1
|
Aghi K, Goetz TG, Pfau DR, Sun SED, Roepke TA, Guthman EM. Centering the Needs of Transgender, Nonbinary, and Gender-Diverse Populations in Neuroendocrine Models of Gender-Affirming Hormone Therapy. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1268-1279. [PMID: 35863692 PMCID: PMC10472479 DOI: 10.1016/j.bpsc.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Most studies attempting to address the health care needs of the millions of transgender, nonbinary, and/or gender-diverse (TNG) individuals rely on human subjects, overlooking the benefits of translational research in animal models. Researchers have identified many ways in which gonadal steroid hormones regulate neuronal gene expression, connectivity, activity, and function across the brain to control behavior. However, these discoveries primarily benefit cisgender populations. Research into the effects of exogenous hormones such as estradiol, testosterone, and progesterone has a direct translational benefit for TNG individuals on gender-affirming hormone therapies (GAHTs). Despite this potential, endocrinological health care for TNG individuals remains largely unimproved. Here, we outline important areas of translational research that could address the unique health care needs of TNG individuals on GAHT. We highlight key biomedical questions regarding GAHT that can be investigated using animal models. We discuss how contemporary research fails to address the needs of GAHT users and identify equitable practices for cisgender scientists engaging with this work. We conclude that if necessary and important steps are taken to address these issues, translational research on GAHTs will greatly benefit the health care outcomes of TNG people.
Collapse
Affiliation(s)
- Krisha Aghi
- Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Teddy G Goetz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel R Pfau
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Center for Applied Transgender Studies, Chicago, Illinois
| | - Troy A Roepke
- Department of Animal Sciences, School of Biological and Environmental Sciences, Rutgers University, New Brunswick
| | - Eartha Mae Guthman
- Center for Applied Transgender Studies, Chicago, Illinois; Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey.
| |
Collapse
|
2
|
Mi S, Chen H, Lin P, Kang P, Qiao D, Zhang B, Wang Z, Zhang J, Hu X, Wang C, Cui H, Li S. CaMKII is a modulator in neurodegenerative diseases and mediates the effect of androgen on synaptic protein PSD95. Front Genet 2022; 13:959360. [PMID: 35991539 PMCID: PMC9386121 DOI: 10.3389/fgene.2022.959360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Androgens rapidly regulate synaptic plasticity in hippocampal neurones, but the underlying mechanisms remain unclear. In this study, we carried out a comprehensive bioinformatics analysis of functional similarities between androgen receptor (AR) and the synaptic protein postsynaptic density 95 (PSD95) to evaluate the effect. Using different measurements and thresholds, we obtained consistent results illustrating that the two proteins were significantly involved in similar pathways. We further identified CaMKII plays a critical role in mediating the rapid effect of androgen and promoting the expression of PSD95. We used mouse hippocampal neurone HT22 cells as a cell model to investigate the effect of testosterone (T) on intracellular Ca2+ levels and the mechanism. Calcium imaging experiments showed that intracellular Ca2+ increased to a peak due to calcium influx in the extracellular fluid through L-type and N-type voltage-gated calcium channels when HT22 cells were treated with 100 nM T for 20 min. Subsequently, we investigated whether the Ca2+/CaMKII signaling pathway mediates the rapid effect of T, promoting the expression of the synaptic protein PSD95. Immunofluorescence cytochemical staining and western blotting results showed that T promoted CaMKII phosphorylation by rapidly increasing extracellular Ca2+ influx, thus increasing PSD95 expression. This study demonstrated that CaMKII acts as a mediator assisting androgen which regulates the synaptic protein PSD95Also, it provides evidence for the neuroprotective mechanisms of androgens in synaptic plasticity and reveals the gated and pharmacological mechanisms of the voltage-gated Ca2+ channel family for androgen replacement therapy.
Collapse
Affiliation(s)
- Shixiong Mi
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Huan Chen
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Peijing Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Peiyuan Kang
- Clinical Medicine, Hebei Medical University, Shijiazhuang, China
| | - Dan Qiao
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Bohan Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Zhao Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
| | - Jingbao Zhang
- Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiangting Hu
- Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chang Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
- *Correspondence: Sha Li, ; Huixian Cui,
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Sha Li, ; Huixian Cui,
| |
Collapse
|
3
|
Huang L, Xiao D, Sun H, Qu Y, Su X. Behavioral tests for evaluating the characteristics of brain diseases in rodent models: Optimal choices for improved outcomes (Review). Mol Med Rep 2022; 25:183. [PMID: 35348193 DOI: 10.3892/mmr.2022.12699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/16/2022] [Indexed: 11/05/2022] Open
Abstract
Behavioral assessment is the dominant approach for evaluating whether animal models of brain diseases can successfully mimic the clinical characteristics of diseases. At present, most research regarding brain diseases involves the use of rodent models. While studies have reported numerous methods of behavioral assessments in rodent models of brain diseases, each with different principles, procedures, and assessment criteria, only few reviews have focused on characterizing and differentiating these methods based on applications for which they are most appropriate. Therefore, in the present review, the representative behavioral tests in rodent models of brain diseases were compared and differentiated, aiming to provide convenience for researchers in selecting the optimal methods for their studies.
