothesis describing functional characteristics of the aging process was synthesized. Compared to older participants, the young group displayed greater abundance of metabolites related to lipid and nucleotide synthesis; older participants displayed decreased fatty acid oxidation and reduced tryptophan metabolism, relative to the young group. As a result, we offer a better understanding of the aging metabolome and potentially reveal new biomarkers and predicted mechanisms for future study.
Collapse
Affiliation(s)
- Paniz Jasbi
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85004, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Janko Nikolich-Žugich
- University of Arizona Center on Aging, University of Arizona, Tucson, AZ, 85724, USA
| | - Jeffrey Patterson
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85004, USA
| | - Kenneth S Knox
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Yan Jin
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85004, USA
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL, 34987, USA
| | | | - Patricia Smith
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University Medical Center, 1120 West Michigan Street, CL 260A, Indianapolis, IN, 46202, USA
| | - Homer L Twigg
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University Medical Center, 1120 West Michigan Street, CL 260A, Indianapolis, IN, 46202, USA.
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85004, USA.
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL, 34987, USA.
| |
Collapse
|
9
|
Wang Y, Chen S, Wang C, Guo F. Nanocarrier-based targeting of metabolic pathways for endometrial cancer: Status and future perspectives. Biomed Pharmacother 2023; 166:115348. [PMID: 37639743 DOI: 10.1016/j.biopha.2023.115348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023] Open
Abstract
Cancer is the second-most lethal global disease, as per health reports, and is responsible for around 70% of deaths in low- and middle-income countries. Endometrial cancer is one of the emerging malignancies and has been predicted as a public health challenge for the future. Insulin resistance, obesity, and diabetes mellitus are the key metabolic factors that promote risks for the development of endometrial cancer. Various signaling pathways and associated genes are involved in the genesis of endometrial cancer, and any mutation or deletion in such related factors leads to the induction of endometrial cancer. The conventional way of drug delivery has been used for ages but is associated with poor management of cancer due to non-targeting of the endometrial cancer cells, low efficacy of the therapy, and toxicity issues as well. In this context, nanocarrier-based therapy for the management of endometrial cancer is an effective alternate choice that overcomes the problems associated with conventional therapy. In this review article, we highlighted the nanocarrier-based targeting of endometrial cancer, with a special focus on targeting various metabolic signaling pathways. Furthermore, the future perspectives of nanocarrier-based targeting of metabolic pathways in endometrial cancer were also underpinned. It is concluded that targeting metabolic signaling pathways in endometrial cancer via nanocarrier scaffolds is the future of pharmaceutical design for the significant management and treatment of endometrial cancer.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Siyao Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun 130000, China
| | - Fengjun Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
10
|
Basic A, Dahlén G. Microbial metabolites in the pathogenesis of periodontal diseases: a narrative review. FRONTIERS IN ORAL HEALTH 2023; 4:1210200. [PMID: 37388417 PMCID: PMC10300593 DOI: 10.3389/froh.2023.1210200] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
The purpose of this narrative review is to highlight the importance of microbial metabolites in the pathogenesis of periodontal diseases. These diseases, involving gingivitis and periodontitis are inflammatory conditions initiated and maintained by the polymicrobial dental plaque/biofilm. Gingivitis is a reversible inflammatory condition while periodontitis involves also irreversible destruction of the periodontal tissues including the alveolar bone. The inflammatory response of the host is a natural reaction to the formation of plaque and the continuous release of metabolic waste products. The microorganisms grow in a nutritious and shielded niche in the periodontal pocket, protected from natural cleaning forces such as saliva. It is a paradox that the consequences of the enhanced inflammatory reaction also enable more slow-growing, fastidious, anaerobic bacteria, with often complex metabolic pathways, to colonize and thrive. Based on complex food chains, nutrient networks and bacterial interactions, a diverse microbial community is formed and established in the gingival pocket. This microbiota is dominated by anaerobic, often motile, Gram-negatives with proteolytic metabolism. Although this alternation in bacterial composition often is considered pathologic, it is a natural development that is promoted by ecological factors and not necessarily a true "dysbiosis". Normal commensals are adapting to the gingival crevice when tooth cleaning procedures are absent. The proteolytic metabolism is highly complex and involves a number of metabolic pathways with production of a cascade of metabolites in an unspecific manner. The metabolites involve short chain fatty acids (SCFAs; formic, acetic, propionic, butyric, and valeric acid), amines (indole, scatole, cadaverine, putrescine, spermine, spermidine) and gases (NH3, CO, NO, H2S, H2). A homeostatic condition is often present between the colonizers and the host response, where continuous metabolic fluctuations are balanced by the inflammatory response. While it is well established that the effect of the dental biofilm on the host response and tissue repair is mediated by microbial metabolites, the mechanisms behind the tissue destruction (loss of clinical attachment and bone) are still poorly understood. Studies addressing the functions of the microbiota, the metabolites, and how they interplay with host tissues and cells, are therefore warranted.
