1
|
Sturnieks DL, Chan LL, Cerda MTE, Arbona CH, Pinilla BH, Martinez PS, Seng NW, Smith N, Menant JC, Lord SR. Cognitive functioning and falls in older people: A systematic review and meta-analysis. Arch Gerontol Geriatr 2025; 128:105638. [PMID: 39340961 DOI: 10.1016/j.archger.2024.105638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE To identify which cognitive functions and specific neuropsychological assessments predict falls in older people living in the community. METHODS Five electronic databases were searched until 30/08/2022 for studies assessing the association between specific cognitive functions and faller status (prospective and retrospective), in community-dwelling older people. Risk of bias was assessed with the Newcastle-Ottawa Scale. Meta-analyses synthesised the evidence regarding the associations between different neurocognitive subdomains and faller status. RESULTS Thirty-eight studies (20 retrospective, 18 prospective) involving 37,101 participants were included. All but one study was rated high or medium quality. Meta-analyses were performed with data from 28 studies across 11 neurocognitive subdomains and four specific neuropsychological tests. Poor cognitive flexibility, processing speed, free recall, working memory and sustained attention were significantly associated with faller status, but poor verbal fluency, visual perception, recognition memory, visuo-constructional reasoning and language were not. The Trail Making Test B was found to have the strongest association with faller status. CONCLUSION Poor performance in neurocognitive subdomains spanning processing speed, attention, executive function and aspects of memory are associated with falls in older people, albeit with small effect sizes. The Trail Making Test, a free-to-use, simple assessment of processing speed and mental flexibility, is recommended as the cognitive screening test for fall risk in older people.
Collapse
Affiliation(s)
- Daina L Sturnieks
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia; School of Biomedical Sciences - Faculty of Medicine and Health, The University of New South Wales, Sydney, NSW, Australia.
| | - Lloyd Ly Chan
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia; School of Population Health - Faculty of Medicine and Health, The University of New South Wales, Sydney, NSW, Australia
| | - Maria Teresa Espinoza Cerda
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia; Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Carmen Herrera Arbona
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia; Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Beatriz Herrero Pinilla
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia; Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Paula Santiago Martinez
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia; Hospital Universitario de Getafe, Getafe, Madrid, Spain
| | - Nigel Wei Seng
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia
| | - Natassia Smith
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia
| | - Jasmine C Menant
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia; School of Population Health - Faculty of Medicine and Health, The University of New South Wales, Sydney, NSW, Australia
| | - Stephen R Lord
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Randwick, NSW, Australia; School of Population Health - Faculty of Medicine and Health, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
2
|
Leroy V, Martinet V, Nunkessore O, Dentel C, Durand H, Mockler D, Puisieux F, Fougère B, Chen Y. The Nebulous Association between Cognitive Impairment and Falls in Older Adults: A Systematic Review of the Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2628. [PMID: 36767992 PMCID: PMC9915123 DOI: 10.3390/ijerph20032628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In older people, dementia is a well-established risk factor for falls. However, the association and the causal relationship between falls and the earlier stages of cognitive impairment remains unclear. The purpose of the study was to review the literature data on the association between falls and cognitive impairment, no dementia, including Mild Cognitive Impairment. METHODS According to PRISMA guidelines, we searched five electronic databases (EMBASE, Web of Science, Medline, CINAHL, and PsychINFO) for articles published between January 2011 and August 2022 on observational studies of older people with a cognitive assessment and/or cognitive impairment diagnosis and a recording of falls. Their quality was reviewed according to the STROBE checklist. RESULTS We selected 42 of the 4934 initially retrieved publications. In 24 retrospective studies, a statistically significant association between falls and cognitive status was found in only 15 of the 32 comparisons (47%). Of the 27 cross-sectional analyses in prospective studies, only eight (30%) were positive and significant. We counted four longitudinal analyses, half of which suggested a causal relationship between falls and cognitive impairment. The investigational methods varied markedly from one study to another. CONCLUSION It is still not clear whether falls are associated with cognitive impairment, no dementia. Data in favor of a causal relationship are scarce. Further studies are needed to clarify their relationship.
