1
|
Rueda Beltz C, Muñoz Vargas BA, Davila Neri I, Diaz Quijano DM. Neuroprotective effect of hormone replacement therapy: a review of the literature. Climacteric 2024; 27:351-356. [PMID: 38863238 DOI: 10.1080/13697137.2024.2354759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/31/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE Menopause is a physiological period characterized by the cessation of ovarian activity. Sequential changes during this transition affect multiple systems, including the brain. Sixty percent of women experience cognitive impairment. The objective of this review is to show the neuroprotective effect of hormone replacement therapy (HRT) through the different scales and whether there is a benefit of this in women. METHOD A search was conducted in six databases. Eligibility criteria included women within 10 years of menopause, receiving HRT controlled with placebo, studies lasting more than 6 months and women without a history of chronic underlying pathology. RESULTS A total of nine randomized controlled trials met the inclusion criteria. Regarding memory, two studies reported better performance of HRT with a significant odds ratio (OR) of 0.67; regarding attention, one study reported potential improvement in women receiving HRT with a significant OR of 0.87; and neuroimaging assessment found an increase in ventricular volume compared to placebo over a 3-year period. CONCLUSIONS The early initiation of menopausal HRT in healthy women appears to yield a positive effect on certain cognitive aspects, such as attention and cortical volume in the central nervous system. These findings should be confirmed through future prospective studies.
Collapse
Affiliation(s)
- Camilo Rueda Beltz
- Department of Gynecological Endocrinology, University of La Sabana, Bogotá, Colombia
| | | | | | | |
Collapse
|
2
|
Barth C, Galea LA, Jacobs EG, Lee BH, Westlye LT, de Lange AMG. Menopausal hormone therapy and the female brain: leveraging neuroimaging and prescription registry data from the UK Biobank cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.08.24305450. [PMID: 38645009 PMCID: PMC11030497 DOI: 10.1101/2024.04.08.24305450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background and Objectives Menopausal hormone therapy (MHT) is generally thought to be neuroprotective, yet results have been inconsistent. Here, we present a comprehensive study of MHT use and brain characteristics in middle- to older aged females from the UK Biobank, assessing detailed MHT data, APOE ε4 genotype, and tissue-specific gray (GM) and white matter (WM) brain age gap (BAG), as well as hippocampal and white matter hyperintensity (WMH) volumes. Methods A total of 19,846 females with magnetic resonance imaging data were included (current-users = 1,153, 60.1 ± 6.8 years; past-users = 6,681, 67.5 ± 6.2 years; never-users = 12,012, mean age 61.6 ± 7.1 years). For a sub-sample (n = 538), MHT prescription data was extracted from primary care records. Brain measures were derived from T1-, T2- and diffusion-weighted images. We fitted regression models to test for associations between the brain measures and MHT variables including user status, age at initiation, dosage and duration, formulation, route of administration, and type (i.e., bioidentical vs synthetic), as well as active ingredient (e.g., estradiol hemihydrate). We further tested for differences in brain measures among MHT users with and without a history of hysterectomy ± bilateral oophorectomy and examined associations by APOE ε4 status. Results We found significantly higher GM and WM BAG (i.e., older brain age relative to chronological age) as well as smaller left and right hippocampus volumes in current MHT users, not past users, compared to never-users. Effects were modest, with the largest effect size indicating a group difference of 0.77 years (~9 months) for GM BAG. Among MHT users, we found no significant associations between age at MHT initiation and brain measures. Longer duration of use and older age at last use post menopause was associated with higher GM and WM BAG, larger WMH volume, and smaller left and right hippocampal volumes. MHT users with a history of hysterectomy ± bilateral oophorectomy showed lower GM BAG relative to MHT users without such history. Although we found smaller hippocampus volumes in carriers of two APOE ε4 alleles compared to non-carriers, we found no interactions with MHT variables. In the sub-sample with prescription data, we found no significant associations between detailed MHT variables and brain measures after adjusting for multiple comparisons. Discussion Our results indicate that population-level associations between MHT use, and female brain health might vary depending on duration of use and past surgical history. Future research is crucial to establish causality, dissect interactions between menopause-related neurological changes and MHT use, and determine individual-level implications to advance precision medicine in female health care.
