1
|
Damas-Moreira I, Szabo B, Drosopoulos G, Stober C, Lisičić D, Caspers BA. Smarter in the city? Lizards from urban and semi-natural habitats do not differ in a cognitive task in two syntopic species. Curr Zool 2024; 70:361-370. [PMID: 39035752 PMCID: PMC11255991 DOI: 10.1093/cz/zoae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/22/2024] [Indexed: 07/23/2024] Open
Abstract
Urbanization occurs at a global scale, imposing dramatic and abrupt environmental changes that lead to biodiversity loss. Yet, some animal species can handle these changes, and thrive in such artificial environments. One possible explanation is that urban individuals are equipped with better cognitive abilities, but most studies have focused on birds and mammals and yielded varied results. Reptiles have received much less attention, despite some lizard species being common city dwellers. The Italian wall lizard, Podarcis siculus, and the common wall lizard, Podarcis muralis, are two successful lizards in anthropogenic habitats that thrive in urban locations. To test for differences in a cognitive skill between urban and semi-natural environments, we investigated inhibitory control through a detour task in syntopic populations of the two species, across 249 lizards that were tested in partially artificial field settings. Sophisticated inhibitory control is considered essential for higher degrees of cognitive flexibility and other higher-level cognitive abilities. In this task, we confronted lizards with a transparent barrier, separating them from a desired shelter area that they could only reach by controlling their impulse to go straight and instead detour the barrier. We found no differences between lizards in urban and semi-natural environments, nor between species, but females overall performed better than males. Moreover, 48% of the lizards in our study did not perform a correct trial in any of the 5 trials, hinting at the difficulty of the task for these species. This study is among the first to address lizard cognition, through their inhibitory control, as a potential explanation for success in cities and highlights one should be careful with assuming that urban animals generally have enhanced cognitive performance, as it might be taxa, task, or condition dependent.
Collapse
Affiliation(s)
| | - Birgit Szabo
- Division of Behavioural Ecology, University of Bern, 3032, Switzerland
| | | | - Carolin Stober
- Department of Behavioural Ecology, Bielefeld University, 33615, Germany
| | - Duje Lisičić
- Department of Biology, University of Zagreb, 10000, Croatia
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, 33615, Germany
- Joint Institute of Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, 33615, Germany
| |
Collapse
|
2
|
Age-related reduction of hemispheric asymmetry by pigeons: A behavioral and FDG-PET imaging investigation of visual discrimination. Learn Behav 2022; 50:125-139. [DOI: 10.3758/s13420-021-00507-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/08/2022]
|
3
|
Vinogradov IM, Jennions MD, Neeman T, Fox RJ. Repeatability of lateralisation in mosquitofish Gambusia holbrooki despite evidence for turn alternation in detour tests. Anim Cogn 2021; 24:765-775. [PMID: 33471228 DOI: 10.1007/s10071-021-01474-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/19/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022]
Abstract
Akin to handedness in humans, some animals show a preference for moving to the left or right. This is often attributed to lateralised cognitive functions and eye dominance, which, in turn, influences their behaviour. In fishes, behavioural lateralisation has been tested using detour mazes for over 20 years. Studies report that certain individuals are more likely to approach predators or potential mates from one direction. These findings imply that the lateralisation behaviour of individuals is repeatable, but this is rarely confirmed through multiple testing of each individual over time. Here we quantify the repeatability of turning behaviour by female mosquitofish (Gambusia holbrooki) in a double sided T-maze. Each female was tested three times in each of six treatments: when approaching other females, males, or an empty space; and when able to swim freely or when forced to choose by being herded from behind with a net. Although there was no turning bias based on the mean population response, we detected significant repeatability of lateralisation in five of the six treatments (R = 0.251-0.625). This is noteworthy as we also found that individuals tended to alternate between left and right turns, meaning that they tend to move back and forth along one wall of the double-sided T-maze. Furthermore, we found evidence for this wall following when re-analysing data from a previous study. We discuss potential explanations for this phenomenon, and its implications for study design.
Collapse
Affiliation(s)
- Ivan M Vinogradov
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT 2600, Australia.