Collapse
Affiliation(s)
- Victoire Leroy
- Division of Geriatric Medicine, Tours University Hospital, 37000 Tours, France
- EA 7505 (Education, Ethics, Health), University of Medicine of Tours, 37000 Tours, France
- Memory Clinic, Tours University Hospital, 37000 Tours, France
| | - Valérie Martinet
- Department of Geriatrics, Saint-Pierre Hospital, ULB, 1000 Brussels, Belgium
| | | | | | - Hélène Durand
- Department of Neurology, Hautepierre Hospital, Strasbourg University Hospital, 67200 Strasbourg, France
| | - David Mockler
- Medical Library, Trinity Centre for the Health Sciences, St James’ Hospital, D08 W9RT Dublin, Ireland
| | - François Puisieux
- Department of Gerontology, Lille University Hospital, 59000 Lille, France
- EA2694, Lille University, 59000 Lille, France
| | - Bertrand Fougère
- Division of Geriatric Medicine, Tours University Hospital, 37000 Tours, France
- EA 7505 (Education, Ethics, Health), University of Medicine of Tours, 37000 Tours, France
| | - Yaohua Chen
- Department of Gerontology, Lille University Hospital, 59000 Lille, France
- INSERM UMR-S 1172, Vascular and Degenerative Cognitive Disorders, University of Lille, 59000 Lille, France
- Global Brain Health Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
3
|
Wang Z, Zhang F, Yue L, Hu L, Li X, Xu B, Liang Z. Cortical Complexity and Connectivity during Isoflurane-induced General Anesthesia: A Rat Study. J Neural Eng 2022; 19. [PMID: 35472693 DOI: 10.1088/1741-2552/ac6a7b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/25/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The investigation of neurophysiologic mechanisms of anesthetic drug-induced loss of consciousness (LOC) by using the entropy, complexity, and information integration theories at the mesoscopic level has been a hot topic in recent years. However, systematic research is still lacking. APPROACH We analyzed electrocorticography (ECoG) data recorded from nine rats during isoflurane-induced unconsciousness. To characterize the complexity and connectivity changes, we investigated ECoG power, symbolic dynamic-based entropy (i.e., permutation entropy (PE)), complexity (i.e., permutation Lempel-Ziv complexity (PLZC)), information integration (i.e., permutation cross mutual information (PCMI)), and PCMI-based cortical brain networks in the frontal, parietal, and occipital cortical regions. MAIN RESULTS Firstly, LOC was accompanied by a raised power in the ECoG beta (12-30 Hz) but a decreased power in the high gamma (55-95 Hz) frequency band in all three brain regions. Secondly, PE and PLZC showed similar change trends in the lower frequency band (0.1-45 Hz), declining after LOC (p<0.05) and increasing after recovery of consciousness (p<0.001). Thirdly, intra-frontal and inter-frontal-parietal PCMI declined after LOC, in both lower (0.1-45Hz) and higher frequency bands (55-95Hz) (p<0.001). Finally, the local network parameters of the nodal clustering coefficient and nodal efficiency in the frontal region decreased after LOC, in both the lower and higher frequency bands (p<0.05). Moreover, global network parameters of the normalized average clustering coefficient and small world index increased slightly after LOC in the lower frequency band. However, this increase was not statistically significant. SIGNIFICANCE The PE, PLZC, PCMI and PCMI-based brain networks are effective metrics for qualifying the effects of isoflurane.
