1
|
Longo C, Saito M, Castro PT, Traina E, Werner H, Elito Júnior J, Araujo Júnior E. Coxsackievirus Group B Infections during Pregnancy: An Updated Literature Review. J Clin Med 2024; 13:4922. [PMID: 39201064 PMCID: PMC11355224 DOI: 10.3390/jcm13164922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/16/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
Coxsackievirus group B (CVB), a member of the Picornaviridae family and enterovirus genus, poses risks during pregnancy due to its potential to cause severe fetal and neonatal infections. Transmission primarily occurs through fecal-oral routes, with infections peaking mostly in warmer months. Vertical transmission to the fetus can lead to conditions such as myocarditis, encephalitis, and systemic neonatal disease, presenting clinically as severe myocardial syndromes and neurological deficits. Diagnostic challenges include detecting asymptomatic maternal infections and conducting in utero assessments using advanced techniques like RT-PCR from amniotic fluid samples. Morbidity and mortality associated with congenital CVB infections are notable, linked to preterm delivery, fetal growth restriction, and potential long-term health impacts such as type 1 diabetes mellitus and structural cardiac anomalies. Current treatments are limited to supportive care, with emerging therapies showing promise but requiring further study for efficacy in utero. Preventive measures focus on infection control and hygiene to mitigate transmission risks, which are crucial especially during pregnancy. Future research should aim to fill knowledge gaps in epidemiology, improve diagnostic capabilities, and develop targeted interventions to enhance maternal and fetal outcomes.
Collapse
Affiliation(s)
- Carolina Longo
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (C.L.); (E.T.); (J.E.J.)
| | - Mauricio Saito
- CONCEPTUS—Fetal Medicine Center, São Paulo 04001-084, SP, Brazil;
| | - Pedro Teixeira Castro
- Department of Fetal Medicine, Biodesign Laboratory DASA/PUC, Rio de Janeiro 22451-900, RJ, Brazil; (P.T.C.); (H.W.)
| | - Evelyn Traina
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (C.L.); (E.T.); (J.E.J.)
| | - Heron Werner
- Department of Fetal Medicine, Biodesign Laboratory DASA/PUC, Rio de Janeiro 22451-900, RJ, Brazil; (P.T.C.); (H.W.)
| | - Julio Elito Júnior
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (C.L.); (E.T.); (J.E.J.)
| | - Edward Araujo Júnior
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil; (C.L.); (E.T.); (J.E.J.)
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil
| |
Collapse
|
2
|
Jartti M, Flodström-Tullberg M, Hankaniemi MM. Enteroviruses: epidemic potential, challenges and opportunities with vaccines. J Biomed Sci 2024; 31:73. [PMID: 39010093 PMCID: PMC11247760 DOI: 10.1186/s12929-024-01058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024] Open
Abstract
Enteroviruses (EVs) are the most prevalent viruses in humans. EVs can cause a range of acute symptoms, from mild common colds to severe systemic infections such as meningitis, myocarditis, and flaccid paralysis. They can also lead to chronic diseases such as cardiomyopathy. Although more than 280 human EV serotypes exist, only four serotypes have licenced vaccines. No antiviral drugs are available to treat EV infections, and global surveillance of EVs has not been effectively coordinated. Therefore, poliovirus still circulates, and there have been alarming epidemics of non-polio enteroviruses. Thus, there is a pressing need for coordinated preparedness efforts against EVs.This review provides a perspective on recent enterovirus outbreaks and global poliovirus eradication efforts with continuous vaccine development initiatives. It also provides insights into the challenges and opportunities in EV vaccine development. Given that traditional whole-virus vaccine technologies are not suitable for many clinically relevant EVs and considering the ongoing risk of enterovirus outbreaks and the potential for new emerging pathogenic strains, the need for new effective and adaptable enterovirus vaccines is emphasized.This review also explores the difficulties in translating promising vaccine candidates for clinical use and summarizes information from published literature and clinical trial databases focusing on existing enterovirus vaccines, ongoing clinical trials, the obstacles faced in vaccine development as well as the emergence of new vaccine technologies. Overall, this review contributes to the understanding of enterovirus vaccines, their role in public health, and their significance as a tool for future preparedness.