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT 2600, Australia
| | - Teresa Neeman
- Biological Data Science Institute, Australian National University, Canberra, ACT 2600, Australia
| | - Rebecca J Fox
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
4
|
|
5
|
Fuss T, Nöbel S, Witte K. It's in the eye of the beholder: visual lateralisation in response to the social environment in poeciliids. JOURNAL OF FISH BIOLOGY 2019; 94:759-771. [PMID: 30854659 DOI: 10.1111/jfb.13953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
The social environment offers fish complex information about the quality, performance, personality and other cues of potential mates and competitors simultaneously. It is likely, therefore, that the environmental information regarding the context of mate choice is perceived and processed differently in species and sexes in respect to lateralisation. The present study comparatively assessed visual lateralisation behaviour in response to different social or sexual stimuli in three closely related poeciliid species (P. latipinna, P. mexicana, P. formosa) in comparison to a more distantly related species (P. reticulata). Individuals were presented with four different social or sexual stimuli that were tested against a control stimulus; (a) a conspecific male, (b) a conspecific female, (c) a heterosexual conspecific pair, (d) three conspecific females (shoal). In order to approach a target stimulus, focal fish had to perform detours to the right or left of a vertically straight-shaped barrier. The three closely related poeciliid species, P. latipinna, P. mexicana, P. formosa, appeared to have a general tendency to turn right (i.e., left-eye preference), whereas the more distantly related P. reticulata males and females showed an overall bias to the left (i.e., right-eye preference) in response to various social-sexual incitements. Moreover, body size seemed to significantly influence especially the males' detour behaviour, with smaller males acting in opposition to their larger conspecifics in response to certain social stimuli. In this case, smaller and larger Poecilia spp. males responded in the same way as smaller and larger males of the other three poeciliid species. Therefore, results possibly point to differences in the degree of general social behaviour between closely and more distantly related species and mating motivation amongst larger and smaller individuals when placed in a novel social environment. Hence, present results possibly suggest a sex-specific functional lateralisation for the analysis of visual information and seem to support the closer ancestral relationships between the Poecilia spp. tested in this study and the more distantly related guppies in terms of their left-right lateralisation. Generally, present results suggest that functional asymmetries in behaviour could be widespread among vertebrates, thus supporting the hypothesis of an early evolution of lateralisation in brain and behaviour.
Collapse
Affiliation(s)
- Theodora Fuss
- Research Group of Ecology and Behavioural Biology, Institute of Biology, University of Siegen, Siegen, Germany
| | - Sabine Nöbel
- Research Group of Ecology and Behavioural Biology, Institute of Biology, University of Siegen, Siegen, Germany
- Institute for Advanced Study in Toulouse, Toulouse, France
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, Toulouse, France
| | - Klaudia Witte
- Research Group of Ecology and Behavioural Biology, Institute of Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
6
|
Context-specific response inhibition and differential impact of a learning bias in a lizard. Anim Cogn 2019; 22:317-329. [PMID: 30707367 DOI: 10.1007/s10071-019-01245-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/30/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
Abstract
Response inhibition (inhibiting prepotent responses) is needed for reaching a more favourable goal in situations where reacting automatically would be detrimental. Inhibiting prepotent responses to resist the temptation of a stimulus in certain situations, such as a novel food item, can directly affect an animal's survival. In humans and dogs, response inhibition varies between contexts and between individuals. We used two contextually different experiments to investigate response inhibition in the eastern water skink (Eulamprus quoyii): reversal of a visual two-choice discrimination and a cylinder detour task. During the two-choice task, half of our lizards were able to reach an initial learning criterion, but, thereafter, did not show consistent performance. Only two individuals reached a more stringent criterion, but subsequently failed during reversals. Furthermore, half of our animals were not able to inhibit a pre-existing side preference which affected their ability to learn during the two-choice task. Skinks were, however, able to achieve a detour around a cylinder performing at levels comparable to brown lemurs, marmosets, and some parrot species. A comparison between the tasks showed that reaching the initial criterion was associated with low success during the detour task, indicating that response inhibition could be context-specific in the water skink. To the best of our knowledge, this is the first study to examine inhibitory control and motor self-regulation in a lizard species.
