1
|
Sánchez J, Alvarez L, García E. Real-world study: drug reduction in children with allergic rhinitis and asthma receiving immunotherapy. Immunotherapy 2023; 15:253-266. [PMID: 36789565 DOI: 10.2217/imt-2022-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Background: The reduction of pharmacological treatment after allergen immunotherapy (AIT) for house dust mites (HDMs) has been little studied in children. Objective: To evaluate the reduction of pharmacological treatment comparing children that receive HDM immunotherapy (AIT group) versus only pharmacotherapy. Methods: A historic cohort of children with rhinitis or asthma was assessed. The main outcome was the frequency of complete drug discontinuation. Results: 100% drug reduction was higher for rhinitis (4-year cumulative incidence: 30 vs 10.7%) and asthma (24.1 vs 10.5%) in the AIT group (n = 987) than in the pharmacotherapy group (n = 2012). Conclusion: Immunotherapy is associated with a significant reduction of pharmacotherapy in children. This is a marker of clinical control and could be associated with positive economic impact.
Collapse
Affiliation(s)
- Jorge Sánchez
- Group of Clinical & Experimental Allergy, University of Antioquia, Hospital "Alma Mater de Antioquia", Medellín, Carrera 51A #62-42, Colombia
| | - Leidy Alvarez
- Academic Group of Clinical Epidemiology (GRAEPIC), University of Antioquia, Medellín, Carrera 51A #62-42, Colombia
| | - Elizabeth García
- ORL Quirurgy Medical Unit "UNIMEQ ORL", Bogotá, Ak. 9 # 116-20, Colombia
| |
Collapse
|
2
|
Dorofeeva Y, Shilovskiy I, Tulaeva I, Focke‐Tejkl M, Flicker S, Kudlay D, Khaitov M, Karsonova A, Riabova K, Karaulov A, Khanferyan R, Pickl WF, Wekerle T, Valenta R. Past, present, and future of allergen immunotherapy vaccines. Allergy 2021; 76:131-149. [PMID: 32249442 PMCID: PMC7818275 DOI: 10.1111/all.14300] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/25/2020] [Accepted: 03/15/2020] [Indexed: 12/21/2022]
Abstract
Allergen-specific immunotherapy (AIT) is an allergen-specific form of treatment for patients suffering from immunoglobulin E (IgE)-associated allergy; the most common and important immunologically mediated hypersensitivity disease. AIT is based on the administration of the disease-causing allergen with the goal to induce a protective immunity consisting of allergen-specific blocking IgG antibodies and alterations of the cellular immune response so that the patient can tolerate allergen contact. Major advantages of AIT over all other existing treatments for allergy are that AIT induces a long-lasting protection and prevents the progression of disease to severe manifestations. AIT is cost effective because it uses the patient´s own immune system for protection and potentially can be used as a preventive treatment. However, broad application of AIT is limited by mainly technical issues such as the quality of allergen preparations and the risk of inducing side effects which results in extremely cumbersome treatment schedules reducing patient´s compliance. In this article we review progress in AIT made from its beginning and provide an overview of the state of the art, the needs for further development, and possible technical solutions available through molecular allergology. Finally, we consider visions for AIT development towards prophylactic application.
Collapse
Affiliation(s)
- Yulia Dorofeeva
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Igor Shilovskiy
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
| | - Inna Tulaeva
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Margarete Focke‐Tejkl
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Sabine Flicker
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Dmitriy Kudlay
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
| | - Musa Khaitov
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
| | - Antonina Karsonova
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Ksenja Riabova
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Alexander Karaulov
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Roman Khanferyan
- Department of Immunology and AllergyRussian People’s Friendship UniversityMoscowRussian Federation
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Thomas Wekerle
- Section of Transplantation ImmunologyDepartment of SurgeryMedical University of ViennaViennaAustria
| | - Rudolf Valenta
- Division of ImmunopathologyDepartment of Pathophysiology and Allergy ResearchCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- National Research Center, Institute of immunology, FMBA of RussiaMoscowRussian Federation
- Department of Clinical Immunology and AllergyLaboratory of ImmunopathologySechenov First Moscow State Medical UniversityMoscowRussian Federation
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW More than 30 years ago, the first molecular structures of allergens were elucidated and defined recombinant allergens became available. We review the state of the art regarding molecular AIT with the goal to understand why progress in this field has been slow, although there is huge potential for treatment and allergen-specific prevention. RECENT FINDINGS On the basis of allergen structures, several AIT strategies have been developed and were advanced into clinical evaluation. In clinical AIT trials, promising results were obtained with recombinant and synthetic allergen derivatives inducing allergen-specific IgG antibodies, which interfered with allergen recognition by IgE whereas clinical efficacy could not yet be demonstrated for approaches targeting only allergen-specific T-cell responses. Available data suggest that molecular AIT strategies have many advantages over allergen extract-based AIT. SUMMARY Clinical studies indicate that recombinant allergen-based AIT vaccines, which are superior to existing allergen extract-based AIT can be developed for respiratory, food and venom allergy. Allergen-specific preventive strategies based on recombinant allergen-based vaccine approaches and induction of T-cell tolerance are on the horizon and hold promise that allergy can be prevented. However, progress is limited by lack of resources needed for clinical studies, which are necessary for the development of these innovative strategies.