Collapse
Affiliation(s)
- Minne Jartti
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Malin Flodström-Tullberg
- Department of Medicine Huddinge and Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Minna M Hankaniemi
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
3
|
Mezzetti E, Costantino A, Leoni M, Pieretti R, Di Paolo M, Frati P, Maiese A, Fineschi V. Autoimmune Heart Disease: A Comprehensive Summary for Forensic Practice. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1364. [PMID: 37629654 PMCID: PMC10456745 DOI: 10.3390/medicina59081364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023]
Abstract
Autoimmune heart disease is a non-random condition characterised by immune system-mediated aggression against cardiac tissue. Cardiac changes often exhibit nonspecific features and, if unrecognised, can result in fatal outcomes even among seemingly healthy young individuals. In the absence of reliable medical history, the primary challenge lies in differentiating between the various cardiopathies. Numerous immunohistochemical and genetic studies have endeavoured to characterise distinct types of cardiopathies, facilitating their differentiation during autopsy examinations. However, the presence of a standardised protocol that forensic pathologists can employ to guide their investigations would be beneficial. Hence, this summary aims to present the spectrum of autoimmune cardiopathies, including emerging insights such as SARS-CoV-2-induced cardiopathies, and proposes the utilisation of practical tools, such as blood markers, to aid forensic pathologists in their routine practice.
Collapse
Affiliation(s)
- Eleonora Mezzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Andrea Costantino
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Matteo Leoni
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Rebecca Pieretti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Marco Di Paolo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (P.F.); (V.F.)
| | - Aniello Maiese
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Institute of Legal Medicine, University of Pisa, 56126 Pisa, Italy; (E.M.); (A.C.); (M.L.); (R.P.); (M.D.P.)
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopedical Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy; (P.F.); (V.F.)
| |
Collapse
|
4
|
Kohil A, Jemmieh S, Smatti MK, Yassine HM. Viral meningitis: an overview. Arch Virol 2021; 166:335-345. [PMID: 33392820 PMCID: PMC7779091 DOI: 10.1007/s00705-020-04891-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/04/2020] [Indexed: 12/14/2022]
Abstract
Meningitis is a serious condition that affects the central nervous system. It is an inflammation of the meninges, which is the membrane that surrounds both the brain and the spinal cord. Meningitis can be caused by bacterial, viral, or fungal infections. Many viruses, such as enteroviruses, herpesviruses, and influenza viruses, can cause this neurological disorder. However, enteroviruses have been found to be the underlying cause of most viral meningitis cases worldwide. With few exceptions, the clinical manifestations and symptoms associated with viral meningitis are similar for the different causative agents, which makes it difficult to diagnose the disease at early stages. The pathogenesis of viral meningitis is not clearly defined, and more studies are needed to improve the health care of patients in terms of early diagnosis and management. This review article discusses the most common causative agents, epidemiology, clinical features, diagnosis, and pathogenesis of viral meningitis.
Collapse
Affiliation(s)
- Amira Kohil
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Sara Jemmieh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Maria K Smatti
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
5
|
Rapidly progressive encephalopathy caused by Coxsackie meningoencephalitis in an elderly male. J Neurovirol 2018; 24:780-785. [PMID: 30291563 DOI: 10.1007/s13365-018-0676-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/18/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
Abstract
Enteroviruses and Coxsackie viruses are common causes of aseptic meningitis and encephalitis in children. These infections usually have a benign, self-limited course. However, they can have a florid presentation in immunocompromised patients, such as neonates, patients exposed to immunosuppressive drugs, such as transplant recipients and patients with agammaglobulinemia. We present a rare case of rapidly progressive acute encephalopathy caused by Coxsackie meningoencephalitis and complicated by refractory status epilepticus in an immunocompetent adult male. Our case highlights the importance of having a broad differential in patients presenting with rapidly progressive acute encephalopathy. Although rare, an enterovirus infection caused by a Coxsackie virus subtype can have a severe presentation causing significant morbidity. This case, also underscores the importance of searching for underlying immunodeficiency in malignant presentations of common viral infections. Hence, rapidly progressive acute encephalopathy due to coxsackievirus can occur in immunocompetent individuals. Aggressive and systematic diagnostic and therapeutic approach in such severe cases can influence overall outcomes.
Collapse
|
6
|
Brinkmeyer-Langford CL, Rech R, Amstalden K, Kochan KJ, Hillhouse AE, Young C, Welsh CJ, Threadgill DW. Host genetic background influences diverse neurological responses to viral infection in mice. Sci Rep 2017; 7:12194. [PMID: 28939838 PMCID: PMC5610195 DOI: 10.1038/s41598-017-12477-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/04/2017] [Indexed: 01/25/2023] Open
Abstract
Infection by Theiler's murine encephalomyelitis virus (TMEV) is a model for neurological outcomes caused by virus infection because it leads to diverse neurological conditions in mice, depending on the strain infected. To extend knowledge on the heterogeneous neurological outcomes caused by TMEV and identify new models of human neurological diseases associated with antecedent infections, we analyzed the phenotypic consequences of TMEV infection in the Collaborative Cross (CC) mouse population. We evaluated 5 different CC strains for outcomes of long-term infection (3 months) and acute vs. early chronic infection (7 vs. 28 days post-infection), using neurological and behavioral phenotyping tests and histology. We correlated phenotypic observations with haplotypes of genomic regions previously linked to TMEV susceptibility to test the hypothesis that genomic diversity within CC mice results in variable disease phenotypes in response to TMEV. None of the 5 strains analyzed had a response identical to that of any other CC strain or inbred strain for which prior data are available, indicating that strains of the CC can produce novel models of neurological disease. Thus, CC strains can be a powerful resource for studying how viral infection can cause different neurological outcomes depending on host genetic background.
