1
|
Wang L, Su F, Huang H, Jiang Q, Kong H, Pei Z. Application of mRNA technology in neuronal protection of human mature brain-derived neurotrophic factor. Tissue Cell 2025; 93:102788. [PMID: 39933411 DOI: 10.1016/j.tice.2025.102788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Although human mature brain-derived neurotrophic factor (hmBDNF) offers potential neuronal protection, its clinical translation remains challenging. Messenger RNA (mRNA) technology is promising in selectively upregulating protein cleavage products. This proof-of-concept study aims to evaluate the neuronal protective effects of hmBDNF mRNA in vitro. METHODS We optimized and synthesized hmBDNF mRNA and conducted dose-response and time-response analyses in SH-SY5Y cells. mRNA expression was assessed via qPCR, while protein expression was evaluated through immunostaining and ELISA. Cell survival rate was measured using cell counting kit-8. We examined cell survival rates in both differentiated and non-differentiated SH-SY5Y cells exposed to H2O2 or serum deprivation following hmBDNF mRNA incubation. Additionally, we assessed the expression of synapse-relevant genes (MAP2, synaptophysin) and the mBDNF receptor (TrkB) in both cell types. RESULTS The optimized hmBDNF mRNA effectively upregulated hmBDNF expression in SH-SY5Y cells with minimal impact on endogenous proBDNF expression. Dose-response and time-response analyses identified the optimal dose and time point for maximum hmBDNF expression. hmBDNF mRNA significantly increased cell survival in differentiated SH-SY5Y cells expressing MAP2, synaptophysin and TrkB after exposure to oxidative stress or serum deprivation. However, hmBDNF mRNA did not enhance cell survival in non-differentiated SH-SY5Y cells. CONCLUSION The optimized hmBDNF mRNA demonstrated a capacity for neuronal protection in vitro. Further in-vivo studies are required to assess its potential for clinical translation.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou 510080, China; National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Fengjuan Su
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou 510080, China; National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Heng Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou 510080, China; National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Qiuhong Jiang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou 510080, China; National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Haifang Kong
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou 510080, China; National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou 510080, China; National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China.
| |
Collapse
|
2
|
Viral Vectors in Gene Therapy: Where Do We Stand in 2023? Viruses 2023; 15:v15030698. [PMID: 36992407 PMCID: PMC10059137 DOI: 10.3390/v15030698] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Viral vectors have been used for a broad spectrum of gene therapy for both acute and chronic diseases. In the context of cancer gene therapy, viral vectors expressing anti-tumor, toxic, suicide and immunostimulatory genes, such as cytokines and chemokines, have been applied. Oncolytic viruses, which specifically replicate in and kill tumor cells, have provided tumor eradication, and even cure of cancers in animal models. In a broader meaning, vaccine development against infectious diseases and various cancers has been considered as a type of gene therapy. Especially in the case of COVID-19 vaccines, adenovirus-based vaccines such as ChAdOx1 nCoV-19 and Ad26.COV2.S have demonstrated excellent safety and vaccine efficacy in clinical trials, leading to Emergency Use Authorization in many countries. Viral vectors have shown great promise in the treatment of chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, hemophilia, β-thalassemia, and sickle cell disease (SCD). Proof-of-concept has been established in preclinical studies in various animal models. Clinical gene therapy trials have confirmed good safety, tolerability, and therapeutic efficacy. Viral-based drugs have been approved for cancer, hematological, metabolic, neurological, and ophthalmological diseases as well as for vaccines. For example, the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, the oncolytic HSV T-VEC for melanoma, lentivirus-based treatment of ADA-SCID disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease have been approved for human use.
