1
|
Huang G, Yin W, Zhao X, Xu M, Wang P, Li R, Zhou L, Tang W, Jiao J. Osteoking inhibits apoptosis of BMSCs in osteoporotic rats via PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:118961. [PMID: 39653105 DOI: 10.1016/j.jep.2024.118961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 01/04/2025]
Abstract
In China, Osteoking is a commonly used treatment and preventive measure for osteoporosis. The pathophysiology of osteoporosis is closely associated with apoptosis; however, it remains unclear whether the role of Osteoking in promoting bone formation is linked to apoptosis. AIM OF STUDY This study aims to investigate whether Osteoking inhibits apoptosis of BMSCs in osteoporotic rats via the PI3K/AKT signaling pathway and to conduct a detailed exploration of this mechanism. The goal is to provide a theoretical basis for the clinical application of Osteoking in osteoporosis treatment. METHODS A rat model of osteoporosis was established through bilateral ovariectomy (OVX), followed by treatment with Osteoking. After ten weeks of therapy, BMD was evaluated. The biomechanics of the left tibia were measured, the left femur was sequenced, and the right tibia was stained using histomorphometric and Masson's staining methods. Peripheral serum was collected to measure bone-related markers, including E2, PINP, and CTX. RNA-Seq results were verified using the remaining bone samples. Comparative analysis demonstrated the efficacy of Osteoking in treating osteoporosis and provided preliminary insights into the underlying mechanisms. Primary BMSCs were cultured using bone marrow apposition. CCK8 assays were conducted to screen the intervention conditions of Osteoking and LY294002. Various concentrations of Osteoking-containing serum and LY294002 were tested separately to determine the optimal intervention concentration for drug delivery. The impact of Osteoking on lipid formation was also evaluated. Following treatment of BMSCs from OVX rats with Sham serum, OVX serum, OVX + LY294002 serum, and Osteoking + LY294002 serum, the expression of PI3K/AKT/mTOR, osteogenesis-related regulatory factors, and apoptosis-related regulatory factors was assessed. Flow cytometry was employed to evaluate apoptosis in BMSCs. RESULTS Osteoking significantly improved whole-body BMD and bone biomechanical indices in OVX rats. It also significantly elevated the serum levels of E2 and PINP while reducing the level of CTX, which significantly improved bone microstructure and promoted new bone formation. RNA-seq analysis indicated that the therapeutic mechanism involved the PI3K/AKT signaling pathway. Osteoking increased the expression of RUNX2 and decreased the expression of PPAR-γ, a marker of lipogenesis, in OVX rats. Extraction of BMSCs for subsequent studies revealed a significant reduction in proliferation and osteogenic differentiation, along with an increase in lipogenic differentiation, in the OVX group. Osteoking treatment inhibited the expression of PPAR-γ and increased the expression of RUNX2 in BMSCs. Additionally, Osteoking reversed the LY294002-mediated inhibition of PI3K/AKT/mTOR signaling pathway activation, increased the expression of the apoptosis-protecting protein Bcl2, and decreased the expression of apoptosis-associated proteins Caspase3 and Bax. CONCLUSION Osteoking markedly improved bone microstructure, biomechanics, and bone density in OVX rats. Osteoking-containing serum reversed the imbalance in lineage differentiation in OVX rats, characterized by reduced osteogenic differentiation and increased lipid differentiation of BMSCs. Furthermore, Osteoking-containing serum significantly increased BMSC proliferation and prevented apoptosis in OVX rats through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Guijiang Huang
- Department of Science and Education, The First Affiliated Hospital of Kunming Medical University, Kunming, 650600, China; Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650600, China
| | - Wenjie Yin
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650600, China
| | - Xin Zhao
- Department of Science and Education, The First Affiliated Hospital of Kunming Medical University, Kunming, 650600, China
| | - Muli Xu
- Kunming Medical University, Kunming, 650600, China
| | - Peijin Wang
- Kunming Medical University, Kunming, 650600, China
| | - Rong Li
- Kunming Medical University, Kunming, 650600, China
| | - Li Zhou
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650600, China
| | - Wei Tang
- Department of Science and Education, The First Affiliated Hospital of Kunming Medical University, Kunming, 650600, China.
| | - Jianlin Jiao
- Kunming Medical University, Kunming, 650600, China.
| |
Collapse
|
2
|
Chen Q, Liu D, Li X, Li F, Guo S, Wang S, Yuan W, Chen P, Li P, Li F, Zhao C, Min W, Hu Z. High prevalence of low bone mineral density in middle-aged adults in Shanghai: a cross-sectional study. BMC Musculoskelet Disord 2024; 25:1097. [PMID: 39736676 DOI: 10.1186/s12891-024-08239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025] Open
Abstract
PURPOSE To assess bone mineral density (BMD) in middle-aged individuals in Shanghai, in order to improve awareness of osteopenia and osteoporosis screening. METHODS The clinical data of 1107 permanent residents of Shanghai aged 40-60 years were collected using a random cluster sampling method. Osteoporosis questionnaire survey and BMD test were conducted. Mann-Whitney U and Chi-square test were used to compare sex, age and body mass index at different stages of bone mass, and Pearson test was used to conduct correlation analysis. Logistic regression was used to analyze the influencing factors. RESULTS The detection rates of osteopenia and osteoporosis were 59% and 12.5% respectively, and bone mineral density was correlated with sex, age, and body mass index (P < 0.05). CONCLUSION The incidence of low bone mass is high in the assessed population, screening for low bone mass should be actively carried out to improve public awareness. It is also good for public health management. REGISTERED CLINICAL TRIAL The trial was approved by Chinese Clinical Trial Registry on February 11, 2021(ChiCTR2100043369).