Collapse
Affiliation(s)
| | - Raquel Rech
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - Katia Amstalden
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - Kelli J Kochan
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
| | - Andrew E Hillhouse
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
| | - Colin Young
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843, USA
| | - C Jane Welsh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
| | - David W Threadgill
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, 77843, USA
- Texas A&M Institute for Genomic Sciences and Society, Texas A&M University, College Station, Texas, 77843, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
7
|
Sullivan KE, Bassiri H, Bousfiha AA, Costa-Carvalho BT, Freeman AF, Hagin D, Lau YL, Lionakis MS, Moreira I, Pinto JA, de Moraes-Pinto MI, Rawat A, Reda SM, Reyes SOL, Seppänen M, Tang MLK. Emerging Infections and Pertinent Infections Related to Travel for Patients with Primary Immunodeficiencies. J Clin Immunol 2017; 37:650-692. [PMID: 28786026 PMCID: PMC5693703 DOI: 10.1007/s10875-017-0426-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/21/2017] [Indexed: 12/18/2022]
Abstract
In today's global economy and affordable vacation travel, it is increasingly important that visitors to another country and their physician be familiar with emerging infections, infections unique to a specific geographic region, and risks related to the process of travel. This is never more important than for patients with primary immunodeficiency disorders (PIDD). A recent review addressing common causes of fever in travelers provides important information for the general population Thwaites and Day (N Engl J Med 376:548-560, 2017). This review covers critical infectious and management concerns specifically related to travel for patients with PIDD. This review will discuss the context of the changing landscape of infections, highlight specific infections of concern, and profile distinct infection phenotypes in patients who are immune compromised. The organization of this review will address the environment driving emerging infections and several concerns unique to patients with PIDD. The first section addresses general considerations, the second section profiles specific infections organized according to mechanism of transmission, and the third section focuses on unique phenotypes and unique susceptibilities in patients with PIDDs. This review does not address most parasitic diseases. Reference tables provide easily accessible information on a broader range of infections than is described in the text.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Hamid Bassiri
- Division of Infectious Diseases and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, 3501 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Ahmed A Bousfiha
- Clinical Immunology Unit, Infectious Department, Hopital d'Enfant Abderrahim Harouchi, CHU Ibn Rochd, Laboratoire d'Immunologie Clinique, d'Inflammation et d'Allergie LICIA, Faculté de Médecine et de Pharmacie, Université Hassan II, Casablanca, Morocco
| | - Beatriz T Costa-Carvalho
- Department of Pediatrics, Federal University of São Paulo, Rua dos Otonis, 725, São Paulo, SP, 04025-002, Brazil
| | - Alexandra F Freeman
- NIAID, NIH, Building 10 Room 12C103, 9000 Rockville, Pike, Bethesda, MD, 20892, USA
| | - David Hagin
- Division of Allergy and Immunology, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, University of Tel Aviv, 6 Weizmann St, 64239, Tel Aviv, Israel
| | - Yu L Lau
- Department of Paediatrics & Adolescent Medicine, The University of Hong Kong, Rm 106, 1/F New Clinical Building, Pok Fu Lam, Hong Kong.,Queen Mary Hospital, 102 Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), 9000 Rockville Pike, Building 10, Room 11C102, Bethesda, MD, 20892, USA
| | - Ileana Moreira
- Immunology Unit, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, 1425, Buenos Aires, Argentina
| | - Jorge A Pinto
- Division of Immunology, Department of Pediatrics, Federal University of Minas Gerais, Av. Alfredo Balena 190, room # 161, Belo Horizonte, MG, 30130-100, Brazil
| | - M Isabel de Moraes-Pinto
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Federal University of São Paulo, Rua Pedro de Toledo, 781/9°andar, São Paulo, SP, 04039-032, Brazil
| | - Amit Rawat
- Pediatric Allergy and Immunology, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shereen M Reda
- Pediatric Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Saul Oswaldo Lugo Reyes
- Immunodeficiencies Research Unit, National Institute of Pediatrics, Av Iman 1, Torre de Investigacion, Piso 9, Coyoacan, 04530, Mexico City, Mexico
| | - Mikko Seppänen
- Harvinaissairauksien yksikkö (HAKE), Rare Disease Center, Helsinki University Hospital (HUH), Helsinki, Finland
| | - Mimi L K Tang
- Murdoch Children's Research Institute, The Royal Children's Hospital, University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