Collapse
Affiliation(s)
- Zhijie Wang
- Yanshan University, Yanshan University, Qinhuangdao 066004, China., Qinhuangdao, 066004, CHINA
| | - Fengrui Zhang
- Department of Psychology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100049, China., Beijing, 100049, CHINA
| | - Lupeng Yue
- Department of Psychology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100049, China., Beijing, 100049, CHINA
| | - Li Hu
- Department of Psychology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100049, China, Beijing, 100049, CHINA
| | - Xiaoli Li
- Department of Psychology, Beijing Normal University, Beijing Normal University, Beijing 100875, China., Beijing, Beijing, 100875, CHINA
| | - Bo Xu
- PLA General Hospital of Southern Theatre Command, Guangzhou 510010, China., Guangzhou, Guangdong, 510010, CHINA
| | - Zhenhu Liang
- Institute of Electrical Engineering, Yanshan University, Yanshan University, Qinhuangdao 066004, China., Qinhuangdao, 066004, CHINA
| |
Collapse
|
4
|
Hupfeld KE, Geraghty JM, McGregor HR, Hass CJ, Pasternak O, Seidler RD. Differential Relationships Between Brain Structure and Dual Task Walking in Young and Older Adults. Front Aging Neurosci 2022; 14:809281. [PMID: 35360214 PMCID: PMC8963788 DOI: 10.3389/fnagi.2022.809281] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Almost 25% of all older adults experience difficulty walking. Mobility difficulties for older adults are more pronounced when they perform a simultaneous cognitive task while walking (i.e., dual task walking). Although it is known that aging results in widespread brain atrophy, few studies have integrated across more than one neuroimaging modality to comprehensively examine the structural neural correlates that may underlie dual task walking in older age. We collected spatiotemporal gait data during single and dual task walking for 37 young (18-34 years) and 23 older adults (66-86 years). We also collected T 1-weighted and diffusion-weighted MRI scans to determine how brain structure differs in older age and relates to dual task walking. We addressed two aims: (1) to characterize age differences in brain structure across a range of metrics including volumetric, surface, and white matter microstructure; and (2) to test for age group differences in the relationship between brain structure and the dual task cost (DTcost) of gait speed and variability. Key findings included widespread brain atrophy for the older adults, with the most pronounced age differences in brain regions related to sensorimotor processing. We also found multiple associations between regional brain atrophy and greater DTcost of gait speed and variability for the older adults. The older adults showed a relationship of both thinner temporal cortex and shallower sulcal depth in the frontal, sensorimotor, and parietal cortices with greater DTcost of gait. Additionally, the older adults showed a relationship of ventricular volume and superior longitudinal fasciculus free-water corrected axial and radial diffusivity with greater DTcost of gait. These relationships were not present for the young adults. Stepwise multiple regression found sulcal depth in the left precentral gyrus, axial diffusivity in the superior longitudinal fasciculus, and sex to best predict DTcost of gait speed, and cortical thickness in the superior temporal gyrus to best predict DTcost of gait variability for older adults. These results contribute to scientific understanding of how individual variations in brain structure are associated with mobility function in aging. This has implications for uncovering mechanisms of brain aging and for identifying target regions for mobility interventions for aging populations.
Collapse
Affiliation(s)
- Kathleen E. Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Justin M. Geraghty
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Heather R. McGregor
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - C. J. Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Rachael D. Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- University of Florida Norman Fixel Institute for Neurological Diseases, Gainesville, FL, United States
| |
Collapse
|
5
|
Kwan H, Scarapicchia V, Halliday D, MacDonald S, Gawryluk JR. Functional near infrared spectroscopy activation during an executive function task differs between healthy older and younger adults. AGING BRAIN 2022; 2:100029. [PMID: 36908882 PMCID: PMC9997178 DOI: 10.1016/j.nbas.2022.100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022] Open
Abstract
Background Healthy aging can include declines in processing speed and executive function. Further research is needed to characterize the neurobiological underpinnings of these cognitive changes in older adulthood. The current study used functional near infrared spectroscopy (fNIRS), an optical neuroimaging technique, to examine differences in cerebral oxygenation between healthy older adults (OA) and younger adults (YA) during a measure of cognitive interference. Methods Thirty-four participants were sampled from two age groups: YA (mean age = 28.1 years, SD = 2.8, F = 9) and OA (mean age = 70.9 years, SD = 5.4, F = 9). Participants completed the Multi-Source Interference Task (MSIT), a measure of executive function with high and low-demand conditions, while undergoing fNIRS recordings using a TechEn CW6 system with 34-source-detector channels, situated over the prefrontal cortex. Functional activation patterns, accuracy, and reaction time were compared between and within groups for each condition. Results Behaviourally, during the control condition, OA and YA had comparable accuracy, although OA had significantly slower reaction times than YA. During the interference condition, OA had significantly lower accuracy and slower reaction times than YA. Results demonstrated a significant difference between groups with an age-related increase in HbO for OA in both conditions (p < 0.05). Within groups, OA showed greater activation during the control condition, while YA demonstrated greater activation during the interference condition. Conclusions The findings suggest that OA recruit additional neural resources to achieve similar behavioural performance during low-level cognitive interference, but that compensation in OA may be insufficient to support behavioural performance at higher levels of interference.