Collapse
Affiliation(s)
- Lingyi Huang
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Dongqiong Xiao
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Hao Sun
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
4
|
Mielke MM, Miller VM. Improving clinical outcomes through attention to sex and hormones in research. Nat Rev Endocrinol 2021; 17:625-635. [PMID: 34316045 PMCID: PMC8435014 DOI: 10.1038/s41574-021-00531-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Biological sex, fluctuations in sex steroid hormones throughout life and gender as a social construct all influence every aspect of health and disease. Yet, for decades, most basic and clinical studies have included only male individuals. As modern health care moves towards personalized medicine, it is clear that considering sex and hormonal status in basic and clinical studies will bring precision to the development of novel therapeutics and treatment paradigms. To this end, funding, regulatory and policy agencies now require inclusion of female animals and women in basic and clinical studies. However, inclusion of female animals and women often does not mean that information regarding potential hormonal interactions with pharmacological treatments or clinical outcomes is available. All sex steroid hormones can interact with receptors for drug targets, metabolism and transport. Genetic variation in receptors or in enzymatic function might contribute to sex differences in therapeutic efficacy and adverse drug reactions. Outcomes from clinical trials are often not reported by sex, and, if the data are available, they are not translated into clinical practice guidelines. This Review will provide a historical perspective for the current state of research related to hormone trials and provide concrete strategies that, if implemented, will improve the health of all people.
Collapse
Affiliation(s)
- Michelle M Mielke
- Division of Epidemiology, Department of Health Science Research, Mayo Clinic, Rochester, MN, USA.
- Mayo Clinic Specialized Center of Research Excellence, Mayo Clinic, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| | - Virginia M Miller
- Mayo Clinic Specialized Center of Research Excellence, Mayo Clinic, Rochester, MN, USA
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Women's Health Research Center, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
A Combined Network Pharmacology and Molecular Docking Approach to Investigate Candidate Active Components and Multitarget Mechanisms of Hemerocallis Flowers on Antidepressant Effect. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7127129. [PMID: 34306154 PMCID: PMC8266453 DOI: 10.1155/2021/7127129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
Objective The purpose of our research is to systematically explore the multiple mechanisms of Hemerocallis fulva Flowers (HF) on depressive disorder (DD). Methods The components of HF were searched from the literature. The targets of components were obtained from PharmMapper. After that, Cytoscape software was used to build a component-target network. The targets of DD were collected from DisGeNET, PharmGKB, TTD, and OMIM. Protein-protein interactions (PPIs) among the DD targets were executed to screen the key targets. Afterward, the GO and KEGG pathway enrichment analysis were performed by the KOBAS database. A compound-target-KEGG pathway network was built to analyze the key compounds and targets. Finally, the potential active substances and targets were validated by molecular docking. Results A total of 55 active compounds in HF, 646 compound-related targets, and 527 DD-related targets were identified from public databases. After treated with PPI, 219 key targets of DD were acquired. The gene enrichment analysis suggested that HF probably benefits DD patients by modulating pathways related to the nervous system, endocrine system, amino acid metabolism, and signal transduction. The network analysis showed the critical components and targets of HF on DD. Results of molecular docking increased the reliability of this study. Conclusions It predicted and verified the pharmacological and molecular mechanism of HF against DD from a holistic perspective, which will also lay a foundation for further experimental research and rational clinical application of DD.
Collapse
|
6
|
Wei X, Qi B, Ma R, Zhang Y, Liu N, Fang S, Zhu Y, Xie Y, Dai J, Zhu L. Quantitative Proteomics Revealed the Pharmacodynamic Network of Bugu Shengsui Decoction Promoting Osteoblast Proliferation. Front Endocrinol (Lausanne) 2021; 12:833474. [PMID: 35145485 PMCID: PMC8822948 DOI: 10.3389/fendo.2021.833474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/24/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND OBJECTIVE With high morbidity and disability, osteoporosis is a worldwide bone metabolism disease, regulated by complex pathological processes. Insufficient osteogenesis is greatly essential to osteoporosis. Traditional Chinese Medicine, a complex natural herbal medicine system, has increasingly attracted attention all over the world. Bugu Shengsui Decoction, a compound formula for osteoporosis, has significant clinical effects in the treatment of osteoporosis. Yet the detailed mechanisms are unclear. Thus, we investigated the effects and mechanism of Bugu Shengsui Decoction on osteoporotic rats and osteoblasts in vitro. METHODS In this study, we evaluated the effect of Bugu Shengsui Decoction in an animal model of orchiectomy. Multi-pharmacology indexes revealed that Bugu Shengsui Decoction obviously improved bone metabolism, bone mineral density, bone morphology, and biomechanics in the castrated rats. Then, serum pharmacology was employed to unveil that Bugu Shengsui Decoction promoted the proliferation and differentiation of osteoblasts. Moreover, quantitative proteomics combined with RNA interference assay was used to analyze and verify the pathway and key targets in pro-proliferation of MC3T3-E1 cells. RESULTS Bugu Shengsui Decoction obviously improved the worse parameters of bone metabolism, bone mineral density, bone morphology, and biomechanics in a castrated rat model. In vitro, Bugu Shengsui Decoction exerted proliferation- and differentiation-promoting effects of osteoblasts induced by serum starvation. Moreover, quantitative proteomics analysis combined with RNA interfere assay illustrated that Bugu Shengsui Decoction promoted osteogenesis via the PI3K-AKT pathway. CONCLUSION Summarily, our discoveries certify that Bugu Shengsui Decoction is an effective treatment for osteoporosis via PI3K-AKT. This study is not only a beneficial attempt to explore the detailed mechanism of Traditional Chinese formula but also will provide inspiration for the treatment strategy of osteoporosis.
Collapse
Affiliation(s)
- Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruyun Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yili Zhang
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Fang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanning Zhu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yanming Xie
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanming Xie, ; Jianye Dai, ; Liguo Zhu,
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, China
- *Correspondence: Yanming Xie, ; Jianye Dai, ; Liguo Zhu,
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanming Xie, ; Jianye Dai, ; Liguo Zhu,
| |
Collapse
|