Gofshteyn J, Cárdenas AM, Bearden D. Treatment of Chronic Enterovirus Encephalitis With Fluoxetine in a Patient With X-Linked Agammaglobulinemia. Pediatr Neurol 2016; 64:94-98. [PMID: 27640319 DOI: 10.1016/j.pediatrneurol.2016.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/17/2016] [Accepted: 06/19/2016] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Enterovirus may result in a devastating chronic encephalitis in immunocompromised patients, particularly in patients with X-linked agammaglobulinemia. Prognosis for patients with chronic enterovirus encephalitis is poor, almost invariably resulting in mortality without specific treatment. There are currently no approved antiviral agents for enterovirus, but the antidepressant drug fluoxetine has been identified through library-based compound screening as a potential anti-enteroviral agent in vitro. However, use of fluoxetine has not previously been studied in humans with enteroviral disease. PATIENT DESCRIPTION A five year old boy with X-linked agammaglobulinemia presented with progressive neurological deterioration and was found to have chronic enterovirus encephalitis by brain biopsy. He failed to respond to standard treatment with high dose intravenous immunoglobulin, but showed stabilization and improvement following treatment with fluoxetine. CONCLUSIONS This is the first report to describe the use of fluoxetine as a potential therapy for chronic enterovirus infection. Further investigation of fluoxetine as a treatment option for chronic enterovirus encephalitis is necessary.
Collapse
Affiliation(s)
- Jacqueline Gofshteyn
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
| | - Ana María Cárdenas
- Division of Pathology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David Bearden
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Orbach R, Mandel D, Lubetzky R, Ovental A, Haham A, Halutz O, Grisaru-Soen G. Pulmonary hemorrhage due to Coxsackievirus B infection-A call to raise suspicion of this important complication as an end-stage of enterovirus sepsis in preterm twin neonates. J Clin Virol 2016; 82:41-45. [PMID: 27434146 DOI: 10.1016/j.jcv.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Prematurity is an important risk factor for the fulminate form of neonatal enteroviral infection. Pulmonary hemorrhage is a morbid complication that should be anticipated and managed aggressively due to its fatal outcome. OBJECTIVE To emphasize the significance of pulmonary hemorrhage as a complication of severe enterovirus infection in preterm neonates. STUDY DESIGN This report is a description of the clinical history, medical management and clinical outcomes of two pairs of preterm twin newborns (30 weeks and 36 weeks) with fulminant infection due to Coxsackievirus B (CBV) infection. RESULTS Maternal fever was reported in both deliveries and it was a factor in the decision for urgent cesarean section of the 30-week twins. Three of the four infants failed to survive. Their clinical course involved multiple organ system failure complicated with profound disseminated intravascular coagulopathy and pulmonary hemorrhage. Pulmonary bleeding leading to hypovolemic shock and respiratory failure was the direct cause of death in two cases. CONCLUSIONS This small series of preterm neonates with the diagnosis of CBV sepsis highlights the importance of correct diagnosis of maternal enterovirus infection in order to extend pregnancy and allow the fetus time to passively acquire protective antibodies. This report emphasizes the morbid complication of pulmonary hemorrhage as a result of enterovirus infection that should be anticipated and managed aggressively due to its potentially fatal outcome. Moreover, evaluation and observation of the asymptomatic twin is recommended in order to detect early signs of infection and deterioration in that sibling as well.
Collapse
Affiliation(s)
- Rotem Orbach
- Department of Neonatology, Dana Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel(1); Department of Pediatrics, Dana Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dror Mandel
- Department of Neonatology, Dana Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel(1)
| | - Ronit Lubetzky
- Department of Pediatrics, Dana Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Amit Ovental
- Department of Neonatology, Dana Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel(1)
| | - Alon Haham
- Department of Neonatology, Dana Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel(1)
| | - Ora Halutz
- Department of Virology Unit of the Microbiology Laboratory, Dana Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Galia Grisaru-Soen
- Department of Pediatrics, Dana Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of the Pediatric Infectious Disease Unit, Dana Dwek Children's Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| |
Collapse
|
10
|
Mantri S, Shah BB. Enterovirus causes rapidly progressive dementia in a 28-year-old immunosuppressed woman. J Neurovirol 2016; 22:538-40. [DOI: 10.1007/s13365-015-0418-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
|
11
|
Bissel SJ, Winkler CC, DelTondo J, Wang G, Williams K, Wiley CA. Coxsackievirus B4 myocarditis and meningoencephalitis in newborn twins. Neuropathology 2014; 34:429-437. [PMID: 24702280 DOI: 10.1111/neup.12121] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 11/29/2022]
Abstract
Coxsackievirus B4 (CB4) is a picornavirus associated with a variety of human diseases, including neonatal meningoencephalitis, myocarditis and type 1 diabetes. We report the pathological findings in twin newborns who died during an acute infection. The twins were born 1 month premature but were well and neurologically intact at birth. After a week they developed acute lethal neonatal sepsis and seizures. Histopathology demonstrated meningoencephalitis and severe myocarditis, as well as pancreatitis, adrenal medullitis and nephritis. Abundant CB4 sequences were identified in nucleic acid extracted from the brain and heart. In situ hybridization with probes to CB4 demonstrated infection of neurons, myocardiocytes, endocrine pancreas and adrenal medulla. The distribution of infected cells and immune response is consistent with reported clinical symptomatology where systemic and neurological diseases are the result of CB4 infection of select target cells.
