1
|
Lucon-Xiccato T, Montalbano G, Frigato E, Loosli F, Foulkes NS, Bertolucci C. Medaka as a model for seasonal plasticity: Photoperiod-mediated changes in behaviour, cognition, and hormones. Horm Behav 2022; 145:105244. [PMID: 35988451 DOI: 10.1016/j.yhbeh.2022.105244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/02/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Teleosts display the highest level of brain plasticity of all vertebrates. Yet we still know little about how seasonality affects fish behaviour and the underlying cognitive mechanisms since the common neurobehavioral fish models are native to tropical environments where seasonal variation is absent or reduced. The medaka, Oryzias latipes, which inhabits temperate zone habitats, represents a promising model in this context given its large phenotypic changes associated with seasonality and the possibility to induce seasonal plasticity by only manipulating photoperiod. Here, we report the first extended investigation of seasonal plasticity in medaka behaviour and cognition, as well as the potential underlying molecular mechanisms. We compared medaka exposed to summer photoperiod (16 h light:8 h dark) with medaka exposed to winter photoperiod (8 h light:16 h dark), and detected substantial differences. Medaka were more active and less social in summer photoperiod conditions, two effects that emerged in the second half of an open-field and a sociability test, respectively, and might be at least in part related to habituation to the testing apparatus. Moreover, the cognitive phenotype was significantly affected: in the early response to a social stimulus, brain functional lateralisation shifted between the two hemispheres under the two photoperiod conditions, and inhibitory and discrimination learning performance were reduced in summer conditions. Finally, the expression of genes encoding key pituitary hormones, tshß and gh, and of the tshß regulatory transcription factor tef in the brain was increased in summer photoperiod conditions. This work reveals remarkable behavioural and cognitive phenotypic plasticity in response to photoperiod in medaka, and suggests a potential regulatory role for the same hormones involved in seasonal plasticity of other vertebrates.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giulia Montalbano
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elena Frigato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
2
|
Gainotti G. The Difficult Integration between Human and Animal Studies on Emotional Lateralization: A Perspective Article. Brain Sci 2021; 11:brainsci11080975. [PMID: 34439594 PMCID: PMC8395003 DOI: 10.3390/brainsci11080975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 01/12/2023] Open
Abstract
Even if for many years hemispheric asymmetries have been considered as a uniquely human feature, an increasing number of studies have described hemispheric asymmetries for various behavioral functions in several nonhuman species. An aspect of animal lateralization that has attracted particular attention has concerned the hemispheric asymmetries for emotions, but human and animal studies on this subject have been developed as independent lines of investigation, without attempts for their integration. In this perspective article, after an illustration of factors that have hampered the integration between human and animal studies on emotional lateralization, I will pass to analyze components and stages of the processing of emotions to distinguish those which point to a continuum between humans and many animal species, from those which suggest a similarity only between humans and great apes. The right lateralization of sympathetic functions (involved in brain and bodily activities necessary in emergency situations) seems consistent across many animal species, whereas asymmetries in emotional communication and in structures involved in emotional experience, similar to those observed in humans, have been documented only in primates.
Collapse
Affiliation(s)
- Guido Gainotti
- Institute of Neurology, Catholic University, Largo Agostino Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
3
|
Does Brain Lateralization Affect the Performance in Binary Choice Tasks? A Study in the Animal Model Danio rerio. Symmetry (Basel) 2020. [DOI: 10.3390/sym12081294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Researchers in behavioral neuroscience commonly observe the behavior of animal subjects in the presence of two alternative stimuli. However, this type of binary choice introduces a potential confound related to side biases. Understanding whether subjects exhibit this bias, and the origin of it (pre-existent or acquired throughout the experimental sessions), is particularly important to interpreting the results. Here, we tested the hypothesis according to which brain lateralization may influence the emergence of side biases in a well-known model of neuroscience, the zebrafish. As a measure of lateralization, individuals were observed in their spontaneous tendencies to monitor a potential predator with either the left or the right eye. Subjects also underwent an operant conditioning task requiring discrimination between two colors placed on the left–right axis. Although the low performance exhibited in the operant conditioning task prevents firm conclusions from being drawn, a positive correlation was found between the direction of lateralization and the tendency to select the stimulus presented on one specific side (e.g., right). The choice for this preferred side did not change throughout the experimental sessions, meaning that this side bias was not the result of the prolonged training. Overall, our study calls for a wider investigation of pre-existing lateralization biases in animal models to set up methodological counterstrategies to test individuals that do not properly work in a binary choice task with stimuli arranged on the left–right axis.
