1
|
Cantres-Rosario YM, Hernandez N, Negron K, Perez-Laspiur J, Leszyk J, Shaffer SA, Meléndez LM. Interacting partners of macrophage-secreted cathepsin B contribute to HIV-induced neuronal apoptosis. AIDS 2015. [PMID: 26208400 DOI: 10.1097/qad.0000000000000823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE HIV-1 infection of macrophages increases cathepsin B secretion and induces neuronal apoptosis, but the molecular mechanism remains unclear. DESIGN We identified macrophage-secreted cathepsin B protein interactions extracellularly and their contribution to neuronal death in vitro. METHODS Cathepsin B was immunoprecipitated from monocyte-derived macrophage supernatants after 12 days postinfection. The cathepsin B interactome was identified by label-free tandem mass spectrometry and compared with uninfected supernatants. Proteins identified were validated by western blot. Neurons were exposed to macrophage-conditioned media in presence or absence of antibodies against cathepsin B and interacting proteins. Apoptosis was measured using TUNEL labeling. Immunohistochemistry of postmortem brain tissue samples from healthy, HIV-infected and Alzheimer's disease patients was performed to observe the ex-vivo expression of the proteins identified. RESULTS Nine proteins co-immunoprecipitated differentially with cathepsin B between uninfected and HIV-infected macrophages. Serum amyloid P component (SAPC)-cathepsin B interaction increased in HIV-infected macrophage supernatants, while matrix metalloprotease 9 (MMP-9)-cathepsin B interaction decreased. Pre-treatment of HIV-infected macrophage-conditioned media with antibodies against cathepsin B and SAPC decreased neuronal apoptosis. The addition of MMP-9 antibodies was not neuro-protective SAPC was overexpressed in postmortem brain tissue from HIV-positive neurocognitive impaired patients compared with HIV positive with normal cognition and healthy controls, although MMP-9 expression was similar in all tissues. CONCLUSION Inhibiting SAPC-cathepsin B interaction protects against HIV-induced neuronal death and may help to find alternative treatments for HIV-associated neurocognitive disorders.
Collapse
|
2
|
Abstract
In the era of combined antiretroviral therapy (cART), HIV-associated neurocognitive disorders (HAND) account for 40 to 56% of all HIV+ cases. During the acute stage of HIV-1 infection (<6 months), the virus invades and replicates within the central nervous system (CNS). Compared to peripheral tissues, the local CNS cell population expresses distinct levels of chemokine receptors, which levels exert selective pressure on the invading virus. HIV-1 envelope (env) sequences recovered from the brains and cerebrospinal fluid (CSF) of neurocognitively impaired HIV+ subjects often display higher nucleotide variability as compared to non-impaired HIV+ subjects. Specifically, env evolution provides HIV-1 with the strategies to evade host immune response, to reduce chemokine receptor dependence, to increase co-receptor binding efficiency, and to potentiate neurotoxicity. The evolution of env within the CNS leads to changes that may result in the emergence of novel isolates with neurotoxic and neurovirulent features. However, whether specific factors of HIV-1 evolution lead to the emergence of neurovirulent and neurotropic isolates remains ill-defined. HIV-1 env evolution is an ongoing phenomenon that occurs independently of neurological and neurocognitive disease severity; thus HIV env evolution may play a pivotal and reciprocal role in the etiology of HAND. Despite the use of cART, the reactivation of latent viral reservoirs represents a clinical challenge because of the replenishment of the viral pool that may subsequently lead to persistent infection. Therefore, gaining a more complete understanding of how HIV-1 env evolves over the course of the disease should be considered for the development of future therapies aimed at controlling CNS burden, diminishing persistent viremia, and eradicating viral reservoirs. Here we review the current literature on the role of HIV-1 env evolution in the setting of HAND disease progression and on the impact of cART on the dynamics of viral evolution.
