1
|
Merle DA, Sen M, Armento A, Stanton CM, Thee EF, Meester-Smoor MA, Kaiser M, Clark SJ, Klaver CCW, Keane PA, Wright AF, Ehrmann M, Ueffing M. 10q26 - The enigma in age-related macular degeneration. Prog Retin Eye Res 2023; 96:101154. [PMID: 36513584 DOI: 10.1016/j.preteyeres.2022.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Despite comprehensive research efforts over the last decades, the pathomechanisms of age-related macular degeneration (AMD) remain far from being understood. Large-scale genome wide association studies (GWAS) were able to provide a defined set of genetic aberrations which contribute to disease risk, with the strongest contributors mapping to distinct regions on chromosome 1 and 10. While the chromosome 1 locus comprises factors of the complement system with well-known functions, the role of the 10q26-locus in AMD-pathophysiology remains enigmatic. 10q26 harbors a cluster of three functional genes, namely PLEKHA1, ARMS2 and HTRA1, with most of the AMD-associated genetic variants mapping to the latter two genes. High linkage disequilibrium between ARMS2 and HTRA1 has kept association studies from reliably defining the risk-causing gene for long and only very recently the genetic risk region has been narrowed to ARMS2, suggesting that this is the true AMD gene at this locus. However, genetic associations alone do not suffice to prove causality and one or more of the 14 SNPs on this haplotype may be involved in long-range control of gene expression, leaving HTRA1 and PLEKHA1 still suspects in the pathogenic pathway. Both, ARMS2 and HTRA1 have been linked to extracellular matrix homeostasis, yet their exact molecular function as well as their role in AMD pathogenesis remains to be uncovered. The transcriptional regulation of the 10q26 locus adds an additional level of complexity, given, that gene-regulatory as well as epigenetic alterations may influence expression levels from 10q26 in diseased individuals. Here, we provide a comprehensive overview on the 10q26 locus and its three gene products on various levels of biological complexity and discuss current and future research strategies to shed light on one of the remaining enigmatic spots in the AMD landscape.
Collapse
Affiliation(s)
- David A Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department of Ophthalmology, Medical University of Graz, 8036, Graz, Austria.
| | - Merve Sen
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Chloe M Stanton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Eric F Thee
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands; Department of Ophthalmology, Radboudumc, 6525EX, Nijmegen, Netherlands; Institute of Molecular and Clinical Ophthalmology Basel, CH-4031, Basel, Switzerland
| | - Pearse A Keane
- Institute for Health Research, Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
2
|
Liu Y, Jin H, Wei D, Li W. HTRA1 rs11200638 variant and AMD risk from a comprehensive analysis about 15,316 subjects. BMC MEDICAL GENETICS 2020; 21:107. [PMID: 32414342 PMCID: PMC7229611 DOI: 10.1186/s12881-020-01047-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/10/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND The high-temperature requirement factor A1 (HTRA1) gene located at 10q26 locus has been associated with age-related macular degenerative (AMD), with the significantly related polymorphism being (rs11200638, -625G/A), however, above association is not consistent. We investigated a comprehensive analysis to evaluate the correlations between rs11200638 polymorphism and AMD susceptibility thoroughly addressing this issue. METHODS An identification was covered from the PubMed and Wanfang databases until 27th Jan, 2020. Odds ratios (OR) with 95% confidence intervals (CI) were applied to evaluate the associations. After a thorough and meticulous search, 35 different articles (33 case-control studies with HWE, 22 case-control studies about wet/dry AMD) were retrieved. RESULTS Individuals carrying A-allele or AA genotype may have an increased risk to be AMD disease. For example, there has a significantly increased relationship between rs11200638 polymorphism and AMD both for Asians (OR: 2.51, 95%CI: 2.22-2.83 for allelic contrast) and Caucasians [OR (95%CI) = 2.63(2.29-3.02) for allelic contrast]. Moreover, a similar trend in the source of control was detected. To classify the type of AMD, increased association was also observed in both wet (OR: 3.40, 95%CI: 2.90-3.99 for dominant model) and dry (OR: 2.08, 95%CI: 1.24-3.48 for dominant model) AMD. Finally, based on the different genotyping methods, increased relationships were identified by sequencing, TaqMan, PCR-RFLP and RT-PCR. CONCLUSIONS Our meta-analysis demonstrated that HTRA1 rs11200638 polymorphism may be related to the AMD development, especially about individuals carrying A-allele or AA genotype, who may be as identified targets to detect and intervene in advance. Further studies using Larger sample size studies, including information about gene-environment interactions will be necessary to carry out.