Collapse
Affiliation(s)
- Heather Kwan
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada
| | - Vanessa Scarapicchia
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada.,Institute on Aging and Lifelong Health, University of Victoria, British Columbia, Canada
| | - Drew Halliday
- Queen Alexandra Centre for Children's Health, Victoria, British Columbia, Canada
| | - Stuart MacDonald
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada.,Institute on Aging and Lifelong Health, University of Victoria, British Columbia, Canada
| | - Jodie R Gawryluk
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada.,Institute on Aging and Lifelong Health, University of Victoria, British Columbia, Canada.,Division of Medical Sciences, University of Victoria, British Columbia, Canada
| |
Collapse
|
6
|
Kahya M, Lyons KE, Pahwa R, Akinwuntan AE, He J, Devos H. Pupillary Response to Postural Demand in Parkinson's Disease. Front Bioeng Biotechnol 2021; 9:617028. [PMID: 33987171 PMCID: PMC8111006 DOI: 10.3389/fbioe.2021.617028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Individuals with Parkinson’s disease (PD) may need to spend more mental and physical effort (i.e., cognitive workload) to maintain postural control. Pupillary response reflects cognitive workload during postural control tasks in healthy controls but has not been investigated as a measure of postural demand in PD. Objectives: To compare pupillary response during increased postural demand using vision occlusion and dual tasking between individuals with PD and healthy controls. Methods: Thirty-three individuals with PD and thirty-five healthy controls were recruited. The four conditions lasted 60 s and involved single balance task with eyes open; single balance task with eyes occluded; dual task with eyes open; dual task with eyes occluded. The dual task comprised the Auditory Stroop test. Pupillary response was recorded using an eye tracker. The balance was assessed by using a force plate. Two-way Repeated Measures ANOVA and LSD post-hoc tests were employed to compare pupillary response and Center of Pressure (CoP) displacement across the four conditions and between individuals with PD and healthy controls. Results: Pupillary response was higher in individuals with PD compared to healthy controls (p = 0.009) and increased with more challenging postural conditions in both groups (p < 0.001). The post-hoc analysis demonstrated increased pupillary response in the single balance eyes occluded (p < 0.001), dual task eyes open (p = 0.01), and dual task eyes occluded (p < 0.001) conditions compared to single task eyes open condition. Conclusion: Overall, the PD group had increased pupillary response with increased postural demand compared to the healthy controls. In the future, pupillary response can be a potential tool to understand the neurophysiological underpinnings of falls risk in the PD population.