Collapse
Affiliation(s)
- Fabián J Vázquez-Santiago
- Department of Basic Sciences, Ponce Health Sciences University- School of Medicine / Ponce Research Institute, Ponce, PR 00716, USA
| | - Vanessa Rivera-Amill
- Department of Basic Sciences, Ponce Health Sciences University- School of Medicine / Ponce Research Institute, Ponce, PR 00716, USA
| |
Collapse
|
3
|
Vázquez-Santiago F, García Y, Rivera-Román I, Noel RJ, Wojna V, Meléndez LM, Rivera-Amill V. Longitudinal Analysis of Cerebrospinal Fluid and Plasma HIV-1 Envelope Sequences Isolated From a Single Donor with HIV Asymptomatic Neurocognitive Impairment. ACTA ACUST UNITED AC 2015; 4. [PMID: 26167513 DOI: 10.4172/2324-8955.1000135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Combined antiretroviral treatment (cART) has changed the clinical presentation of HIV-associated neurocognitive disorders (HAND) to that of the milder forms of the disease. Asymptomatic neurocognitive impairment (ANI) is now more prevalent and is associated with increased morbidity and mortality risk in HIV-1-infected people. HIV-1 envelope (env) genetic heterogeneity has been detected within the central nervous system (CNS) of individuals with ANI. Changes within env determine co-receptor use, cellular tropism, and neuropathogenesis. We hypothesize that compartmental changes are associated with HIV-1 env C2V4 during ANI and sought to analyze paired HIV-1 env sequences from plasma and cerebrospinal fluid (CSF) of a female subject undergoing long-term cART. METHODS Paired plasma and CSF samples were collected at 12-month intervals and HIV-1 env C2V4 was cloned and sequenced. RESULTS Phylogenetic analysis of paired samples consistently showed genetic variants unique to the CSF. Phenotypic prediction showed CCR5 (R5) variants for all CSF-derived sequences and showed minor X4 variants (or dual-tropic) in the plasma at later time points. Viral compartmentalization was evident throughout the study, suggesting that the occurrence of distinctive env strains may contribute to the neuropathogenesis of HAND. CONCLUSIONS Our study provides new insights about the genetic characteristics within the C2V4 of HIV-1 env that persist after long-term cART and during the course of persistent ANI.
Collapse
Affiliation(s)
- Fabián Vázquez-Santiago
- Department of Microbiology, Ponce Health Sciences University- School of Medicine/Ponce Research Institute, Ponce, PR 00716, USA
| | - Yashira García
- Department of Microbiology, Ponce Health Sciences University- School of Medicine/Ponce Research Institute, Ponce, PR 00716, USA
| | - Ivelisse Rivera-Román
- Department of Microbiology, Ponce Health Sciences University- School of Medicine/Ponce Research Institute, Ponce, PR 00716, USA
| | - Richard J Noel
- Department of Biochemistry, Ponce Health Sciences University- School of Medicine/Ponce Research Institute, Ponce, PR 00716, USA
| | - Valerie Wojna
- Specialized NeuroAIDS Program, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, 00936, USA ; Department of Internal Medicine, Neurology Division, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
| | - Loyda M Meléndez
- Specialized NeuroAIDS Program, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, 00936, USA ; Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, 00936, USA
| | - Vanessa Rivera-Amill
- Department of Microbiology, Ponce Health Sciences University- School of Medicine/Ponce Research Institute, Ponce, PR 00716, USA
| |
Collapse
|
4
|
Bienvenu E, Ashton M, Äbelö A. Influence of <i>CYP</i>2<i>B</i>6 516G > T and Long Term HAART on Population Pharmacokinetics of Efavirenz in Rwandan Adults on HIV and Tuberculosis Cotreatment. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/pp.2015.611055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Colón K, Vázquez-Santiago F, Rivera-Amill V, Delgado G, Massey SE, Wojna V, Noel RJ, Meléndez LM. HIV gp120 sequence variability associated with HAND in Hispanic Women. JOURNAL OF VIROLOGY & ANTIVIRAL RESEARCH 2015; 4. [PMID: 27358904 DOI: 10.4172/2324-8955.1000143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE HIV-1 variants with different tropisms are associated with various neuropathologies. This study intends to determine if this correlation is determined by unique viral env sequences. We hypothesize that HIV-1 envelope gene sequence changes are associated with cognition status. METHODS Viral RNA was extracted from peripheral blood mononuclear cells (PBMCs) co-cultures derived from HIV-1 infected Hispanic women that had been characterized for HIV associated neurocognitive disorders (HAND). RESULTS Analyses of the C2V4 region of HIV gp120 demonstrated that increased sequence diversity correlates with cognition status as sequences derived from subjects with normal cognition exhibited less diversity than sequences derived from subjects with cognitive impairment. In addition, differences in V3 and V4 loop charges were also noted as well as differences in the N-glycosylation of the V4 region. CONCLUSIONS Our data suggest that the genetic signature within the C2V4 region may contribute to the pathogenesis of HAND. HIV env sequence characteristics for the isolates grouped in milder forms of HAND can provide insightful information of prognostic value to assess neurocognitive status in HIV+ subjects, particularly during the era of highly prevalent milder forms of HAND.
