1
|
Buckley TM, Cehajic-Kapetanovic J, Shanks M, Clouston P, MacLaren RE. Compound dominant-null heterozygosity in a family with RP1-related retinal dystrophy. Am J Ophthalmol Case Rep 2022; 28:101698. [PMID: 36393903 PMCID: PMC9650022 DOI: 10.1016/j.ajoc.2022.101698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose To report on the presence of autosomal dominant and compound dominant-null RP1-related retinitis pigmentosa in the same non-consanguineous family. Observation The father was minimally symptomatic and referred by his optometrist aged 38. He was diagnosed with rod-cone dystrophy, confirmed to be caused by the previously reported RP1 c.2613dupA mutation. He was reassured that his 11-year-old daughter had a 50% chance of inheriting the same mutation and that the condition, if she had it, would most likely be similar. Clinical phenotyping of his daughter however revealed an early onset cone-rod dystrophy. The mother was entirely asymptomatic and clinically normal. Sanger sequencing of the RP1 gene in the daughter confirmed the presence of biallelic mutations - the dominant c.2613dupA variant from her father and a c.3843dupT truncating variant inherited from her mother, both located in exon 4 of the RP1 gene. The maternal c.3843dupT has previously been reported. Conclusions and importance Pathogenic variants in exon 4 of RP1 are known to cause differential dominant and recessive disease. The presence of both phenotypes in a single family has not yet been reported. The father, being minimally symptomatic, is affected by a known dominant variant which truncates the RP1 protein more proximally. However, inheritance of both variants in a compound heterozygous state in the daughter resulted in a much more severe, early onset cone-rod phenotype in a pattern akin to recessive disease. This raises challenges for genetic counselling and development of gene-based therapies for RP1 mutations.
Collapse
Affiliation(s)
- Thomas M.W. Buckley
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, OX3 9DU, UK
| | | | - Morag Shanks
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, OX3 9DU, UK
| | - Penny Clouston
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Level 6, West Wing, John Radcliffe Hospital, Headley Way, OX3 9DU, UK
| |
Collapse
|
2
|
Peeters MHCA, Khan M, Rooijakkers AAMB, Mulders T, Haer-Wigman L, Boon CJF, Klaver CCW, van den Born LI, Hoyng CB, Cremers FPM, den Hollander AI, Dhaenens CM, Collin RWJ. PRPH2 mutation update: In silico assessment of 245 reported and 7 novel variants in patients with retinal disease. Hum Mutat 2021; 42:1521-1547. [PMID: 34411390 PMCID: PMC9290825 DOI: 10.1002/humu.24275] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 01/31/2023]
Abstract
Mutations in PRPH2, encoding peripherin-2, are associated with the development of a wide variety of inherited retinal diseases (IRDs). To determine the causality of the many PRPH2 variants that have been discovered over the last decades, we surveyed all published PRPH2 variants up to July 2020, describing 720 index patients that in total carried 245 unique variants. In addition, we identified seven novel PRPH2 variants in eight additional index patients. The pathogenicity of all variants was determined using the ACMG guidelines. With this, 107 variants were classified as pathogenic, 92 as likely pathogenic, one as benign, and two as likely benign. The remaining 50 variants were classified as variants of uncertain significance. Interestingly, of the total 252 PRPH2 variants, more than half (n = 137) were missense variants. All variants were uploaded into the Leiden Open source Variation and ClinVar databases. Our study underscores the need for experimental assays for variants of unknown significance to improve pathogenicity classification, which would allow us to better understand genotype-phenotype correlations, and in the long-term, hopefully also support the development of therapeutic strategies for patients with PRPH2-associated IRD.
Collapse
Affiliation(s)
- Manon H C A Peeters
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Mubeen Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | | | - Timo Mulders
- Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, Amsterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Ophthalmology, Erasmus University Medical Centre, Rotterdam, The Netherlands.,Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - L Ingeborgh van den Born
- The Rotterdam Eye Hospital, Rotterdam, The Netherlands.,Rotterdam Ophthalmic Institute, Rotterdam, The Netherlands
| | - Carel B Hoyng
- Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Anneke I den Hollander
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Claire-Marie Dhaenens
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Biochemistry and Molecular Biology, Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, Lille, France
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics and Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|