Collapse
|
4
|
Bálint A, Andics A, Gácsi M, Gábor A, Czeibert K, Luce CM, Miklósi Á, Kröger RHH. Dogs can sense weak thermal radiation. Sci Rep 2020; 10:3736. [PMID: 32111902 PMCID: PMC7048925 DOI: 10.1038/s41598-020-60439-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/07/2020] [Indexed: 01/03/2023] Open
Abstract
The dog rhinarium (naked and often moist skin on the nose-tip) is prominent and richly innervated, suggesting a sensory function. Compared to nose-tips of herbivorous artio- and perissodactyla, carnivoran rhinaria are considerably colder. We hypothesized that this coldness makes the dog rhinarium particularly sensitive to radiating heat. We trained three dogs to distinguish between two distant objects based on radiating heat; the neutral object was about ambient temperature, the warm object was about the same surface temperature as a furry mammal. In addition, we employed functional magnetic resonance imaging on 13 awake dogs, comparing the responses to heat stimuli of about the same temperatures as in the behavioural experiment. The warm stimulus elicited increased neural response in the left somatosensory association cortex. Our results demonstrate a hitherto undiscovered sensory modality in a carnivoran species.
Collapse
Affiliation(s)
- Anna Bálint
- Lund University, Department of Biology, Mammalian Rhinarium Group, Sölvegatan 35, 22362 Lund, Sweden
- MTA-ELTE Comparative Ethology Research Group, 1117 Budapest, Hungary
- Eötvös Loránd University, Department of Ethology, 1117 Budapest, Hungary
| | - Attila Andics
- Eötvös Loránd University, Department of Ethology, 1117 Budapest, Hungary
- MTA-ELTE “Lendület” Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, 1117 Budapest, Hungary
| | - Márta Gácsi
- MTA-ELTE Comparative Ethology Research Group, 1117 Budapest, Hungary
- Eötvös Loránd University, Department of Ethology, 1117 Budapest, Hungary
| | - Anna Gábor
- Eötvös Loránd University, Department of Ethology, 1117 Budapest, Hungary
- MTA-ELTE “Lendület” Neuroethology of Communication Research Group, Hungarian Academy of Sciences - Eötvös Loránd University, 1117 Budapest, Hungary
| | - Kálmán Czeibert
- Eötvös Loránd University, Department of Ethology, 1117 Budapest, Hungary
| | - Chelsey M. Luce
- Lund University, Department of Biology, Mammalian Rhinarium Group, Sölvegatan 35, 22362 Lund, Sweden
- University of Bremen, Department of Ecology and Evolutionary Biology, Leobener Str., 28359 Bremen, Germany
| | - Ádám Miklósi
- MTA-ELTE Comparative Ethology Research Group, 1117 Budapest, Hungary
- Eötvös Loránd University, Department of Ethology, 1117 Budapest, Hungary
| | - Ronald H. H. Kröger
- Lund University, Department of Biology, Mammalian Rhinarium Group, Sölvegatan 35, 22362 Lund, Sweden
| |
Collapse
|
5
|
Kaplan JD, Goodrich SY, Melillo-Sweeting K, Reiss D. Behavioural laterality in foraging bottlenose dolphins ( Tursiops truncatus). ROYAL SOCIETY OPEN SCIENCE 2019; 6:190929. [PMID: 31827837 PMCID: PMC6894562 DOI: 10.1098/rsos.190929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Lateralized behaviour is found in humans and a wide variety of other species. At a population level, lateralization of behaviour suggests hemispheric specialization may underlie this behaviour. As in other cetaceans, dolphins exhibit a strong right-side bias in foraging behaviour. Common bottlenose dolphins in The Bahamas use a foraging technique termed 'crater feeding', in which they swim slowly along the ocean floor, scanning the substrate using echolocation, and then bury their rostrums into the sand to obtain prey. The bottlenose dolphins off Bimini, The Bahamas, frequently execute a sharp turn before burying their rostrums in the sand. Based on data collected from 2012 to 2018, we report a significant right-side (left turn) bias in these dolphins. Out of 709 turns recorded from at least 27 different individuals, 99.44% (n = 705) were to the left (right side and right eye down) [z = 3.275, p = 0.001]. Only one individual turned right (left side and left eye down, 4/4 turns). We hypothesize that this right-side bias may be due in part to the possible laterization of echolocation production mechanisms, the dolphins' use of the right set of phonic lips to produce echolocation clicks, and a right eye (left hemisphere) advantage in visual discrimination and visuospatial processing.