Collapse
Affiliation(s)
- Krystal Colón
- Department of Microbiology and Medical Zoology, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | - Fabián Vázquez-Santiago
- Department of Basic Sciences, Microbiology Division, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce PR
| | - Vanessa Rivera-Amill
- Department of Basic Sciences, Microbiology Division, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce PR
| | | | | | - Valerie Wojna
- Specialized NeuroAIDS Program, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, 00936, USA; Department of Internal Medicine, Neurology Division, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
| | - Richard J Noel
- Department of Basic Sciences, Biochemistry Division, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce PR
| | - Loyda M Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| |
Collapse
|
6
|
Ballester LY, Capó-Vélez CM, García-Beltrán WF, Ramos FM, Vázquez-Rosa E, Ríos R, Mercado JR, Meléndez RI, Lasalde-Dominicci JA. Up-regulation of the neuronal nicotinic receptor α7 by HIV glycoprotein 120: potential implications for HIV-associated neurocognitive disorder. J Biol Chem 2011; 287:3079-86. [PMID: 22084248 DOI: 10.1074/jbc.m111.262543] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Approximately 30-50% of the >30 million HIV-infected subjects develop neurological complications ranging from mild symptoms to dementia. HIV does not infect neurons, and the molecular mechanisms behind HIV-associated neurocognitive decline are not understood. There are several hypotheses to explain the development of dementia in HIV(+) individuals, including neuroinflammation mediated by infected microglia and neuronal toxicity by HIV proteins. A key protein associated with the neurological complications of HIV, gp120, forms part of the viral envelope and can be found in the CSF of infected individuals. HIV-1-gp120 interacts with several receptors including CD4, CCR5, CXCR4, and nicotinic acetylcholine receptors (nAChRs). However, the role of nAChRs in HIV-associated neurocognitive disorder has not been investigated. We studied the effects of gp120(IIIB) on the expression and function of the nicotinic receptor α7 (α7-nAChR). Our results show that gp120, through activation of the CXCR4 chemokine receptor, induces a functional up-regulation of α7-nAChRs. Because α7-nAChRs have a high permeability to Ca(2+), we performed TUNEL staining to investigate the effects of receptor up-regulation on cell viability. Our data revealed an increase in cell death, which was blocked by the selective antagonist α-bungarotoxin. The in vitro data are supported by RT-PCR and Western blot analysis, confirming a remarkable up-regulation of the α7-nAChR in gp120-transgenic mice brains. Specifically, α7-nAChR up-regulation is observed in mouse striatum, a region severely affected in HIV(+) patients. In summary, CXCR4 activation induces up-regulation of α7-nAChR, causing cell death, suggesting that α7-nAChR is a previously unrecognized contributor to the neurotoxicity associated with HIV infection.