Collapse
Affiliation(s)
- Stephanie J Bissel
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Caitlin C Winkler
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joseph DelTondo
- Allegheny County Medical Examiner, Pittsburgh, Pennsylvania, USA
| | - Guoji Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Karl Williams
- Allegheny County Medical Examiner, Pittsburgh, Pennsylvania, USA
| | - Clayton A Wiley
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Mahan M, Karl M, Gordon S. Neuroimaging of viral infections of the central nervous system. HANDBOOK OF CLINICAL NEUROLOGY 2014; 123:149-73. [PMID: 25015484 DOI: 10.1016/b978-0-444-53488-0.00006-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mathur Mahan
- Department of Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Muchantef Karl
- Department of Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sze Gordon
- Department of Radiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
|
14
|
Dourmashkin RR, Dunn G, Castano V, McCall SA. Evidence for an enterovirus as the cause of encephalitis lethargica. BMC Infect Dis 2012; 12:136. [PMID: 22715890 PMCID: PMC3448500 DOI: 10.1186/1471-2334-12-136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/26/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The epidemic of encephalitis lethargica (EL), called classical EL, was rampant throughout the world during 1917-1926, affecting half a million persons. The acute phase was lethal for many victims. Post-encephalitic parkinsonism (PEP) affected patients for decades. Our purpose was to investigate the cause of classical EL by studying the few available brain specimens. Cases of PEP and modern EL were also studied. Transmission electron microscopy (TEM) and immunohistochemistry were employed to examine brain from four classical EL cases, two modern EL cases and one PEP case. METHODS Standard methods for TEM, immunohistochemistry and RTPCR were applied. RESULTS 27 nm virus-like particles (VLP) were observed in the cytoplasm and nuclei of midbrain neurons in all classical EL cases studied. Large (50 nm) VLP and 27 nm intranuclear VLP were observed in the modern EL cases and the PEP case. Influenza virus particles were not found. VLP were not observed in the control cases. TEM of cell cultures inoculated with coxsackievirus B4 and poliovirus revealed both small and large intranuclear virus particles and small cytoplasmic particles, similar to the VLP in EL neurons. In the EL brains, nascent VLP were embedded in putative virus factories and on endoplasmic reticulum (ER). The VLP in the cases of classical EL survived, whereas ribosomes underwent autolysis due to the lack of refrigeration and slow formaldehyde fixation of whole brain. The VLP were larger than ribosomes from well preserved brain. Immunohistochemistry of classical EL cases using anti-poliovirus and anti-coxsackievirus B polyclonal antibodies showed significant staining of cytoplasm and nuclei of neurons as well as microglia and neuropil. Purkinje cells were strongly stained.A 97-bp RNA fragment of a unique virus was isolated from brain tissue from acute EL case #91558. Sequence analysis revealed up to 95% identity to multiple human Enteroviruses. Additional cases had Enterovirus positive reactions by real time PCR. CONCLUSIONS The data presented here support the hypothesis that the VLP observed in EL tissue is an Enterovirus.