Collapse
Affiliation(s)
- Ying Liu
- Ophthalmic function room, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, 157000, Heilongjiang Province, China
| | - Huipeng Jin
- Ophthalmic function room, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, 157000, Heilongjiang Province, China
| | - Dong Wei
- Department of Ophthalmology (three disease areas), Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, 157000, Heilongjiang Province, China.
| | - Wenxiu Li
- Department of Critical Medicine, Second People's Hospital of Mudanjiang, Mudanjiang, 157000, Heilongjiang Province, China
| |
Collapse
|
3
|
Jabbarpoor Bonyadi MH, Yaseri M, Soheilian M. Association of combined complement factor H Y402H and ARMS2/LOC387715 A69S polymorphisms with age-related macular degeneration: an updated meta-analysis. Ophthalmic Genet 2020; 41:301-307. [PMID: 32406777 DOI: 10.1080/13816810.2020.1765396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Complement factor H (CFH) Y402 H (rs1061170) and age-related maculopathy susceptibility2 (ARMS2)/LOC387715 A69 S (rs10490924) polymorphisms shown to have significant association with AMD. In this meta-analysis, we updated and pooled the results of available association studies between combined ARMS2/LOC387715A69 S-CFHY402 H genotypes and AMD to estimate the synergistic effects. METHODS Heterogeneity of studies was evaluated using Cochran Q-test and I-square index. To modify the heterogeneity in the variables we used random effects model. Meta-analysis was performed using STATA. To estimate the additive or supra-additive effects we calculated RERI (relative excess risk due to interaction), AP (attributable proportion due to interaction), S (synergy index) and V (multiplicative index). RESULTS We included 12 studies with 4668 AMD patients and 4936 control subjects. Considering the GGTT genotypes as reference line, the pooled AMD odds ratios for stratified combined genotypes was 2.13 (95% CI 1.64-2.78) for GGnonTT, 2.17 (95% CI 1.63-2.89) for nonGGTT and 7.23 (95% CI 4.95-10.55) for nonGGnonTT. Pooled synergy analysis revealed RERI = 3.90 (95% CI 0.58-10.03), AP = .53 (95% CI 0.09-0.69), S = 2.57 (95% CI 1.27-5.22) and V = 1.47 (95% CI 1.21-1.80). CONCLUSION This updated analysis showed a strong synergistic and positive multiplicative effect of these two genes indicating that there is common pathway of ARMS2/LOC387715 A69 S and CFH Y402 H in AMD pathogenesis which may be complement system pathway.
Collapse
Affiliation(s)
| | - Mehdi Yaseri
- Department of Biostatistics and Epidemiology, Tehran University of Medical Sciences , Tehran, Iran
| | - Masoud Soheilian
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| |
Collapse
|
4
|
Maroñas O, García-Quintanilla L, Luaces-Rodríguez A, Fernández-Ferreiro A, Latorre-Pellicer A, Abraldes MJ, Lamas MJ, Carracedo A. Anti-VEGF Treatment and Response in Age-related Macular Degeneration: Disease's Susceptibility, Pharmacogenetics and Pharmacokinetics. Curr Med Chem 2020; 27:549-569. [PMID: 31296152 DOI: 10.2174/0929867326666190711105325] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/03/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
The current review is focussing different factors that contribute and directly correlate to the onset and progression of Age-related Macular Degeneration (AMD). In particular, the susceptibility to AMD due to genetic and non-genetic factors and the establishment of risk scores, based on the analysis of different genes to measure the risk of developing the disease. A correlation with the actual therapeutic landscape to treat AMD patients from the point of view of pharmacokinetics and pharmacogenetics is also exposed. Treatments commonly used, as well as different regimes of administration, will be especially important in trying to classify individuals as "responders" and "non-responders". Analysis of different genes correlated with drug response and also the emerging field of microRNAs (miRNAs) as possible biomarkers for early AMD detection and response will be also reviewed. This article aims to provide the reader a review of different publications correlated with AMD from the molecular and kinetic point of view as well as its commonly used treatments, major pitfalls and future directions that, to our knowledge, could be interesting to assess and follow in order to develop a personalized medicine model for AMD.