Collapse
|
7
|
Bridgeman JM, Tattersall GJ. Tortoises develop and overcome position biases in a reversal learning task. Anim Cogn 2019; 22:265-275. [PMID: 30707365 DOI: 10.1007/s10071-019-01243-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 01/01/2023]
Abstract
The capability of animals to alter their behaviour in response to novel or familiar stimuli, or behavioural flexibility, is strongly associated with their ability to learn in novel environments. Reptiles are capable of learning complex tasks and offer a unique opportunity to study the relationship between visual proficiency and behavioural flexibility. The focus of this study was to investigate the behavioural flexibility of red-footed tortoises and their ability to perform reversal learning. Reversal learning involves learning a particular discrimination task, after which the previously rewarded cue is reversed and then subjects perform the task with new reward contingencies. Red-footed tortoises were required to learn to recognise and approach visual cues within a Y-maze. Once subjects learned the visual discrimination, tortoises were required to successfully learn four reversals. Tortoises required significantly more trials to reach criterion (80% correct) in the first reversal, indicating the difficulty of unlearning the positive stimulus presented during training. Nevertheless, subsequent reversals required a similar number of sessions to the training stage, demonstrating that reversal learning improved up to a point. All subjects tested developed a position bias within the Y-maze that was absent prior to training, but most were able to exhibit reversal learning. Red-footed tortoises primarily adopted a win-stay choice strategy while learning the discrimination without much evidence for a lose-shift choice strategy, which may explain limits to their behavioural flexibility. However, improving performance across reversals while simultaneously overcoming a position bias provides insights into the cognitive abilities of tortoises.
Collapse
Affiliation(s)
- Justin M Bridgeman
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Glenn J Tattersall
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
8
|
How Ecology Could Affect Cerebral Lateralization for Explorative Behaviour in Lizards. Symmetry (Basel) 2017. [DOI: 10.3390/sym9080144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
Lustig A, Ketter-Katz H, Katzir G. Lateralization of visually guided detour behaviour in the common chameleon, Chamaeleo chameleon, a reptile with highly independent eye movements. Behav Processes 2013; 100:110-5. [PMID: 23994262 DOI: 10.1016/j.beproc.2013.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 08/06/2013] [Accepted: 08/07/2013] [Indexed: 11/30/2022]
Abstract
Chameleons (Chamaeleonidae, reptilia), in common with most ectotherms, show full optic nerve decussation and sparse inter-hemispheric commissures. Chameleons are unique in their capacity for highly independent, large-amplitude eye movements. We address the question: Do common chameleons, Chamaeleo chameleon, during detour, show patterns of lateralization of motion and of eye use that differ from those shown by other ectotherms? To reach a target (prey) in passing an obstacle in a Y-maze, chameleons were required to make a left or a right detour. We analyzed the direction of detours and eye use and found that: (i) individuals differed in their preferred detour direction, (ii) eye use was lateralized at the group level, with significantly longer durations of viewing the target with the right eye, compared with the left eye, (iii) during left side, but not during right side, detours the durations of viewing the target with the right eye were significantly longer than the durations with the left eye. Thus, despite the uniqueness of chameleons' visual system, they display patterns of lateralization of motion and of eye use, typical of other ectotherms. These findings are discussed in relation to hemispheric functions.
Collapse
Affiliation(s)
- Avichai Lustig
- Department of Neurobiology & Ethology, University of Haifa, Mount Carmel, Haifa 31905, Israel.
| | | | | |
Collapse
|
10
|
Lustig A, Ketter-Katz H, Katzir G. Relating lateralization of eye use to body motion in the avoidance behavior of the chameleon (Chamaeleo chameleon). PLoS One 2013; 8:e70761. [PMID: 23967099 PMCID: PMC3743880 DOI: 10.1371/journal.pone.0070761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 06/21/2013] [Indexed: 11/19/2022] Open
Abstract
Lateralization is mostly analyzed for single traits, but seldom for two or more traits while performing a given task (e.g. object manipulation). We examined lateralization in eye use and in body motion that co-occur during avoidance behaviour of the common chameleon, Chamaeleo chameleon. A chameleon facing a moving threat smoothly repositions its body on the side of its perch distal to the threat, to minimize its visual exposure. We previously demonstrated that during the response (i) eye use and body motion were, each, lateralized at the tested group level (N = 26), (ii) in body motion, we observed two similar-sized sub-groups, one exhibiting a greater reduction in body exposure to threat approaching from the left and one--to threat approaching from the right (left- and right-biased subgroups), (iii) the left-biased sub-group exhibited weak lateralization of body exposure under binocular threat viewing and none under monocular viewing while the right-biased sub-group exhibited strong lateralization under both monocular and binocular threat viewing. In avoidance, how is eye use related to body motion at the entire group and at the sub-group levels? We demonstrate that (i) in the left-biased sub-group, eye use is not lateralized, (ii) in the right-biased sub-group, eye use is lateralized under binocular, but not monocular viewing of the threat, (iii) the dominance of the right-biased sub-group determines the lateralization of the entire group tested. We conclude that in chameleons, patterns of lateralization of visual function and body motion are inter-related at a subtle level. Presently, the patterns cannot be compared with humans' or related to the unique visual system of chameleons, with highly independent eye movements, complete optic nerve decussation and relatively few inter-hemispheric commissures. We present a model to explain the possible inter-hemispheric differences in dominance in chameleons' visual control of body motion during avoidance.