Collapse
Affiliation(s)
- Robert R Dourmashkin
- Faculty of Life Sciences, London Metropolitan University, 166 Holloway Road, London, N7 8DB, UK
| | - Glynis Dunn
- Department of Virology, National Institute for Biological Standards and Control, Potters Bar, South Mimms Herts, EN6 3QG, UK
| | - Victor Castano
- Faculty of Computing, London Metropolitan University, 166 Holloway Road, London, N7 8DB, UK
| | - Sherman A McCall
- Department of Molecular Pathology, Armed Forces Institute of Pathology, 6825 16th St NW, Washington, DC, 20306-6000, USA
| |
Collapse
|
15
|
Tabor-Godwin JM, Tsueng G, Sayen MR, Gottlieb RA, Feuer R. The role of autophagy during coxsackievirus infection of neural progenitor and stem cells. Autophagy 2012; 8:938-53. [PMID: 22751470 DOI: 10.4161/auto.19781] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Coxsackievirus B3 (CVB3) has previously been shown to utilize autophagy in an advantageous manner during the course of infection of the host cell. However, few studies have determined whether stem cells induce autophagy in a similar fashion, and whether virus-induced autophagy occurs following infection of stem cells. Therefore, we compared the induction of autophagy following CVB3 infection of neural progenitor and stem cells (NPSCs), which we have recently shown to be highly susceptible to CVB3 infection, to HL-1 cells, a transformed cardiomyocyte cell line. As previously demonstrated for other susceptible host cells, HL-1 cells showed an increase in the activity of autophagic signaling following infection with a CVB3 expressing dsRed protein (dsRed-CVB3). Furthermore, viral titers in HL-1 cells increased in the presence of an inducer of autophagy (CCPA), while viral titers decreased in the presence of an inhibitor of autophagy (3-MA). In contrast, no change in autophagic signaling was seen in NPSCs following infection with dsRed-CVB3. Also, basal levels of autophagy in NPSCs were found to be highly elevated in comparison to HL-1 cells. Autophagy could be induced in NPSCs in the presence of rapamycin without altering levels of dsRed-CVB3 replication. In differentiated NPSC precursors, autophagy was activated during the differentiation process, and a decrease in autophagic signaling was observed within all three CNS lineages following dsRed-CVB3 infection. Hence, we conclude that the role of autophagy in modulating CVB3 replication appears cell type-specific, and stem cells may uniquely regulate autophagy in response to infection.
Collapse
Affiliation(s)
- Jenna M Tabor-Godwin
- Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
16
|
Ruller CM, Tabor-Godwin JM, Van Deren DA, Robinson SM, Maciejewski S, Gluhm S, Gilbert PE, An N, Gude NA, Sussman MA, Whitton JL, Feuer R. Neural stem cell depletion and CNS developmental defects after enteroviral infection. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:1107-1120. [PMID: 22214838 DOI: 10.1016/j.ajpath.2011.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/26/2011] [Accepted: 11/14/2011] [Indexed: 12/30/2022]
Abstract
Coxsackieviruses are significant human pathogens causing myocarditis, meningitis, and encephalitis. We previously demonstrated the ability of coxsackievirus B3 (CVB3) to persist within the neonatal central nervous system (CNS) and to target neural stem cells. Given that CVB3 is a cytolytic virus and may therefore damage target cells, we characterized the potential reduction in neurogenesis within the developing brain and the subsequent developmental defects that occurred after the loss of these essential neural stem cells. Neonatal mice were inoculated with a recombinant CVB3 expressing eGFP (eGFP-CVB3), and alterations in neurogenesis and brain development were evaluated over time. We observed a reduction in proliferating cells in CNS neurogenic regions simultaneously with the presence of nestin(+) cells undergoing apoptosis. The size of the brain appeared smaller by histology, and a permanent decrease in brain wet weight was observed after eGFP-CVB3 infection. We also observed an inverse relationship between the amount of virus material and brain wet weight up to day 30 postinfection. In addition, signs of astrogliosis and a compaction of the cortical layers were observed at 90 days postinfection. Intriguingly, partial brain wet weight recovery was observed in mice treated with the antiviral drug ribavirin during the persistent stage of infection. Hence, long-term neurological sequelae might be expected after neonatal enteroviral infections, yet antiviral treatment initiated long after the end of acute infection might limit virus-mediated neuropathology.
Collapse
Affiliation(s)
- Chelsea M Ruller
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California
| | - Jenna M Tabor-Godwin
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California
| | - Donn A Van Deren
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California
| | - Scott M Robinson
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California
| | - Sonia Maciejewski
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California
| | - Shea Gluhm
- Department of Psychology, San Diego State University, San Diego, California
| | - Paul E Gilbert
- Department of Psychology, San Diego State University, San Diego, California
| | - Naili An
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California
| | - Natalie A Gude
- SDSU Heart Institute and Department of Biology, San Diego State University, San Diego, California
| | - Mark A Sussman
- SDSU Heart Institute and Department of Biology, San Diego State University, San Diego, California
| | - J Lindsay Whitton
- Department of Immunology and Microbial Science, Scripps Research Institute, La Jolla, California
| | - Ralph Feuer
- Cell and Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, California.