Collapse
|
11
|
A coumarin-based small molecular fluorescent probe for detection of the freshness of meat and shrimp. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
12
|
Wortha SM, Frenzel S, Bahls M, Habes M, Wittfeld K, Van der Auwera S, Bülow R, Zylla S, Friedrich N, Nauck M, Völzke H, Grabe HJ, Schwarz C, Flöel A. Association of spermidine plasma levels with brain aging in a population-based study. Alzheimers Dement 2023; 19:1832-1840. [PMID: 36321615 PMCID: PMC11246659 DOI: 10.1002/alz.12815] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Supplementation with spermidine may support healthy aging, but elevated spermidine tissue levels were shown to be an indicator of Alzheimer's disease (AD). METHODS Data from 659 participants (age range: 21-81 years) of the population-based Study of Health in Pomerania TREND were included. We investigated the association between spermidine plasma levels and markers of brain aging (hippocampal volume, AD score, global cortical thickness [CT], and white matter hyperintensities [WMH]). RESULTS Higher spermidine levels were significantly associated with lower hippocampal volume (ß = -0.076; 95% confidence interval [CI]: -0.13 to -0.02; q = 0.026), higher AD score (ß = 0.118; 95% CI: 0.05 to 0.19; q = 0.006), lower global CT (ß = -0.104; 95% CI: -0.17 to -0.04; q = 0.014), but not WMH volume. Sensitivity analysis revealed no substantial changes after excluding participants with cancer, depression, or hemolysis. DISCUSSION Elevated spermidine plasma levels are associated with advanced brain aging and might serve as potential early biomarker for AD and vascular brain pathology.
Collapse
Affiliation(s)
- Silke M. Wortha
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Martin Bahls
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Mohamad Habes
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio
- Department of Radiology, University of Pennsylvania, Philadelphia
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Stephanie Zylla
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Nele Friedrich
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Claudia Schwarz
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Clinical Research Center, Berlin, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| |
Collapse
|
13
|
Huang P, Wang M, Lu Z, Shi S, Wei X, Bi C, Wang G, Liu H, Hu T, Wang B. Putrescine accelerates the differentiation of bone marrow derived dendritic cells via inhibiting phosphorylation of STAT3 at Tyr705. Int Immunopharmacol 2023; 116:109739. [PMID: 36706590 DOI: 10.1016/j.intimp.2023.109739] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/27/2023]
Abstract
Dendritic cells (DCs) play pivotal roles in immune responses. The differentiation and function of DCs are regulated by environmental metabolites. Putrescine is ubiquitous in various metabolic microenvironments and its immunoregulation has been of increasing interest. However, the mechanisms associated with its DC-induced immunoregulation remain unclear. In this study, we found putrescine promoted induction of immature bone marrow derived DCs (BMDCs), along with the increased phagocytosis and migration, and altered cytokine secretion in immature BMDCs. Transcriptomic profiles indicated significantly impaired inflammatory-related pathways, elevated oxidative phosphorylation, and decreased p-STAT3 (Tyr705) expression. Additionally, putrescine performed minor influence on the lipopolysaccharide (LPS)-induced maturation of BMDCs but significantly impaired LPS-induced DC-elicited allogeneic T-cell proliferation as well as the cytokine secretion. Furthermore, molecular docking and dynamics on the conjugation between putrescine and STAT3 revealed that putrescine could be stably bound to the hydrophilic cavity in STAT3 and performed significant influence on the Tyr705 phosphorylation. CUT&Tag analysis uncovered altered motifs, downregulated IFN-γ response, and upregulated p53 pathway in Putrescine group compared with Control group. In summary, our results demonstrated for the first time that putrescine might accelerate the differentiation of BMDCs by inhibiting the phosphorylation of STAT3 at Tyr705. Given that both DCs and putrescine have ubiquitous and distinct roles in various immune responses and pathogeneses, our findings may provide more insights into polyamine immunoregulation on DCs, as well as distinct strategies in the clinical utilization of DCs by targeting polyamines.