Collapse
Affiliation(s)
- Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Liisa A.M. Galea
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Emily G. Jacobs
- Psychological and Brain Sciences, University of California Santa Barbara, CA, USA
| | - Bonnie H. Lee
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Lars T. Westlye
- Department of Psychology, University of Oslo, Oslo, Norway
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ann-Marie G. de Lange
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Na Z, Wei W, Xu Y, Li D, Yin B, Gu W. Role of menopausal hormone therapy in the prevention of postmenopausal osteoporosis. Open Life Sci 2023; 18:20220759. [PMID: 38152576 PMCID: PMC10752002 DOI: 10.1515/biol-2022-0759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 12/29/2023] Open
Abstract
The use of menopausal hormone therapy (MHT) has declined due to concerns about its potential side effects. However, its pivotal role in managing postmenopausal osteoporosis is gaining increased recognition. In this article, we explore how MHT assists postmenopausal women in maintaining bone health and preventing fractures. Recent research indicates that MHT significantly reduces the risk of fractures in women. This benefit is evident regardless of a woman's bone mineral density or their use of progestogens. However, there is limited evidence suggesting that the skeletal benefits continue once the treatment is discontinued. Possible complications of MHT include heart attacks, clots, strokes, dementia, and breast cancer. The most suitable candidates for MHT are women who have recently entered menopause, are experiencing menopausal symptoms, and are below 60 years of age with a minimal baseline risk of adverse events. The treatment is available to those who meet these criteria. For women undergoing premature menopause, MHT can be considered as a means to protect bone health, especially if initiated before menopause or if accelerated bone loss is documented soon after menopause. Such decisions should be made after evaluating individual risk factors and benefits.
Collapse
Affiliation(s)
- Zhao Na
- Department of Gynecology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Wei Wei
- Department of Orthopaedics, Changshu Hospital Affiliated to Soochow University, First People’s Hospital of Changshu City, Changshu, 215500, China
| | - Yingfang Xu
- Department of Gynecology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Dong Li
- Department of Obstetrics and Gynecology, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No. 7 People’s Hospital, Changzhou, 213000, China
| | - Beili Yin
- Department of Gynecology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Weiqun Gu
- Department of Gynecology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| |
Collapse
|
4
|
Branigan GL, Torrandell-Haro G, Chen S, Shang Y, Perez-Miller S, Mao Z, Padilla-Rodriguez M, Cortes-Flores H, Vitali F, Brinton RD. Breast cancer therapies reduce risk of Alzheimer's disease and promote estrogenic pathways and action in brain. iScience 2023; 26:108316. [PMID: 38026173 PMCID: PMC10663748 DOI: 10.1016/j.isci.2023.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Worldwide, an ever-increasing number of women are prescribed estrogen-modulating therapies (EMTs) for the treatment of breast cancer. In parallel, aging of the global population of women will contribute to risk of both breast cancer and Alzheimer's disease. To address the impact of anti-estrogen therapies on risk of Alzheimer's and neural function, we conducted medical informatic and molecular pharmacology analyses to determine the impact of EMTs on risk of Alzheimer's followed by determination of EMT estrogenic mechanisms of action in neurons. Collectively, these data provide both clinical and mechanistic data indicating that select EMTs exert estrogenic agonist action in neural tissue that are associated with reduced risk of Alzheimer's disease while simultaneously acting as effective estrogen receptor antagonists in breast.
Collapse
Affiliation(s)
- Gregory L. Branigan
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Department of Pharmacology, University of Arizona College of Medicine; Tucson AZ, USA
- Medical Scientist Training Program, University of Arizona College of Medicine; Tucson AZ, USA
| | - Georgina Torrandell-Haro
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Department of Pharmacology, University of Arizona College of Medicine; Tucson AZ, USA
| | - Shuhua Chen
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
| | - Yuan Shang
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
| | | | - Zisu Mao
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
| | | | | | - Francesca Vitali
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Center of Bioinformatics and Biostatistics, University of Arizona College of Medicine; Tucson AZ, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Department of Pharmacology, University of Arizona College of Medicine; Tucson AZ, USA
- Department of Neurology, University of Arizona College of Medicine; Tucson AZ, USA
| |
Collapse
|
5
|
Unda SR, Marciano S, Milner TA, Marongiu R. State-of-the-art review of the clinical research on menopause and hormone replacement therapy association with Parkinson's disease: What meta-analysis studies cannot tell us. Front Aging Neurosci 2022; 14:971007. [PMID: 36337706 PMCID: PMC9631815 DOI: 10.3389/fnagi.2022.971007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/29/2022] [Indexed: 11/27/2023] Open
Abstract
The menopause is a midlife endocrinological process that greatly affects women's central nervous system functions. Over the last 2 decades numerous clinical studies have addressed the influence of ovarian hormone decline on neurological disorders like Parkinson's disease and Alzheimer's disease. However, the findings in support of a role for age at menopause, type of menopause and hormone replacement therapy on Parkinson's disease onset and its core features show inconsistencies due to the heterogeneity in the study design. Here, we provide a unified overview of the clinical literature on the influence of menopause and ovarian hormones on Parkinson's disease. We highlight the possible sources of conflicting evidence and gather considerations for future observational clinical studies that aim to explore the neurological impact of menopause-related features in Parkinson's disease.