| |
Collapse
|
17
|
Abstract
Myoclonus can be classified as physiologic, essential, epileptic, and symptomatic. Animal models of myoclonus include DDT and posthypoxic myoclonus in the rat. 5-Hydrotryptophan, clonazepam, and valproic acid suppress myoclonus induced by posthypoxia. The diagnostic evaluation of myoclonus is complex and involves an extensive work-up including basic electrolytes, glucose, renal and hepatic function tests, paraneoplastic antibodies, drug and toxicology screens, thyroid antibody and function studies, neurophysiology testing, imaging, and tests for malabsorption disorders, assays for enzyme deficiencies, tissue biopsy, copper studies, alpha-fetoprotein, cytogenetic analysis, radiosensitivity DNA synthesis, genetic testing for inherited disorders, and mitochondrial function studies. Treatment of myoclonus is targeted to the underlying disorder. If myoclonus physiology cannot be demonstrated, treatment should be aimed at the common pattern of symptoms. If the diagnosis is not known, treatment could be directed empirically at cortical myoclonus as the most common physiology. In cortical myoclonus, the most effective drugs are sodium valproic acid, clonazepam, levetiracetam, and piracetam. For cortical-subcortical myoclonus, valproic acid is the drug of choice. Here, lamotrigine can be used either alone or in combination with valproic acid. Ethosuximide, levetiracetam, or zonisamide can also be used as adjunct therapy with valproic acid. A ketogenic diet can be considered if everything else fails. Subcortical-nonsegmental myoclonus may respond to clonazepam and deep-brain stimulation. Rituximab, adrenocorticotropic hormone, high-dose dexamethasone pulse, or plasmapheresis have been reported to improve opsoclonus myoclonus syndrome. Reticular reflex myoclonus can be treated with clonazepam, diazepam and 5-hydrotryptophan. For palatal myoclonus, a variety of drugs have been used.
Collapse
|
18
|
Berger JR, Fee DB, Nelson P, Nuovo G. Coxsackie B meningoencephalitis in a patient with acquired immunodeficiency syndrome and a multiple sclerosis-like illness. J Neurovirol 2010; 15:282-7. [PMID: 19444695 DOI: 10.1080/13550280902913263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Both Coxsackie infection and multiple sclerosis (MS) are rare in human immunodeficiency virus (HIV) infection. We report a 35-year-old woman with known HIV infection of 12 years' duration and a clinical illness of 4 years' duration consistent with MS. The latter was characterized by optic neuritis, bilateral abducens palsies, recurrent Bell's palsy, hemiparesis, and ataxia coupled with white matter abnormalities on magnetic resonance imaging (MRI). Autopsy revealed Coxsackie B meningoencephalitis; no other infectious disease were detected and no histopathological features of MS were evident. We suggest that the relapsing-remitting neurological disease in this patient was the consequence of Coxsackie B meningoencephalitis. This is the first case report, to the best of our knowledge, of an enteroviral meningoencephalitis complicating human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS).
Collapse
Affiliation(s)
- Joseph R Berger
- Department of Neurology, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA.
| | | | | | | |
Collapse
|
19
|
Salinas S, Schiavo G, Kremer EJ. A hitchhiker's guide to the nervous system: the complex journey of viruses and toxins. Nat Rev Microbiol 2010; 8:645-55. [PMID: 20706281 DOI: 10.1038/nrmicro2395] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To reach the central nervous system (CNS), pathogens have to circumvent the wall of tightly sealed endothelial cells that compose the blood-brain barrier. Neuronal projections that connect to peripheral cells and organs are the Achilles heels in CNS isolation. Some viruses and bacterial toxins interact with membrane receptors that are present at nerve terminals to enter the axoplasm. Pathogens can then be mistaken for cargo and recruit trafficking components, allowing them to undergo long-range axonal transport to neuronal cell bodies. In this Review, we highlight the strategies used by pathogens to exploit axonal transport during CNS invasion.
Collapse
Affiliation(s)
- Sara Salinas
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 34293 Montpellier Cedex 5, France.