Collapse
Affiliation(s)
- Panpan Huang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Mengyang Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Zixuan Lu
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Shaojie Shi
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xia Wei
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Chenxiao Bi
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Guoyan Wang
- Medical Laboratory Science, Yantai Affiliated Hospital of ao'deBinzhou Medical University, Yantai, China
| | - Hong Liu
- The 2nd Medical College of Binzhou Medical University, Binzhou Medical University, Yantai, China
| | - Tao Hu
- Department of Immunology, Binzhou Medical University, Yantai, China.
| | - Bin Wang
- Department of Immunology, Binzhou Medical University, Yantai, China.
| |
Collapse
|
14
|
Hofer SJ, Simon AK, Bergmann M, Eisenberg T, Kroemer G, Madeo F. Mechanisms of spermidine-induced autophagy and geroprotection. NATURE AGING 2022; 2:1112-1129. [PMID: 37118547 DOI: 10.1038/s43587-022-00322-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/28/2022] [Indexed: 04/30/2023]
Abstract
Aging involves the systemic deterioration of all known cell types in most eukaryotes. Several recently discovered compounds that extend the healthspan and lifespan of model organisms decelerate pathways that govern the aging process. Among these geroprotectors, spermidine, a natural polyamine ubiquitously found in organisms from all kingdoms, prolongs the lifespan of fungi, nematodes, insects and rodents. In mice, it also postpones the manifestation of various age-associated disorders such as cardiovascular disease and neurodegeneration. The specific features of spermidine, including its presence in common food items, make it an interesting candidate for translational aging research. Here, we review novel insights into the geroprotective mode of action of spermidine at the molecular level, as we discuss strategies for elucidating its clinical potential.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Max Delbrück Center, Berlin, Germany
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
15
|
Zhang N, Zhou S, Zhang Z, Li W, Peng Y, Zheng J. Evidence for adduction of biologic amines with reactive metabolite of 8-epidiosbulbin E acetate in vitro and in vivo. Toxicol Lett 2022; 365:1-10. [PMID: 35680040 DOI: 10.1016/j.toxlet.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/24/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
Abstract
Dioscorea bulbifera L. (DBL) is one of traditional Chinese medicines and has been used for the treatment of goiter, tumor and carbuncles. However, clinic application of the herbal medicine has been limited, due to reported severe hepatotoxicity. 8-Epidiosbulbin E acetate (EEA), one of the major components of DBL, can cause severe liver damage. The furan ring of EEA is metabolized by CYP3A4 to a cis-enedial reactive intermediate prone to react amino and/or thiol groups of amino acid residues. In this study, we investigated the interaction of the reactive intermediate with biologic amines. EEA-derived biologic amine adducts, including spermidine, spermine, putrescine, ornithine, lysine and glutamine were detected in cultured mouse primary hepatocytes treated with EEA. Only spermidine adduct was observed in bile of mice given EEA. The detection of the adducts was established by labeling with bromobenzyl mercaptan and LC-MS/MS analysis. Exposure of EEA resulted in concentration dependent cytotoxicity in hepatocytes. Pretreatment with spermidine attenuated the susceptibility of cells to the cytotoxicity of EEA, because of the compensation of the depleted spermidine.
Collapse
Affiliation(s)
- Na Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Shenzhi Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Zhengyu Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Wei Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
16
|
Leggett A, Li DW, Sindeldecker D, Staats A, Rigel N, Bruschweiler-Li L, Brüschweiler R, Stoodley P. Cadaverine Is a Switch in the Lysine Degradation Pathway in Pseudomonas aeruginosa Biofilm Identified by Untargeted Metabolomics. Front Cell Infect Microbiol 2022; 12:833269. [PMID: 35237533 PMCID: PMC8884266 DOI: 10.3389/fcimb.2022.833269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
There is a critical need to accurately diagnose, prevent, and treat biofilms in humans. The biofilm forming P. aeruginosa bacteria can cause acute and chronic infections, which are difficult to treat due to their ability to evade host defenses along with an inherent antibiotic-tolerance. Using an untargeted NMR-based metabolomics approach, we identified statistically significant differences in 52 metabolites between P. aeruginosa grown in the planktonic and lawn biofilm states. Among them, the metabolites of the cadaverine branch of the lysine degradation pathway were systematically decreased in biofilm. Exogenous supplementation of cadaverine caused significantly increased planktonic growth, decreased biofilm accumulation by 49% and led to altered biofilm morphology, converting to a pellicle biofilm at the air-liquid interface. Our findings show how metabolic pathway differences directly affect the growth mode in P. aeruginosa and could support interventional strategies to control biofilm formation.