Collapse
Affiliation(s)
- Leomar Y Ballester
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Brown A, Shiramizu B, Nath A, Wojna V. Translational research in NeuroAIDS: a neuroimmune pharmacology-related course. J Neuroimmune Pharmacol 2011; 6:80-8. [PMID: 20496178 PMCID: PMC3155799 DOI: 10.1007/s11481-010-9222-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/11/2010] [Indexed: 01/22/2023]
Abstract
Neuroimmune pharmacology (NIP) can be considered a multidisciplinary science where areas of neuroscience, immunology, and pharmacology intersect in neurological disorders. The R25 training program titled "Translational Research in NeuroAIDS and Mental Health (TR-NAMH): An innovative mentoring program to promote diversity in NeuroAIDS Research (R25 MH080661)" at the Johns Hopkins University is a web-based interactive course with the goal to improve the capacity of high quality research by developing mentoring programs for (1) doctoral and postdoctoral candidates and junior faculty from racial and ethnic minorities and (2) non-minority individuals at the same levels, whose research focuses on NeuroAIDS disparity issues such as HIV-associated neurocognitive disorders (HAND). This web-based interactive course overcomes the limitations of traditional education such as access to expert faculty and financial burden of scientists from racial and ethnic minority groups in the field of NeuroAIDS research and NIP and identifies rich nurturing environments for investigators to support their careers. The TR-NAMH program identifies a cadre of talented students and investigators eager to commit to innovative educational and training sessions in NeuroAIDS and NIP. The interplay between NIP changes precipitated by HIV infection in the brain makes the study of HAND an outstanding way to integrate important concepts from these two fields. The course includes activities besides those related to didactic learning such as research training and long-term mentoring; hence, the newly learned topics in NIP are continually reinforced and implemented in real-time experiences. We describe how NIP is integrated in the TR-NAMH program in the context of HAND.
Collapse
Affiliation(s)
- Amanda Brown
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
8
|
Toro-Nieves DM, Rodriguez Y, Plaud M, Ciborowski P, Duan F, Pérez Laspiur J, Wojna V, Meléndez LM. Proteomic analyses of monocyte-derived macrophages infected with human immunodeficiency virus type 1 primary isolates from Hispanic women with and without cognitive impairment. J Neurovirol 2008; 15:36-50. [PMID: 19115125 DOI: 10.1080/13550280802385505] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The signature for human immunodeficiency virus type 1 (HIV-1) neurovirulence remains a subject of intense debate. Macrophage viral tropism is one prerequisite but others, including virus-induced alterations in innate and adaptive immunity, remain under investigation. HIV-1-infected mononuclear phagocytes (MPs; perivascular macrophages and microglia) secrete toxins that affect neurons. The authors hypothesize that neurovirulent HIV-1 variants affect the MP proteome by inducing a signature of neurotoxic proteins and thus affect cognitive function. To test this hypothesis, HIV-1 isolates obtained from peripheral blood of women with normal cognition (NC) were compared to isolates obtained from women with cognitive impairment (CI) and to the laboratory adapted SF162, a spinal fluid R5 isolate from a patient with HIV-1-associated dementia. HIV-1 isolates were used to infect monocyte-derived macrophages (MDMs) and infection monitored by secreted HIV-1 p24 by enzyme-linked immunosorbent assay (ELISA). Cell lysates of uninfected and HIV-1-infected MDMs at 14 days post infection were fractionated by cationic exchange chromatography and analyzed by surface enhanced laser desorption ionization time of flight (SELDI-TOF) using generalized estimating equations statistics. Proteins were separated by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (1D SDS-PAGE) and identified by tandem mass spectrometry. Levels of viral replication were similar amongst the HIV-1 isolates, although higher levels were obtained from one viral strain obtained from a patient with CI. Significant differences were found in protein profiles between virus-infected MDMs with NC, CI, and SF162 isolates (adjusted P value after multiple testing corrections, or q value <.10). The authors identified 6 unique proteins in NC, 7 in SF162, and 20 in CI. Three proteins were common to SF162 and CI strains. The MDM proteins linked to infection with CI strains were related to apoptosis, chemotaxis, inflammation, and redox metabolism. These findings support the hypothesis that the macrophage proteome differ when infected with viral isolates of women with and without CI.
Collapse
Affiliation(s)
- D M Toro-Nieves
- Department of Microbiology and Medical Zoology, Specialized Neurosciences Research Program, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | | | | | | | | | | | | | | |
Collapse
|