Collapse
|
3
|
Lundstrom K. Gene Therapy Cargoes Based on Viral Vector Delivery. Curr Gene Ther 2023; 23:111-134. [PMID: 36154608 DOI: 10.2174/1566523222666220921112753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/13/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022]
Abstract
Viral vectors have been proven useful in a broad spectrum of gene therapy applications due to their possibility to accommodate foreign genetic material for both local and systemic delivery. The wide range of viral vectors has enabled gene therapy applications for both acute and chronic diseases. Cancer gene therapy has been addressed by the delivery of viral vectors expressing anti-tumor, toxic, and suicide genes for the destruction of tumors. Delivery of immunostimulatory genes such as cytokines and chemokines has also been applied for cancer therapy. Moreover, oncolytic viruses specifically replicating in and killing tumor cells have been used as such for tumor eradication or in combination with tumor killing or immunostimulatory genes. In a broad meaning, vaccines against infectious diseases and various cancers can be considered gene therapy, which has been highly successful, not the least for the development of effective COVID-19 vaccines. Viral vector-based gene therapy has also demonstrated encouraging and promising results for chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, and hemophilia. Preclinical gene therapy studies in animal models have demonstrated proof-of-concept for a wide range of disease indications. Clinical evaluation of drugs and vaccines in humans has showed high safety levels, good tolerance, and therapeutic efficacy. Several gene therapy drugs such as the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, lentivirus-based treatment of SCID-X1 disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease, and adenovirus-based vaccines against COVID-19 have been developed.
Collapse
|
4
|
Ylä-Pelto J, Tripathi L, Susi P. Therapeutic Use of Native and Recombinant Enteroviruses. Viruses 2016; 8:57. [PMID: 26907330 PMCID: PMC4810247 DOI: 10.3390/v8030057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022] Open
Abstract
Research on human enteroviruses has resulted in the identification of more than 100 enterovirus types, which use more than 10 protein receptors and/or attachment factors required in cell binding and initiation of the replication cycle. Many of these “viral” receptors are overexpressed in cancer cells. Receptor binding and the ability to replicate in specific target cells define the tropism and pathogenesis of enterovirus types, because cellular infection often results in cytolytic response, i.e., disruption of the cells. Viral tropism and cytolytic properties thus make native enteroviruses prime candidates for oncolytic virotherapy. Copy DNA cloning and modification of enterovirus genomes have resulted in the generation of enterovirus vectors with properties that are useful in therapy or in vaccine trials where foreign antigenic epitopes are expressed from or on the surface of the vector virus. The small genome size and compact particle structure, however, set limits to enterovirus genome modifications. This review focuses on the therapeutic use of native and recombinant enteroviruses and the methods that have been applied to modify enterovirus genomes for therapy.
Collapse
Affiliation(s)
- Jani Ylä-Pelto
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Lav Tripathi
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Petri Susi
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
- Biomaterials and Diagnostics Group, Turku University of Applied Sciences, 20520 Turku, Finland.
| |
Collapse
|
5
|
Freistadt M, Eberle KE, Huang W, Schwarzenberger P. CD34+ hematopoietic stem cells support entry and replication of poliovirus: a potential new gene introduction route. Cancer Gene Ther 2013; 20:201-7. [PMID: 23392202 DOI: 10.1038/cgt.2013.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pluripotent hematopoietic stem cells (HSC) are critical in sustaining and constantly renewing the blood and immune system. The ability to alter biological characteristics of HSC by introducing and expressing genes would have enormous therapeutic possibilities. Previous unpublished work suggested that human HSC co-express CD34 (cluster of differentiation 34; an HSC marker) and CD155 (poliovirus receptor; also called Necl-5/Tage4/PVR/CD155). In the present study, we demonstrate the co-expression of CD34 and CD155 in primary human HSC. In addition, we demonstrate that poliovirus infects and replicates in human hematopoietic progenitor cell lines. Finally, we show that poliovirus replicates in CD34+ enriched primary HSC. CD34+ enriched HSC co-express CD155 and support poliovirus replication. These data may help further understanding of poliovirus spread in vivo and also demonstrate that human HSC may be amenable for gene therapy via poliovirus-capsid-based vectors. They may also help elucidate the normal function of Necl-5/Tage4/PVR/CD155.