Collapse
Affiliation(s)
| | - Samantha Y. Goodrich
- Department of Psychology, St Mary's College of Maryland, St Mary's City, MD, USA
| | | | - Diana Reiss
- Department of Psychology, Hunter College, CUNY, New York, NY, 10065, USA
| |
Collapse
|
6
|
Spontaneous approaches of divers by free-ranging orcas (Orcinus orca): age- and sex-differences in exploratory behaviours and visual laterality. Sci Rep 2017; 7:10922. [PMID: 28883537 PMCID: PMC5589820 DOI: 10.1038/s41598-017-11488-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/25/2017] [Indexed: 11/08/2022] Open
Abstract
Running comparative studies of laterality in mammals is a way to deepen our understanding of the evolution of the brain hemisphere functions. Studies on vision highlighted a possible task-sharing between hemispheres depending on the characteristics of the observers, the nature of the observed stimulus and the context of the observation, a phenomenon that could go beyond the monitoring of conspecifics. Cetaceans are predators that adapted to an aquatic habitat and display a clear crossing of fibers to the side of the brain opposite the eye of origin. Here, we analysed the interactions between humans and cetaceans when free-ranging orcas approach divers. Our study concentrated on the spontaneous exploratory behaviours of divers by orcas depending on their age and sex, and on the possible expression of a visual laterality. The results showed a significant preference for the use of the left eye but exclusively in adult females. Adult males had a more sustained attention than adult females, marked by a higher spatial proximity to divers, slower approaches and longer look durations. Adult females, probably more cautious, explored from the distance and more furtively. Our findings support a possible link between attentional/motivational states and visual laterality in mammals.
Collapse
|
7
|
Evidence for the perceptual origin of right-sided feeding biases in cetaceans. Anim Cogn 2015; 19:239-43. [DOI: 10.1007/s10071-015-0899-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/12/2015] [Accepted: 06/28/2015] [Indexed: 12/26/2022]
|
8
|
Leliveld LM, Langbein J, Puppe B. The emergence of emotional lateralization: Evidence in non-human vertebrates and implications for farm animals. Appl Anim Behav Sci 2013. [DOI: 10.1016/j.applanim.2013.02.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
|
10
|
Eye as a key element of conspecific image eliciting lateralized response in fish. Anim Cogn 2012; 16:287-300. [DOI: 10.1007/s10071-012-0572-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
|
11
|
Karenina K, Giljov A, Baranov V, Osipova L, Krasnova V, Malashichev Y. Visual laterality of calf-mother interactions in wild whales. PLoS One 2010; 5:e13787. [PMID: 21072179 PMCID: PMC2972207 DOI: 10.1371/journal.pone.0013787] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 09/19/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Behavioral laterality is known for a variety of vertebrate and invertebrate animals. Laterality in social interactions has been described for a wide range of species including humans. Although evidence and theoretical predictions indicate that in social species the degree of population level laterality is greater than in solitary ones, the origin of these unilateral biases is not fully understood. It is especially poorly studied in the wild animals. Little is known about the role, which laterality in social interactions plays in natural populations. A number of brain characteristics make cetaceans most suitable for investigation of lateralization in social contacts. METHODOLOGY/PRINCIPAL FINDINGS Observations were made on wild beluga whales (Delphinapterus leucas) in the greatest breeding aggregation in the White Sea. Here we show that young calves (in 29 individually identified and in over a hundred of individually not recognized