Collapse
Affiliation(s)
- Melike Kahya
- Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, United States
| | - Kelly E Lyons
- Department of Neurology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajesh Pahwa
- Department of Neurology, School of Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Abiodun E Akinwuntan
- Office of the Dean, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, United States.,Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jianghua He
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Hannes Devos
- Department of Physical Therapy and Rehabilitation Science, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
7
|
Bayot M, Dujardin K, Dissaux L, Tard C, Defebvre L, Bonnet CT, Allart E, Allali G, Delval A. Can dual-task paradigms predict Falls better than single task? - A systematic literature review. Neurophysiol Clin 2020; 50:401-440. [PMID: 33176988 DOI: 10.1016/j.neucli.2020.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 11/18/2022] Open
Abstract
With about one third of adults aged 65 years and older being reported worldwide to fall each year, and an even higher prevalence with advancing age, aged-related falls and the associated disabilities and mortality are a major public health concern. In this context, identification of fall risk in healthy older adults is a key component of fall prevention. Since dual-task outcomes rely on the interaction between cognition and motor control, some studies have demonstrated the role of dual-task walking performance or costs in predicting future fallers. However, based on previous reviews on the topic, (1) discriminative and (2) predictive powers of dual tasks involving gait and a concurrent task are still a matter of debate, as is (3) their superiority over single tasks in terms of fall-risk prediction. Moreover, less attention has been paid to dual tasks involving postural control and transfers (such as gait initiation and turns) as motor tasks. In the present paper, we therefore systematically reviewed recent literature over the last 7 years in order to answer the three above mentioned questions regarding the future of lab-based dual tasks (involving posture, gait initiation, gait and turning) as easily applicable tests for identifying healthy older adult fallers. Despite great heterogeneity among included studies, we emphasized, among other things, the promising added value of dual tasks including turns and other transfers, such as in the Timed Up and Go test, for prediction of falls. Further investigation of these is thus warranted.
Collapse
Affiliation(s)
- Madli Bayot
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France
| | - Kathy Dujardin
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Neurology and Movement Disorders, F-59000 Lille, France
| | - Lucile Dissaux
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France
| | - Céline Tard
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Neurology and Movement Disorders, F-59000 Lille, France
| | - Luc Defebvre
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Neurology and Movement Disorders, F-59000 Lille, France
| | - Cédrick T Bonnet
- Univ. Lille, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, CNRS UMR 9193, F-59000 Lille, France
| | - Etienne Allart
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Neurorehabilitation Unit, F-59000 Lille, France
| | - Gilles Allali
- Department of Neurology, Geneva University Hospitals and University of Geneva, Geneva 1211, Switzerland, Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, US
| | - Arnaud Delval
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Department of Clinical Neurophysiology, F-59000 Lille, France.
| |
Collapse
|
8
|
Yeung MK, Chan AS. A Systematic Review of the Application of Functional Near-Infrared Spectroscopy to the Study of Cerebral Hemodynamics in Healthy Aging. Neuropsychol Rev 2020; 31:139-166. [PMID: 32959167 DOI: 10.1007/s11065-020-09455-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
Abstract
Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies have shown that healthy aging is associated with functional brain deterioration that preferentially affects the prefrontal cortex. This article reviews the application of an alternative method, functional near-infrared spectroscopy (fNIRS), to the study of age-related changes in cerebral hemodynamics and factors that influence cerebral hemodynamics in the elderly population. We conducted literature searches in PudMed and PsycINFO, and selected only English original research articles that used fNIRS to study healthy individuals with a mean age of ≥ 55 years. All articles were published in peer-reviewed journals between 1977 and May 2019. We synthesized 114 fNIRS studies examining hemodynamic changes that occurred in the resting state and during the tasks of sensation and perception, motor control, semantic processing, word retrieval, attentional shifting, inhibitory control, memory, and emotion and motivation in healthy older adults. This review, which was not registered in a registry, reveals an age-related reduction in resting-state cerebral oxygenation and connectivity in the prefrontal cortex. It also shows that aging is associated with a reduction in functional hemispheric asymmetry and increased compensatory activity in the frontal lobe across multiple task domains. In addition, this article describes the beneficial effects of healthy lifestyles and the detrimental effects of cardiovascular disease risk factors on brain functioning among nondemented older adults. Limitations of this review include exclusion of gray and non-English literature and lack of meta-analysis. Altogether, the fNIRS literature provides some support for various neurocognitive aging theories derived from task-based PET and fMRI studies. Because fNIRS is relatively motion-tolerant and environmentally unconstrained, it is a promising tool for fostering the development of aging biomarkers and antiaging interventions.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China.