Collapse
Affiliation(s)
- Abigail Leggett
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Da-Wei Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, United States
| | - Devin Sindeldecker
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Amelia Staats
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Nicholas Rigel
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Lei Bruschweiler-Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, United States
| | - Rafael Brüschweiler
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, United States
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, United States
- *Correspondence: Rafael Brüschweiler, ; Paul Stoodley,
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- Department of Orthopaedics, The Ohio State University, Columbus, OH, United States
- National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), Mechanical Engineering, University of Southampton, Southampton, United Kingdom
- *Correspondence: Rafael Brüschweiler, ; Paul Stoodley,
| |
Collapse
|
17
|
Tse RTH, Wong CYP, Chiu PKF, Ng CF. The Potential Role of Spermine and Its Acetylated Derivative in Human Malignancies. Int J Mol Sci 2022; 23:ijms23031258. [PMID: 35163181 PMCID: PMC8836144 DOI: 10.3390/ijms23031258] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
Polyamines are essential biomolecules for normal cellular metabolism in humans. The roles of polyamines in cancer development have been widely discussed in recent years. Among all, spermine alongside with its acetylated derivative, N1, N12-Diacetylspermine, demonstrate a relationship with the diagnosis and staging of various cancers, including lung, breast, liver, colorectal and urogenital. Numerous studies have reported the level of spermine in different body fluids and organ tissues in patients with different types of cancers. Currently, the role and the underlying mechanisms of spermine in cancer development and progression are still under investigation. This review summarized the roles of spermine in cancer development and as a diagnostic, prognostic and therapeutic tool in various cancers.
Collapse
Affiliation(s)
| | | | - Peter Ka-Fung Chiu
- Correspondence: (P.K.-F.C.); (C.-F.N.); Tel.: +852-3505-2625 (P.K.-F.C. & C.-F.N.)
| | - Chi-Fai Ng
- Correspondence: (P.K.-F.C.); (C.-F.N.); Tel.: +852-3505-2625 (P.K.-F.C. & C.-F.N.)
| |
Collapse
|
18
|
Amin M, Abdullah BM, Rowley-Neale SJ, Wylie S, Slate AJ, Banks CE, Whitehead KA. Diamine Oxidase-Conjugated Multiwalled Carbon Nanotubes to Facilitate Electrode Surface Homogeneity. SENSORS (BASEL, SWITZERLAND) 2022; 22:675. [PMID: 35062637 PMCID: PMC8780216 DOI: 10.3390/s22020675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
Carbon nanomaterials have gained significant interest over recent years in the field of electrochemistry, and they may be limited in their use due to issues with their difficulty in dispersion. Enzymes are prime components for detecting biological molecules and enabling electrochemical interactions, but they may also enhance multiwalled carbon nanotube (MWCNT) dispersion. This study evaluated a MWCNT and diamine oxidase enzyme (DAO)-functionalised screen-printed electrode (SPE) to demonstrate improved methods of MWCNT functionalisation and dispersion. MWCNT morphology and dispersion was determined using UV-Vis spectroscopy (UV-Vis) and scanning electron microscopy (SEM). Carboxyl groups were introduced onto the MWCNT surfaces using acid etching. MWCNT functionalisation was carried out using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-Hydroxysuccinimide (NHS), followed by DAO conjugation and glutaraldehyde (GA) crosslinking. Modified C-MWNCT/EDC-NHS/DAO/GA was drop cast onto SPEs. Modified and unmodified electrodes after MWCNT functionalisation were characterised using optical profilometry (roughness), water contact angle measurements (wettability), Raman spectroscopy and energy dispersive X-ray spectroscopy (EDX) (vibrational modes and elemental composition, respectively). The results demonstrated that the addition of the DAO improved MWCNT homogenous dispersion and the solution demonstrated enhanced stability which remained over two days. Drop casting of C-MWCNT/EDC-NHS/DAO/GA onto carbon screen-printed electrodes increased the surface roughness and wettability. UV-Vis, SEM, Raman and EDX analysis determined the presence of carboxylated MWCNT variants from their non-carboxylated counterparts. Electrochemical analysis demonstrated an efficient electron transfer rate process and a diffusion-controlled redox process. The modification of such electrodes may be utilised for the development of biosensors which could be utilised to support a range of healthcare related fields.