Collapse
|
4
|
Rodríguez-Domínguez A, Berings M, Rohrbach A, Huang HJ, Curin M, Gevaert P, Matricardi PM, Valenta R, Vrtala S. Molecular profiling of allergen-specific antibody responses may enhance success of specific immunotherapy. J Allergy Clin Immunol 2020; 146:1097-1108. [PMID: 32298697 DOI: 10.1016/j.jaci.2020.03.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/28/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND House dust mites (HDMs) are among the most important allergen sources containing many different allergenic molecules. Analysis of patients from a double-blind, placebo-controlled allergen-specific immunotherapy (AIT) study indicated that patients may benefit from AIT to different extents depending on their molecular sensitization profiles. OBJECTIVE Our aim was to investigate in a real-life setting whether stratification of patients with HDM allergy according to molecular analysis may enhance AIT success. METHODS Serum and nasal secretion samples from patients with HDM allergy (n = 24) (at baseline, 7, 15, 33, and 52 weeks) who had received 1 year of treatment with a well-defined subcutaneous AIT form (Alutard SQ 510) were tested for IgE and IgG reactivity to 15 microarrayed HDM allergen molecules with ImmunoCAP Immuno-solid-phase Allergen Chip technology. IgG subclass levels to allergens and peptides were determined by ELISA, and IgG blocking was assessed by basophil activation. In vitro parameters were related to reduction of symptoms determined by combined symptom medication score and visual analog scale score. RESULTS Alutard SQ 510 induced protective IgG mainly against Dermatophagoides pteronyssinus (Der p) 1 and Der p 2 and to a lesser extent to Der p 23, but not to the other important allergens such as Der p 5, Der p 7, and Der p 21, showing better clinical efficacy in patients sensitized only to Der p 1 and/or Der p 2 as compared with patients having additional IgE specificities. CONCLUSION Stratification of patients with HDM allergy according to molecular sensitization profiles and molecular monitoring of AIT-induced IgG responses may enhance the success of AIT.
Collapse
Affiliation(s)
- Azahara Rodríguez-Domínguez
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna and Krems, Austria
| | - Margot Berings
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - Alexander Rohrbach
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-University Medicine Berlin, Berlin, Germany
| | - Huey-Jy Huang
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna and Krems, Austria
| | - Mirela Curin
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna and Krems, Austria
| | - Philippe Gevaert
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - Paolo M Matricardi
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-University Medicine Berlin, Berlin, Germany
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna and Krems, Austria; NRC Institute of Immunology, Federal Biomedical Agency of Russia, Moscow; Department of Clinical Immunology and Allergy, Sechenov First State Medical University, Moscow, Russia; Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Susanne Vrtala
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna and Krems, Austria.
| |
Collapse
|
5
|
Two years of treatment with the recombinant grass pollen allergy vaccine BM32 induces a continuously increasing allergen-specific IgG 4 response. EBioMedicine 2019; 50:421-432. [PMID: 31786130 PMCID: PMC6921329 DOI: 10.1016/j.ebiom.2019.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 02/04/2023] Open
Abstract
Background BM32, a grass pollen allergy vaccine containing four recombinant fusion proteins consisting of hepatitis B-derived PreS and hypoallergenic peptides from the major timothy grass pollen allergens adsorbed on aluminium hydroxide has been shown to be safe and to improve clinical symptoms of grass pollen allergy upon allergen-specific immunotherapy (AIT). We have investigated the immune responses in patients from a two years double-blind, placebo-controlled AIT field trial with BM32. Methods Blood samples from patients treated with BM32 (n = 27) or placebo (Aluminium hydroxide) (n = 13) were obtained to study the effects of vaccination and natural allergen exposure on allergen-specific antibody, T cell and cytokine responses. Allergen-specific IgE, IgG, IgG1 and IgG4 levels were determined by ImmunoCAP and ELISA, respectively. Allergen-specific lymphocyte proliferation by 3H thymidine incorporation and multiple cytokine responses with a human 17-plex cytokine assay were studied in cultured peripheral blood mononuclear cells (PBMCs). Findings Two years AIT comprising two courses of 3 pre-seasonal injections of BM32 and a single booster after the first pollen season induced a continuously increasing (year 2 > year 1) allergen-specific IgG4 response without boosting allergen-specific IgE responses. Specific IgG4 responses were accompanied by low stimulation of allergen-specific PBMC responses. Increases of allergen-specific pro-inflammatory cytokine responses were absent. The rise of allergen-specific IgE induced by seasonal grass pollen exposure was partially blunted in BM32-treated patients. Interpretation AIT with BM32 is characterised by the induction of a non-inflammatory, continuously increasing allergen-specific IgG4 response (year 2 > year1) which may explain that clinical efficacy was higher in year 2 than in year 1. The good safety profile of BM32 may be explained by lack of IgE reactivity and low stimulation of allergen-specific T cell and cytokine responses. Fundings Grants F4605, F4613 and DK 1248-B13 of the Austrian Science Fund (FWF).
Collapse
|