Collapse
Affiliation(s)
- Avichai Lustig
- Department of Neurobiology and Ethology, University of Haifa, Haifa, Israel.
| | | | | |
Collapse
|
11
|
Lindell AK. Continuities in emotion lateralization in human and non-human primates. Front Hum Neurosci 2013; 7:464. [PMID: 23964230 PMCID: PMC3737467 DOI: 10.3389/fnhum.2013.00464] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/26/2013] [Indexed: 11/13/2022] Open
Abstract
Where hemispheric lateralization was once considered an exclusively human trait, it is increasingly recognized that hemispheric asymmetries are evident throughout the animal kingdom. Emotion is a prime example of a lateralized function: given its vital role in promoting adaptive behavior and hence survival, a growing body of research in affective neuroscience is working to illuminate the cortical bases of emotion processing. Presuming that human and non-human primates evolved from a shared ancestor, one would anticipate evidence of organizational continuity in the neural substrate supporting emotion processing. This paper thus reviews research examining the patterns of lateralization for the expression and perception of facial emotion in non-human primates, aiming to determine whether the patterns of hemispheric asymmetry that characterize the human brain are similarly evident in other primate species. As such, this review seeks to enhance understanding of the evolution of hemispheric specialization for emotion, using emotion lateralization in non-human primates as a window through which to view emotion lateralization in humans.
Collapse
Affiliation(s)
- Annukka K Lindell
- School of Psychological Science, La Trobe University , Melbourne, VIC , Australia
| |
Collapse
|
12
|
Ocklenburg S, Güntürkün O. Hemispheric asymmetries: the comparative view. Front Psychol 2012; 3:5. [PMID: 22303295 PMCID: PMC3266613 DOI: 10.3389/fpsyg.2012.00005] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/05/2012] [Indexed: 12/02/2022] Open
Abstract
Hemispheric asymmetries play an important role in almost all cognitive functions. For more than a century, they were considered to be uniquely human but now an increasing number of findings in all vertebrate classes make it likely that we inherited our asymmetries from common ancestors. Thus, studying animal models could provide unique insights into the mechanisms of lateralization. We outline three such avenues of research by providing an overview of experiments on left-right differences in the connectivity of sensory systems, the embryonic determinants of brain asymmetries, and the genetics of lateralization. All these lines of studies could provide a wealth of insights into our own asymmetries that should and will be exploited by future analyses.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr-University BochumBochum, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr-University BochumBochum, Germany
| |
Collapse
|
13
|
Bonati B, Csermely D. Complementary lateralisation in the exploratory and predatory behaviour of the common wall lizard (Podarcis muralis). Laterality 2010; 16:462-70. [DOI: 10.1080/13576501003762766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Csermely D, Bonati B, Lopez P, Martin J. Is the Podarcis muralis lizard left-eye lateralised when exploring a new environment? Laterality 2010; 16:240-55. [PMID: 20665335 DOI: 10.1080/13576501003614827] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The typical lateral eye position in ectotherms likely facilitated the spread of visual lateralisation--i.e., the different use of the eyes--in those species. The diffusion of this form of lateralisation seems due to the possibility of carrying out more than one task simultaneously, some controlled by one eye and the visual structures it feeds and some by the other. Similar to other species, exploratory and monitoring behaviours seem to be under left "eye system" control. Wild individuals of the Common wall lizard Podarcis muralis were tested individually in captivity to ascertain whether they showed lateralisation when exploring a new environment, using preferentially the left eye. In Experiment 1, the lizards explored a maze. A left-turning bias was found, both at individual and population level, indicating a possible right hemisphere visual control. In Experiment 2, lizards explored a T-maze, preferring to enter the left rather than the right arm though without any particular preference in the head turns. In Experiment 3, the lizards had to exit an opaque box within a terrarium. We found a left-eye preference again for head turn while leaving the box. Our findings support the hypothesis of right hemisphere mediation of exploratory and monitoring behaviours in Podarcis muralis. In addition to previous studies on the same species, our results support the hypothesis of a simultaneous control of anti-predatory and exploratory behaviours (left-eye mediated) and predatory behaviour (right-eye mediated).
Collapse
Affiliation(s)
- Davide Csermely
- Dipartimento di Biologia Evolutiva e Funzionale, Sez. Museo di Storia Naturale, Universitá di Parma, Via Farini 90, 43121 Parma, Italy.
| | | | | | | |
Collapse
|