Collapse
Affiliation(s)
- M Freistadt
- Science and Math, Delgado Community College, New Orleans, LA 70119, USA.
| | | | | | | |
Collapse
|
6
|
Song BH, Kim JM, Kim JK, Jang HS, Yun GN, Choi EJ, Song JY, Yun SI, Lee YM. Packaging of porcine reproductive and respiratory syndrome virus replicon RNA by a stable cell line expressing its nucleocapsid protein. J Microbiol 2011; 49:516-23. [PMID: 21717343 PMCID: PMC7091078 DOI: 10.1007/s12275-011-1280-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 06/13/2011] [Indexed: 11/05/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), a member of the Arteriviridae family, is one of the most common and economically important swine pathogens. Although both live-attenuated and killed-inactivated vaccines against the virus have been available for a decade, PRRSV is still a major problem in the swine industry worldwide. To explore the possibility of producing single-round infectious PRRSV replicon particles as a potential vaccine strategy, we have now generated two necessary components: 1) a stable cell line (BHK/Sinrepl9/PRRSV-N) that constitutively expresses the viral nucleocapsid (N) protein localized to the cytoplasm and the nucleolus and 2) a PRRSV replicon vector (pBAC/PRRSV/Replicon-AN) with a 177-nucleotide deletion, removing the 3′-half portion of ORF7 in the viral genome, from which the self-replicating propagation-defective replicon RNAs were synthesized in vitro by SP6 polymerase run-off transcription. Transfection of this replicon RNA into N protein-expressing BHK-21 cells led to the secretion of infectious particles that packaged the replicon RNA, albeit with a low production efficiency of 0.4 × 102 to 1.1 × 102 infectious units/ml; the produced particles had only single-round infectivity with no cell-to-cell spread. This trans-complementation system for PRRSV provides a useful platform for studies to define the packaging signals and motifs present within the viral genome and N protein, respectively, and to develop viral replicon-based antiviral vaccines that will stop the infection and spread of this pathogen.
Collapse
Affiliation(s)
- Byung-Hak Song
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gehrke R, Heinz FX, Davis NL, Mandl CW. Heterologous gene expression by infectious and replicon vectors derived from tick-borne encephalitis virus and direct comparison of this flavivirus system with an alphavirus replicon. J Gen Virol 2005; 86:1045-1053. [PMID: 15784898 DOI: 10.1099/vir.0.80677-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The flavivirus tick-borne encephaltis virus (TBEV) was established as a vector system for heterologous gene expression. The variable region of the genomic 3′ non-coding region was replaced by an expression cassette consisting of the reporter gene enhanced green fluorescent protein (EGFP) under the translational control of an internal ribosomal entry site element, both in the context of an infectious virus genome and of a replicon lacking the genes of the surface proteins prM/M and E. The expression level and the stability of expression were measured by fluorescence-activated cell-sorting analysis and compared to an established alphavirus replicon vector derived from Venezuelan equine encephaltis virus (VEEV), expressing EGFP under the control of its natural subgenomic promoter. On the first day, the alphavirus replicon exhibited an approximately 180-fold higher expression level than the flavivirus replicon, but this difference decreased to about 20- and 10-fold on days 2 and 3, respectively. Four to six days post-transfection, foreign gene expression by the VEEV replicon vanished almost completely, due to extensive cell killing. In contrast, in the case of the TBEV replicon, the percentage of positive cells and the amount of EGFP expression exhibited only a moderate decline over a time period of almost 4 weeks. The infectious TBEV vector expressed less EGFP than the TBEV replicon at all times. Significant expression from the infectious vector was maintained for four cell-culture passages. The results indicate that the VEEV vector is superior with respect to achieving high expression levels, but the TBEV system may be advantageous for applications that require a moderate, but more enduring, gene expression.
Collapse
Affiliation(s)
- Rainer Gehrke
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| | - Franz X Heinz
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| | - Nancy L Davis
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christian W Mandl
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| |
Collapse
|