Collapse
Affiliation(s)
- Santiago R. Unda
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, United States
| | - Sabina Marciano
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, United States
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Roberta Marongiu
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, United States
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
6
|
Abstract
Every woman who lives past midlife will experience menopause, which, by definition, is complete cessation of ovarian function. This process might occur spontaneously (natural menopause) or be iatrogenic (secondary menopause), and can be further classified as 'early' if it occurs before the age of 45 years and 'premature' if it occurs before the age of 40 years. Globally, the mean age of natural menopause is 48.8 years, with remarkably little geographic variation. A woman's age at menopause influences health outcomes in later life. Early menopause is associated with a reduced risk of breast cancer, but increased risks of premature osteoporosis, cardiovascular disease and premature death. The cardinal symptoms of menopause, and adverse health sequelae, are due to loss of ovarian oestrogen production. Consequently, menopausal hormone therapy (MHT) that includes oestrogen or an oestrogenic compound ameliorates menopausal symptoms, while preventing menopause-associated bone loss and cardiometabolic changes. Importantly, comprehensive care of postmenopausal women involves lifestyle optimization (attention to nutrition and physical activity, reducing alcohol consumption and not smoking) and treating other established chronic disease risk factors. This Review offers a commentary specifically on the contemporary use of MHT and novel pharmaceutical alternatives to manage menopausal symptoms.
Collapse
Affiliation(s)
- Susan R Davis
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
- Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, VIC, Australia.
| | - Rodney J Baber
- Department of Obstetrics and Gynaecology, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Jett S, Schelbaum E, Jang G, Boneu Yepez C, Dyke JP, Pahlajani S, Diaz Brinton R, Mosconi L. Ovarian steroid hormones: A long overlooked but critical contributor to brain aging and Alzheimer's disease. Front Aging Neurosci 2022; 14:948219. [PMID: 35928995 PMCID: PMC9344010 DOI: 10.3389/fnagi.2022.948219] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/28/2022] [Indexed: 01/19/2023] Open
Abstract
Ovarian hormones, particularly 17β-estradiol, are involved in numerous neurophysiological and neurochemical processes, including those subserving cognitive function. Estradiol plays a key role in the neurobiology of aging, in part due to extensive interconnectivity of the neural and endocrine system. This aspect of aging is fundamental for women's brains as all women experience a drop in circulating estradiol levels in midlife, after menopause. Given the importance of estradiol for brain function, it is not surprising that up to 80% of peri-menopausal and post-menopausal women report neurological symptoms including changes in thermoregulation (vasomotor symptoms), mood, sleep, and cognitive performance. Preclinical evidence for neuroprotective effects of 17β-estradiol also indicate associations between menopause, cognitive aging, and Alzheimer's disease (AD), the most common cause of dementia affecting nearly twice more women than men. Brain imaging studies demonstrated that middle-aged women exhibit increased indicators of AD endophenotype as compared to men of the same age, with onset in perimenopause. Herein, we take a translational approach to illustrate the contribution of ovarian hormones in maintaining cognition in women, with evidence implicating menopause-related declines in 17β-estradiol in cognitive aging and AD risk. We will review research focused on the role of endogenous and exogenous estrogen exposure as a key underlying mechanism to neuropathological aging in women, with a focus on whether brain structure, function and neurochemistry respond to hormone treatment. While still in development, this research area offers a new sex-based perspective on brain aging and risk of AD, while also highlighting an urgent need for better integration between neurology, psychiatry, and women's health practices.