| | - Agnes S Chan
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, China. .,Chanwuyi Research Center for Neuropsychological Well-being, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
9
|
Udina C, Avtzi S, Durduran T, Holtzer R, Rosso AL, Castellano-Tejedor C, Perez LM, Soto-Bagaria L, Inzitari M. Functional Near-Infrared Spectroscopy to Study Cerebral Hemodynamics in Older Adults During Cognitive and Motor Tasks: A Review. Front Aging Neurosci 2020; 11:367. [PMID: 32038224 PMCID: PMC6985209 DOI: 10.3389/fnagi.2019.00367] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
The integrity of the frontal areas of the brain, specifically the prefrontal cortex, are critical to preserve cognition and mobility in late life. Prefrontal cortex regions are involved in executive functions and gait control and have been related to the performance of dual-tasks. Dual-task performance assessment may help identify older adults at risk of negative health outcomes. As an alternative to neuroimaging techniques that do not allow assessment during actual motion, functional Near-Infrared Spectroscopy (fNIRS) is a non-invasive technique that can assess neural activation through the measurement of cortical oxygenated and deoxygenated hemoglobin levels, while the person is performing a motor task in a natural environment as well as during cognitive tasks. The aim of this review was to describe the use of fNIRS to study frontal lobe hemodynamics during cognitive, motor and dual-tasks in older adults. From the 46 included publications, 20 studies used only cognitive tasks, three studies used motor tasks and 23 used dual-tasks. Our findings suggest that fNIRS detects changes in frontal activation in older adults (cognitively healthy and mild cognitive impairment), especially while performing cognitive and dual-tasks. In both the comparison between older and younger adults, and in people with different neurological conditions, compared to healthier controls, the prefrontal cortex seems to experience a higher activation, which could be interpreted in the context of proposed neural inefficiency and limited capacity models. Further research is needed to establish standardized fNIRS protocols, study the cerebral hemodynamic in different neurological and systemic conditions that might influence cortical activation and explore its role in predicting incident health outcomes such as dementia.
Collapse
Affiliation(s)
- Cristina Udina
- Parc Sanitari Pere Virgili, Barcelona, Spain.,RE-FiT Barcelona Research Group, Vall d'Hebrón Institute of Research, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stella Avtzi
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Turgut Durduran
- Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, New York, NY, United States.,Department of Neurology, Albert Einstein College of Medicine, New York, NY, United States
| | - Andrea L Rosso
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Carmina Castellano-Tejedor
- Parc Sanitari Pere Virgili, Barcelona, Spain.,RE-FiT Barcelona Research Group, Vall d'Hebrón Institute of Research, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura-Monica Perez
- Parc Sanitari Pere Virgili, Barcelona, Spain.,RE-FiT Barcelona Research Group, Vall d'Hebrón Institute of Research, Barcelona, Spain
| | - Luis Soto-Bagaria
- Parc Sanitari Pere Virgili, Barcelona, Spain.,RE-FiT Barcelona Research Group, Vall d'Hebrón Institute of Research, Barcelona, Spain
| | - Marco Inzitari
- Parc Sanitari Pere Virgili, Barcelona, Spain.,RE-FiT Barcelona Research Group, Vall d'Hebrón Institute of Research, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
de Oliveira Silva F, Ferreira JV, Plácido J, Chagas D, Praxedes J, Guimarães C, Batista LA, Marinho V, Laks J, Deslandes AC. Stages of mild cognitive impairment and Alzheimer’s disease can be differentiated by declines in timed up and go test: A systematic review and meta-analysis. Arch Gerontol Geriatr 2019; 85:103941. [DOI: 10.1016/j.archger.2019.103941] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 08/07/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
|
11
|
Yang D, Hong KS, Yoo SH, Kim CS. Evaluation of Neural Degeneration Biomarkers in the Prefrontal Cortex for Early Identification of Patients With Mild Cognitive Impairment: An fNIRS Study. Front Hum Neurosci 2019; 13:317. [PMID: 31551741 PMCID: PMC6743351 DOI: 10.3389/fnhum.2019.00317] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022] Open
Abstract