Collapse
Affiliation(s)
- Olalla Maroñas
- Grupo de Medicina Xenomica, Centro Nacional de Genotipado (CEGEN-PRB3), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura García-Quintanilla
- Servicio de Farmacia, Xerencia de Xestión Integrada de Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Andrea Luaces-Rodríguez
- Departamento de Farmacia e Tecnoloxia Farmaceutica e Instituto de Farmacia Industrial, Facultade de Farmacia, Universidade de Santiago de Compostela, Spain.,Grupo de Farmacoloxia Clínica, Instituto de Investigacion en Salud de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Departamento de Farmacia e Tecnoloxia Farmaceutica e Instituto de Farmacia Industrial, Facultade de Farmacia, Universidade de Santiago de Compostela, Spain.,Grupo de Farmacoloxia Clínica, Instituto de Investigacion en Salud de Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Departamento de Farmacia, Hospital Clínico Universitario de Santiago de Compostela (SERGAS) (CHUS), Santiago de Compostela, Spain
| | - Ana Latorre-Pellicer
- Unidad de Genetica Clínica y Genomica Funcional, Departamento de Farmacologia-Fisiología, Facultad de Medicina, Universidad de Zaragoza, Zaragoza, Spain
| | - Maximino J Abraldes
- Servicio de Oftalmoloxía, Xerencia de Xestion Integrada de Santiago de Compostela, Santiago de Compostela, Spain.,Departamento de Ciruxía e Especialidades Médico- Quirúrxicas, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María J Lamas
- Grupo de Farmacoloxia Clínica, Instituto de Investigacion en Salud de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Angel Carracedo
- Grupo de Medicina Xenomica, Centro Nacional de Genotipado (CEGEN-PRB3), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, CIBER de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.,Fundación Pública Galega de Medicina Xenómica, SERGAS, Santiago de Compostela, Spain
| |
Collapse
|
5
|
Lipecz A, Miller L, Kovacs I, Czakó C, Csipo T, Baffi J, Csiszar A, Tarantini S, Ungvari Z, Yabluchanskiy A, Conley S. Microvascular contributions to age-related macular degeneration (AMD): from mechanisms of choriocapillaris aging to novel interventions. GeroScience 2019; 41:813-845. [PMID: 31797238 PMCID: PMC6925092 DOI: 10.1007/s11357-019-00138-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Aging of the microcirculatory network plays a central role in the pathogenesis of a wide range of age-related diseases, from heart failure to Alzheimer's disease. In the eye, changes in the choroid and choroidal microcirculation (choriocapillaris) also occur with age, and these changes can play a critical role in the pathogenesis of age-related macular degeneration (AMD). In order to develop novel treatments for amelioration of choriocapillaris aging and prevention of AMD, it is essential to understand the cellular and functional changes that occur in the choroid and choriocapillaris during aging. In this review, recent advances in in vivo analysis of choroidal structure and function in AMD patients and patients at risk for AMD are discussed. The pathophysiological roles of fundamental cellular and molecular mechanisms of aging including oxidative stress, mitochondrial dysfunction, and impaired resistance to molecular stressors in the choriocapillaris are also considered in terms of their contribution to the pathogenesis of AMD. The pathogenic roles of cardiovascular risk factors that exacerbate microvascular aging processes, such as smoking, hypertension, and obesity as they relate to AMD and choroid and choriocapillaris changes in patients with these cardiovascular risk factors, are also discussed. Finally, future directions and opportunities to develop novel interventions to prevent/delay AMD by targeting fundamental cellular and molecular aging processes are presented.
Collapse
Affiliation(s)
- Agnes Lipecz
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, Josa Andras Hospital, Nyiregyhaza, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Lauren Miller
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd. BMSB553, Oklahoma City, OK, 73104, USA
| | - Illes Kovacs
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York City, NY, USA
| | - Cecília Czakó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Tamas Csipo
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Baffi
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Translational Geroscience Laboratory, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd. BMSB553, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
6
|
Correia K, Williams PL. Estimating the Relative Excess Risk Due to Interaction in Clustered-Data Settings. Am J Epidemiol 2018; 187:2470-2480. [PMID: 30060004 PMCID: PMC6211249 DOI: 10.1093/aje/kwy154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 01/01/2023] Open
Abstract
The risk difference scale is often of primary interest when evaluating public health impacts of interventions on binary outcomes. However, few investigators report findings in terms of additive interaction, probably because the models typically used for binary outcomes implicitly measure interaction on the multiplicative scale. One measure with which to assess additive interaction from multiplicative models is the relative excess risk due to interaction (RERI). The RERI measure has been applied in many contexts, but one limitation of previous approaches is that clustering in data has rarely been considered. We evaluated the RERI metric for the setting of clustered data using both population-averaged and cluster-conditional models. In simulation studies, we found that estimation and inference for the RERI using population-averaged models was straightforward. However, frequentist implementations of cluster-conditional models including random intercepts often failed to converge or produced degenerate variance estimates. We developed a Bayesian implementation of log binomial random-intercept models, which represents an attractive alternative for estimating the RERI in cluster-conditional models. We applied the methods to an observational study of adverse birth outcomes in mothers with human immunodeficiency virus, in which mothers were clustered within clinical research sites.
Collapse
Affiliation(s)
- Katharine Correia
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|