Collapse
Affiliation(s)
- M. Amin
- Department of Engineering and Technology, Liverpool John Moore’s University, Liverpool L3 3AF, UK; (B.M.A.); (S.W.)
- Microbiology at Interfaces Group, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - B. M. Abdullah
- Department of Engineering and Technology, Liverpool John Moore’s University, Liverpool L3 3AF, UK; (B.M.A.); (S.W.)
| | - S. J. Rowley-Neale
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (S.J.R.-N.); (C.E.B.)
| | - S. Wylie
- Department of Engineering and Technology, Liverpool John Moore’s University, Liverpool L3 3AF, UK; (B.M.A.); (S.W.)
| | - A. J. Slate
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK;
| | - C. E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (S.J.R.-N.); (C.E.B.)
| | - K. A. Whitehead
- Microbiology at Interfaces Group, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|
19
|
Luo Q, Chen S, Zhu J, Ye L, Hall ND, Basak S, McElroy JS, Chen Y. Overexpression of EiKCS confers paraquat-resistance in rice (Oryza sativa L.) by promoting the polyamine pathway. PEST MANAGEMENT SCIENCE 2022; 78:246-262. [PMID: 34476895 PMCID: PMC9292836 DOI: 10.1002/ps.6628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Paraquat is used widely as one of the bipyridine herbicides, which generates reactive oxygen species to cause cell death. With a growing number of paraquat-resistant weeds, the mechanism of paraquat-resistance in plants remains unclear. This research verified the functions of a previously confirmed putative paraquat-resistant gene, EiKCS, from paraquat-resistant goosegrass by genetic engineering in a single overexpressing line in rice. RESULTS Overexpression of EiKCS improved paraquat resistance in transgenic rice (KCSox). Pre-applied (12 h) exogenous spermidine (1.5 mmol L-1 ), alleviated the injury of paraquat in rice. Paraquat induced injury in KCSox was 19.57%, which was lower than 32.22% injury it induced in wild-type (WT) rice. The paraquat-resistant mechanism was through the increased activity of antioxidant enzymes and the overproduction of endogenous polyamines. The spermine content in KCSox was more than 30 μg mL-1 , while that in WT rice was less than 5 μg mL-1 . Quantitative proteomics showed that β-ketoacyl-coenzyme A (CoA) synthase (51.81 folds) encoded by the transgenic EiKCS gene promoted the synthesis of the proteins involved with the polyamine pathway. The synthesized putrescine was promoted by the arginine decarboxylase (ADC) pathway. The spermidine synthase I (1.10-fold) and three eceriferum cofactors (CERs) were responsive to the paraquat stress. We validated putrescine (C18 H20 N2 O2 ) spermidine (C28 H31 N3 O3 ), and spermine (C38 H42 N4 O4 ) in this study. CONCLUSION EiKCS encoding β-ketoacyl-CoA synthase from goosegrass has been shown as an ideal candidate gene for engineering genetically modified organism (GMO) crops, as its overexpression does not only bring paraquat-resistance, but also have potential benefits without decreasing yield and rice grain quality. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiyu Luo
- Department of Crop Cultivation and Farming SystemSouth China Agricultural UniversityGuangzhouChina
- Department of Crop, Soil, and Environmental SciencesAuburn UniversityAuburnALUSA
| | - Shu Chen
- Department of Crop Cultivation and Farming SystemSouth China Agricultural UniversityGuangzhouChina
| | - Jiazheng Zhu
- Department of Crop Cultivation and Farming SystemSouth China Agricultural UniversityGuangzhouChina
| | - Laihua Ye
- Department of Crop Cultivation and Farming SystemSouth China Agricultural UniversityGuangzhouChina
| | - Nathan Daniel Hall
- Department of Crop, Soil, and Environmental SciencesAuburn UniversityAuburnALUSA
| | - Suma Basak
- Department of Crop, Soil, and Environmental SciencesAuburn UniversityAuburnALUSA
| | - Joseph Scott McElroy
- Department of Crop, Soil, and Environmental SciencesAuburn UniversityAuburnALUSA
| | - Yong Chen
- Department of Crop Cultivation and Farming SystemSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|