| | | | | |
Collapse
|
20
|
A novel population of myeloid cells responding to coxsackievirus infection assists in the dissemination of virus within the neonatal CNS. J Neurosci 2010; 30:8676-91. [PMID: 20573913 DOI: 10.1523/jneurosci.1860-10.2010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enterovirus infection in newborn infants is a significant cause of aseptic meningitis and encephalitis. Using a neonatal mouse model, we previously determined that coxsackievirus B3 (CVB3) preferentially targets proliferating neural stem cells located in the subventricular zone within 24 h after infection. At later time points, immature neuroblasts, and eventually mature neurons, were infected as determined by expression of high levels of viral protein. Here, we show that blood-derived Mac3(+) mononuclear cells were rapidly recruited to the CNS within 12 h after intracranial infection with CVB3. These cells displayed a myeloid-like morphology, were of a peripheral origin based on green fluorescent protein (GFP)-tagged adoptive cell transplant examination, and were highly susceptible to CVB3 infection during their migration into the CNS. Serial immunofluorescence images suggested that the myeloid cells enter the CNS via the choroid plexus, and that they may be infected during their extravasation and passage through the choroid plexus epithelium; these infected myeloid cells ultimately penetrate into the parenchyma of the brain. Before their migration through the ependymal cell layer, a subset of these infected myeloid cells expressed detectable levels of nestin, a marker for neural stem and progenitor cells. As these nestin(+) myeloid cells infected with CVB3 migrated through the ependymal cell layer, they revealed distinct morphological characteristics typical of type B neural stem cells. The recruitment of these novel myeloid cells may be specifically set in motion by the induction of a unique chemokine profile in the CNS induced very early after CVB3 infection, which includes upregulation of CCL12. We propose that intracranial CVB3 infection may lead to the recruitment of nestin(+) myeloid cells into the CNS which might represent an intrinsic host CNS repair response. In turn, the proliferative and metabolic status of recruited myeloid cells may render them attractive targets for CVB3 infection. Moreover, the migratory ability of these myeloid cells may point to a productive method of virus dissemination within the CNS.
Collapse
|
21
|
Buenz EJ, Sauer BM, Lafrance-Corey RG, Deb C, Denic A, German CL, Howe CL. Apoptosis of hippocampal pyramidal neurons is virus independent in a mouse model of acute neurovirulent picornavirus infection. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:668-84. [PMID: 19608874 PMCID: PMC2716965 DOI: 10.2353/ajpath.2009.081126] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2009] [Indexed: 11/20/2022]
Abstract
Many viruses, including picornaviruses, have the potential to infect the central nervous system (CNS) and stimulate a neuroinflammatory immune response, especially in infants and young children. Cognitive deficits associated with CNS picornavirus infection result from injury and death of neurons that may occur due to direct viral infection or during the immune responses to virus in the brain. Previous studies have concluded that apoptosis of hippocampal neurons during picornavirus infection is a cell-autonomous event triggered by direct neuronal infection. However, these studies assessed neuron death at time points late in infection and during infections that lead to either death of the host or persistent viral infection. In contrast, many neurovirulent picornavirus infections are acute and transient, with rapid clearance of virus from the host. We provide evidence of hippocampal pathology in mice acutely infected with the Theiler's murine encephalomyelitis picornavirus. We found that CA1 pyramidal neurons exhibited several hallmarks of apoptotic death, including caspase-3 activation, DNA fragmentation, and chromatin condensation within 72 hours of infection. Critically, we also found that many of the CA1 pyramidal neurons undergoing apoptosis were not infected with virus, indicating that neuronal cell death during acute picornavirus infection of the CNS occurs in a non-cell-autonomous manner. These observations suggest that therapeutic strategies other than antiviral interventions may be useful for neuroprotection during acute CNS picornavirus infection.
Collapse
Affiliation(s)
- Eric J Buenz
- Department of Neurology, Mayo Clinic College of Medicine, Guggenheim 442-D, 200 First St SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
A case of enteroviral meningoencephalitis presenting as rapidly progressive dementia. ACTA ACUST UNITED AC 2008; 4:399-403. [PMID: 18477991 DOI: 10.1038/ncpneuro0804] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 01/16/2008] [Indexed: 11/08/2022]
Abstract
BACKGROUND A 70-year-old immunocompetent male presented to a memory disorders clinic with a 7-month illness that had begun with somatic complaints including transient right temporal head pain, left buttock pain, and right conjunctival injection. About 3 months after the first signs of illness, the patient had begun to develop insidious cognitive and behavioral decline, which progressed most rapidly in the 2 months before presentation. An assessment completed during hospitalization for intermittent fevers and confusion had not revealed an infectious etiology, although mild pleocytosis in the cerebrospinal fluid had been noted. Upon presentation to the memory disorders clinic, the patient was disoriented, distractible, laughed at inappropriate moments, and followed only one-step commands. He had hypophonic speech and had mildly increased axial tone. He scored 5 out of 30 on the Mini Mental State Examination and was admitted for expedited evaluation. INVESTIGATIONS Physical examination, brain MRI, electroencephalogram, lumbar puncture, autoimmune and paraneoplastic testing, cerebral angiogram, cerebrospinal fluid analysis, enterovirus group-specific reverse transcriptase polymerase chain reaction assay, and RNA sequencing in brain biopsy samples. DIAGNOSIS Enteroviral meningoencephalitis. MANAGEMENT Intravenous steroids with oral taper and intravenous immunoglobulin.
Collapse
|