Collapse
Affiliation(s)
- Qian Chen
- Longhua Clinical Medical College of Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Dan Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Xuefei Li
- Longhua Clinical Medical College of Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Fangfang Li
- Longhua Clinical Medical College of Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Suxia Guo
- Longhua Clinical Medical College of Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Shiyun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Weina Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Pinghua Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Pan Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Fangyu Li
- Longhua Clinical Medical College of Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China
| | - Changwei Zhao
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, PR China
| | - Wen Min
- Nanjing University of Traditional Chinese Medicine, Nanjing, 210023, PR China
| | - Zhijun Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, PR China.
| |
Collapse
|
3
|
Shu H, Huang Y, Zhang W, Ling L, Hua Y, Xiong Z. An integrated study of hormone-related sarcopenia for modeling and comparative transcriptome in rats. Front Endocrinol (Lausanne) 2023; 14:1073587. [PMID: 36817606 PMCID: PMC9929355 DOI: 10.3389/fendo.2023.1073587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Sarcopenia is a senile disease with high morbidity, serious complications and limited clinical treatments. Menopause increases the risk of sarcopenia in females, while the exact pathogenesis remains unclear. To systematically investigate the development of hormone-related sarcopenia, we established a model of sarcopenia by ovariectomy and recorded successive characteristic changes. Furthermore, we performed the transcriptome RNA sequencing and bioinformatics analysis on this model to explore the underlying mechanism. In our study, we identified an integrated model combining obesity, osteoporosis and sarcopenia. Functional enrichment analyses showed that most of the significantly enriched pathways were down-regulated and closely correlated with endocrine and metabolism, muscle dysfunction, cognitive impairment and multiple important signaling pathways. We finally selected eight candidate genes to verify their expression levels. These findings confirmed the importance of estrogen in the maintenance of skeletal muscle function and homeostasis, and provided potential targets for further study on hormone-related sarcopenia.
Collapse
Affiliation(s)
- Han Shu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yubing Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenqian Zhang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Ling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengai Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zhengai Xiong,
| |
Collapse
|
4
|
Mechanisms of Estrogen Influence on Skeletal Muscle: Mass, Regeneration, and Mitochondrial Function. Sports Med 2022; 52:2853-2869. [PMID: 35907119 DOI: 10.1007/s40279-022-01733-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 10/16/2022]
Abstract
Human menopause is widely associated with impaired skeletal muscle quality and significant metabolic dysfunction. These observations pose significant challenges to the quality of life and mobility of the aging population, and are of relevance when considering the significantly greater losses in muscle mass and force-generating capacity of muscle from post-menopausal females relative to age-matched males. In this regard, the influence of estrogen on skeletal muscle has become evident across human, animal, and cell-based studies. Beneficial effects of estrogen have become apparent in mitigation of muscle injury and enhanced post-damage repair via various mechanisms, including prophylactic effects on muscle satellite cell number and function, as well as membrane stability and potential antioxidant influences following injury, exercise, and/or mitochondrial stress. In addition to estrogen replacement in otherwise deficient states, exercise has been found to serve as a means of augmenting and/or mimicking the effects of estrogen on skeletal muscle function in recent literature. Detailed mechanisms behind the estrogenic effect on muscle mass, strength, as well as the injury response are beginning to be elucidated and point to estrogen-mediated molecular cross talk amongst signalling pathways, such as apoptotic signaling, contractile protein modifications, including myosin regulatory light chain phosphorylation, and the maintenance of muscle satellite cells. This review discusses current understandings and highlights new insights regarding the role of estrogen in skeletal muscle, with particular regard to muscle mass, mitochondrial function, the response to muscle damage, and the potential implications for human physiology and mobility.
Collapse
|
5
|
Yang K, Cao F, Xue Y, Tao L, Zhu Y. Three Classes of Antioxidant Defense Systems and the Development of Postmenopausal Osteoporosis. Front Physiol 2022; 13:840293. [PMID: 35309045 PMCID: PMC8927967 DOI: 10.3389/fphys.2022.840293] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 01/04/2023] Open
Abstract
Osteoporosis is a common bone imbalance disease that threatens the health of postmenopausal women. Estrogen deficiency accelerates the aging of women. Oxidative stress damage is regarded as the main pathogenesis of postmenopausal osteoporosis. The accumulation of reactive oxygen species in the bone microenvironment plays a role in osteoblast and osteoclast apoptosis. Improving the oxidative state is essential for the prevention and treatment of postmenopausal osteoporosis. There are three classes of antioxidant defense systems in the body to eliminate free radicals and peroxides including antioxidant substances, antioxidant enzymes, and repair enzymes. In our review, we demonstrated the mechanism of antioxidants and their effect on bone metabolism in detail. We concluded that glutathione/oxidized glutathione (GSH/GSSG) conversion involved the PI3K/Akt-Nrf2/HO-1 signaling pathway and that the antioxidant enzyme-mediated mitochondrial apoptosis pathway of osteoblasts was necessary for the development of postmenopausal osteoporosis. Since the current therapeutic effects of targeting bone cells are not significant, improving the systemic peroxidation state and then regulating bone homeostasis will be a new method for the treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Fangming Cao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Yuchuan Xue
- The First Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lin Tao,
| | - Yue Zhu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- Yue Zhu,
| |
Collapse
|
6
|
Affiliation(s)
- T J de Villiers
- Department of Gynecology, Stellenbosch University and Mediclinic Panorama, Cape Town, South Africa
| | - S R Goldstein
- Department of Obstetrics and Gynecology, New York University, Grossman School of Medicine, New York, USA
| |
Collapse
|