mother-calf pairs) swim and rest significantly longer on a mother's right side. Further observations along with the data from other cetaceans indicate that found laterality is a result of the calves' preference to observe their mothers with the left eye, i.e., to analyze the information on a socially significant object in the right brain hemisphere. CONCLUSIONS/SIGNIFICANCE Data from our and previous work on cetacean laterality suggest that basic brain lateralizations are expressed in the same way in cetaceans and other vertebrates. While the information on social partners and novel objects is analyzed in the right brain hemisphere, the control of feeding behavior is performed by the left brain hemisphere. Continuous unilateral visual contacts of calves to mothers with the left eye may influence social development of the young by activation of the contralateral (right) brain hemisphere, indicating a possible mechanism on how behavioral lateralization may influence species life and welfare. This hypothesis is supported by evidence from other vertebrates.
Collapse
Affiliation(s)
- Karina Karenina
- Department of Vertebrate Zoology, Faculty of Biology and Soil Sciences, Saint-Petersburg State University, St. Petersburg, Russia
| | - Andrey Giljov
- Department of Vertebrate Zoology, Faculty of Biology and Soil Sciences, Saint-Petersburg State University, St. Petersburg, Russia
| | - Vladimir Baranov
- Laboratory of Marine Mammals, P.P. Shirshov Institute of Oceanology, Moscow, Russia
| | - Ludmila Osipova
- Department of Vertebrate Zoology, Faculty of Biology and Soil Sciences, Saint-Petersburg State University, St. Petersburg, Russia
| | - Vera Krasnova
- Laboratory of Marine Mammals, P.P. Shirshov Institute of Oceanology, Moscow, Russia
| | - Yegor Malashichev
- Department of Vertebrate Zoology, Faculty of Biology and Soil Sciences, Saint-Petersburg State University, St. Petersburg, Russia
- Department of Embryology, Faculty of Biology and Soil Sciences, Saint-Petersburg State University, St. Petersburg, Russia
- * E-mail:
| |
Collapse
|
12
|
Dadda M, Zandonà E, Agrillo C, Bisazza A. The costs of hemispheric specialization in a fish. Proc Biol Sci 2009; 276:4399-407. [PMID: 19793754 DOI: 10.1098/rspb.2009.1406] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Laboratory and field studies have documented better cognitive performance associated with marked hemispheric specialization in organisms as diverse as chimpanzees, domestic chicks and topminnows. While providing an evolutionary explanation for the emergence of cerebral lateralization, this evidence represents a paradox because a large proportion of non-lateralized (NL) individuals is commonly observed in animal populations. Hemispheric specialization often determines large left-right differences in perceiving and responding to stimuli. Using topminnows selected for a high or low degree of lateralization, we tested the hypothesis that individuals with greater functional asymmetry pay a higher performance cost in situations requiring matching information from the two eyes. When trained to use the middle door in a row of a nine, NL fish correctly chose the central door in most cases, while lateralized fish showed systematic leftward or rightward biases. When choosing between two shoals, each seen with a different eye, NL fish chose the high-quality shoal significantly more often than the lateralized fish, whose performance was affected by eye preference for analysing social stimuli. These findings suggest the existence of a trade-off between computational advantages of hemispheric specialization and the ecological cost of making suboptimal decisions whenever relevant information is located on both sides of the body.
Collapse
Affiliation(s)
- Marco Dadda
- Department of General Psychology, University of Padova, Via Venezia 8, I-35131 Padova, Italy.
| | | | | | | |
Collapse
|