Collapse
Affiliation(s)
- Steven Jett
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Eva Schelbaum
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Grace Jang
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Camila Boneu Yepez
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Jonathan P. Dyke
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Roberta Diaz Brinton
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
8
|
Jett S, Malviya N, Schelbaum E, Jang G, Jahan E, Clancy K, Hristov H, Pahlajani S, Niotis K, Loeb-Zeitlin S, Havryliuk Y, Isaacson R, Brinton RD, Mosconi L. Endogenous and Exogenous Estrogen Exposures: How Women's Reproductive Health Can Drive Brain Aging and Inform Alzheimer's Prevention. Front Aging Neurosci 2022; 14:831807. [PMID: 35356299 PMCID: PMC8959926 DOI: 10.3389/fnagi.2022.831807] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/07/2022] [Indexed: 01/14/2023] Open
Abstract
After advanced age, female sex is the major risk factor for late-onset Alzheimer's disease (AD), the most common cause of dementia affecting over 24 million people worldwide. The prevalence of AD is higher in women than in men, with postmenopausal women accounting for over 60% of all those affected. While most research has focused on gender-combined risk, emerging data indicate sex and gender differences in AD pathophysiology, onset, and progression, which may help account for the higher prevalence in women. Notably, AD-related brain changes develop during a 10-20 year prodromal phase originating in midlife, thus proximate with the hormonal transitions of endocrine aging characteristic of the menopause transition in women. Preclinical evidence for neuroprotective effects of gonadal sex steroid hormones, especially 17β-estradiol, strongly argue for associations between female fertility, reproductive history, and AD risk. The level of gonadal hormones to which the female brain is exposed changes considerably across the lifespan, with relevance to AD risk. However, the neurobiological consequences of hormonal fluctuations, as well as that of hormone therapies, are yet to be fully understood. Epidemiological studies have yielded contrasting results of protective, deleterious and null effects of estrogen exposure on dementia risk. In contrast, brain imaging studies provide encouraging evidence for positive associations between greater cumulative lifetime estrogen exposure and lower AD risk in women, whereas estrogen deprivation is associated with negative consequences on brain structure, function, and biochemistry. Herein, we review the existing literature and evaluate the strength of observed associations between female-specific reproductive health factors and AD risk in women, with a focus on the role of endogenous and exogenous estrogen exposures as a key underlying mechanism. Chief among these variables are reproductive lifespan, menopause status, type of menopause (spontaneous vs. induced), number of pregnancies, and exposure to hormonal therapy, including hormonal contraceptives, hormonal therapy for menopause, and anti-estrogen treatment. As aging is the greatest risk factor for AD followed by female sex, understanding sex-specific biological pathways through which reproductive history modulates brain aging is crucial to inform preventative and therapeutic strategies for AD.
Collapse
Affiliation(s)
- Steven Jett
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Niharika Malviya
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Eva Schelbaum
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Grace Jang
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Eva Jahan
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Katherine Clancy
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Hollie Hristov
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Kellyann Niotis
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Susan Loeb-Zeitlin
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, United States
| | - Yelena Havryliuk
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, United States
| | - Richard Isaacson
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Roberta Diaz Brinton
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
9
|
Kim YJ, Soto M, Branigan GL, Rodgers K, Brinton RD. Association between menopausal hormone therapy and risk of neurodegenerative diseases: Implications for precision hormone therapy. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12174. [PMID: 34027024 PMCID: PMC8118114 DOI: 10.1002/trc2.12174] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The impact of menopausal hormone therapy (HT) on age-associated Alzheimer's and neurodegenerative diseases (NDDs) remains unresolved. To determine the effect of HT, formulation, type, and duration on risk of NDDs, a retrospective analysis was performed using a 10-year Humana claims dataset. METHODS Study population included women aged 45 years or older with or without claim records of HT medications. Patients diagnosed with NDDs including Alzheimer's disease (AD), Parkinson's disease (PD), dementia, multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS) were identified. Relative risk (RR) ratios and 95% confidence intervals (CI) for combined NDDs, or AD, PD, dementia, MS, and ALS were determined. Cumulative hazard ratios were determined to investigate the association between HT and NDDs at different age groups. RESULTS In 379,352 women with or without claim records of HT, use of HT was associated with significantly reduced risk for combined NDDs (RR 0.42, 95% CI 0.40-0.43, P < 0.001). Average follow-up time was 5.1 [2.3] years. Formulations containing natural steroids 17β-estradiol and/or progesterone were associated with greater reduction in NDD risk. Oral- HT users showed significantly reduced RRs (0.42, 0.41-0.44, P < 0.001) for combined NDDs compared to non-HT users. The RRs for transdermal-HT users were significantly decreased for all-cause dementia (0.73, 0.60-0.88, P = 0.001) and MS (0.55, 0.36-0.84, P = 0.005). Greatest reduction in risk of NDD, AD, and dementia emerged in patients aged 65 years or older. Further, the protective effect of long-term therapy (>1 year) on combined NDDs, AD, PD, and dementia was greater compared to short-term therapy (≤1 year). DISCUSSION HT was associated with reduced risk of all NDDs including AD and dementia, with greater duration of therapy and natural steroid formulations associated with greater efficacy. These findings advance precision HT to prevent NDDs including AD.
Collapse
Affiliation(s)
- Yu Jin Kim
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
| | - Maira Soto
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
- College of Medicine, Department of PharmacologyUniversity of ArizonaTucsonArizonaUSA
| | - Gregory L Branigan
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
- College of Medicine, Department of PharmacologyUniversity of ArizonaTucsonArizonaUSA
- College of MedicineMD‐PhD Training ProgramUniversity of ArizonaTucsonArizonaUSA
| | - Kathleen Rodgers
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
- College of Medicine, Department of PharmacologyUniversity of ArizonaTucsonArizonaUSA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
- College of Medicine, Department of PharmacologyUniversity of ArizonaTucsonArizonaUSA
- College of Medicine, Department of NeurologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|