Mild cognitive impairment (MCI), a condition characterizing poor cognition, is associated with aging and depicts early symptoms of severe cognitive impairment, known as Alzheimer's disease (AD). Meanwhile, early detection of MCI can prevent progression to AD. A great deal of research has been performed in the past decade on MCI detection. However, availability of biomarkers for MCI detection requires greater attention. In our study, we evaluated putative and reliable biomarkers for diagnosing MCI by performing different mental tasks (i.e., N-back task, Stroop task, and verbal fluency task) using functional near-infrared spectroscopy (fNIRS) signals on a group of 15 MCI patients and 9 healthy control (HC). The 15 digital biomarkers (i.e., five means, seven slopes, peak, skewness, and kurtosis) and two image biomarkers (t-map, correlation map) in the prefrontal cortex (PFC) (i.e., left PFC, middle PFC, and right PFC) between the MCI and HC groups were investigated by the statistical analysis, linear discriminant analysis (LDA), and convolutional neural network (CNN) individually. The results reveal that the statistical analysis using digital biomarkers (with a p-value < 0.05) could not distinguish the MCI patients from the HC over 60% accuracy. Therefore, the current statistical analysis needs to be improved to be used for diagnosing the MCI patients. The best accuracy with LDA was 76.67% with the N-back and Stroop tasks. However, the CNN classification results trained by image biomarkers showed a high accuracy. In particular, the CNN results trained via t-maps revealed the best accuracy (90.62%) with the N-back task, whereas the CNN result trained by the correlation maps was 85.58% with the N-back task. Also, the results illustrated that investigating the sub-regions (i.e., right, middle, left) of the PFC for detecting MCI would be better than examining the whole PFC. The t-map (or/and the correlation map) is conclusively recommended as an image biomarker for early detection of AD. The combination of CNN and image biomarkers can provide a reliable clinical tool for diagnosing MCI patients.
Collapse
Affiliation(s)
- Dalin Yang
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| | - So-Hyeon Yoo
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Chang-Soek Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
12
|
Wagshul ME, Lucas M, Ye K, Izzetoglu M, Holtzer R. Multi-modal neuroimaging of dual-task walking: Structural MRI and fNIRS analysis reveals prefrontal grey matter volume moderation of brain activation in older adults. Neuroimage 2019; 189:745-754. [PMID: 30710680 DOI: 10.1016/j.neuroimage.2019.01.045] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 11/28/2022] Open
Abstract
It has been well established over the last two decades that walking is not merely an automatic, motoric activity; it also utilizes executive function circuits, which play an increasingly important role in walking for older people and those with mobility and cognitive deficits. Dual-task walking, such as walking while performing a cognitive task, is a necessary skill for everyday functioning, and has been shown to activate prefrontal lobe areas in healthy older people. Another well-established point in healthy aging is the loss of grey matter, and in particular loss of frontal lobe grey matter volume. However, the relationship between increased frontal lobe activity during dual-task walking and loss of frontal grey matter in healthy aging remains unknown. In the current study, we combined oxygenated hemoglobin (HbO2) data from functional near-infrared spectroscopy (fNIRS), taken during dual-task walking, with structural MRI volumetrics in a cohort of healthy older subjects to identify this relationship. We studied fifty-five relatively healthy, older participants (≥65 years) during two separate sessions: fNIRS to measure HbO2 changes between single-task (i.e., normal walking) and dual-task walking-while-talking, and high-resolution, structural MRI to measure frontal lobe grey matter volumes. Linear mixed effects modeling was utilized to determine the moderation effect of grey matter volume on the change in prefrontal oxygenated hemoglobin between the two walking tasks, while controlling for covariates including task performance. We found a highly significant interaction effect between frontal grey matter volume and task on HbO2 levels (p < 0.0001). Specifically, increased HbO2 levels during dual-task compared to single-task walking were associated with reduced frontal grey matter volume. Regional analysis identified bilateral superior and rostral middle gyri as the primary areas driving these results. The findings provide support for the concept of neural inefficiency: in the absence of behavioral gains, grey matter loss in relatively healthy, older individuals leads to over-activation of frontal lobe during a cognitively demanding walking task with established clinical and predictive utility.
Collapse
Affiliation(s)
- Mark E Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA; Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Melanie Lucas
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Kenny Ye
- Department of Epidemiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Meltem Izzetoglu
- Villanova University, Electrical and Computer Engineering, Villanova, PA, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA; Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|