1
|
Live Viral Vaccine Neurovirulence Screening: Current and Future Models. Vaccines (Basel) 2021; 9:vaccines9070710. [PMID: 34209433 PMCID: PMC8310194 DOI: 10.3390/vaccines9070710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
Live viral vaccines are one of the most successful methods for controlling viral infections but require strong evidence to indicate that they are properly attenuated. Screening for residual neurovirulence is an important aspect for live viral vaccines against potentially neurovirulent diseases. Approximately half of all emerging viral diseases have neurological effects, so testing of future vaccines will need to be rapid and accurate. The current method, the monkey neurovirulence test (MNVT), shows limited translatability for human diseases and does not account for different viral pathogenic mechanisms. This review discusses the MNVT and potential alternative models, including in vivo and in vitro methods. The advantages and disadvantages of these methods are discussed, and there are promising data indicating high levels of translatability. There is a need to investigate these models more thoroughly and to devise more accurate and rapid alternatives to the MNVT.
Collapse
|
2
|
Luo H, Zhao M, Tan D, Liu C, Yang L, Qiu L, Gao Y, Yu H. Anti-COVID-19 drug screening: Frontier concepts and core technologies. Chin Med 2020; 15:115. [PMID: 33133232 PMCID: PMC7592451 DOI: 10.1186/s13020-020-00393-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023] Open
Abstract
The outbreak of COVID-19 has recently evolved into a global pandemic. Up to July 2020, almost every country has confirmed COVID-19 cases reported worldwide. Many leading experts have predicted that the epidemic will persist for relatively a long period of time. Thus far, there have been no remedies proven effective against the disease. As the nation where COVID-19 broke out first, China has adopted a combination of traditional Chinese medicine and western medicine to fight against the disease, and has achieved significant clinical result. Up to now, the COVID-19 pandemic has been effectively controlled in China. However, the rest of the world (except for a limited number of countries and regions) is still in deep water. This paper thoroughly summarizes interdisciplinary notions and techniques, including disease model, biochip, network pharmacology, and molecular docking technology, etc., providing a reference for researchers in the screening of drugs for COVID-19 prevention and treatment. These methodologies may facilitate researchers to screen out more potential drugs for treating COVID-19 pneumonia and to tackle this global crisis.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Room 8008, Building N22, Avenida da Universidade, Taipa, Macao SAR China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Room 8008, Building N22, Avenida da Universidade, Taipa, Macao SAR China
| | - Dechao Tan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Room 8008, Building N22, Avenida da Universidade, Taipa, Macao SAR China
| | - Chang Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Room 8008, Building N22, Avenida da Universidade, Taipa, Macao SAR China
| | - Lin Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Room 8008, Building N22, Avenida da Universidade, Taipa, Macao SAR China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Room 8008, Building N22, Avenida da Universidade, Taipa, Macao SAR China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Room 8008, Building N22, Avenida da Universidade, Taipa, Macao SAR China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Room 8008, Building N22, Avenida da Universidade, Taipa, Macao SAR China
| |
Collapse
|
3
|
Influenza virus polymerase: Functions on host range, inhibition of cellular response to infection and pathogenicity. Virus Res 2015; 209:23-38. [DOI: 10.1016/j.virusres.2015.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 01/06/2023]
|
4
|
The compensatory G88R change is essential in restoring the normal functions of influenza A/WSN/33 virus matrix protein 1 with a disrupted nuclear localization signal. J Virol 2012; 87:345-53. [PMID: 23077315 DOI: 10.1128/jvi.02024-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
G88R emerged as a compensatory mutation in matrix protein 1 (M1) of influenza virus A/WSN/33 when its nuclear localization signal (NLS) was disrupted by R101S and R105S substitutions. The resultant M1 triple mutant M(NLS-88R) regained replication efficiency in vitro while remaining attenuated in vivo with the potential of being a live vaccine candidate. To understand why G88R was favored by the virus as a compensatory change for the NLS loss and resultant replication deficiency, three more M1 triple mutants with an alternative G88K, G88V, or G88E change in addition to R101S and R105S substitutions in the NLS were generated. Unlike the other M1 triple mutants, M(NLS-88R) replicated more efficiently in vitro and in vivo. The G88R compensatory mutation not only restored normal functions of M1 in the presence of a disrupted NLS but also resulted in a strong association of M1 with viral ribonucleoprotein. Under a transmission electron microscope, only the M1 layer of the M(NLS-88R) virion exhibited discontinuous fingerprint-like patterns with average thicknesses close to that of wild-type A/WSN/33. Computational modeling suggested that the compensatory G88R change could reestablish the integrity of the M1 layer through new salt bridges between adjacent M1 subunits when the original interactions were interrupted by simultaneous R101S and R105S replacements in the NLS. Our results suggested that restoring the normal functions of M1 was crucial for efficient virus replication.
Collapse
|