1
|
Zhao D, Gu VY, Wang Y, Peng J, Lyu J, Fei P, Xu Y, Zhang X, Zhao P. Clinical and genetic features in autosomal recessive bestrophinopathy in Chinese cohort. BMC Ophthalmol 2024; 24:308. [PMID: 39048936 PMCID: PMC11267682 DOI: 10.1186/s12886-024-03574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
PURPOSE To provide a genotype and phenotype characterization of the BEST1 mutation in Chinese patients with autosomal recessive bestrophinopathy (ARB) through multimodal imaging and next-generation sequencing (NGS). METHODS Seventeen patients from 17 unrelated families of Chinese origin with ARB were included in a retrospective cohort study. Phenotypic characteristics, including anterior segment features, were assessed by multimodal imaging. Multigene panel testing, involving 586 ophthalmic disease-associated genes, and Sanger sequencing were performed to identify disease-causing variants. RESULTS Among 17 ARB patients, the mean follow-up was 15.65 months and average onset age was 30.53 years (range: 9-68). Best corrected visual acuity ranged from light perception to 0.8. EOG recordings showed a typically decreased Arden ratio in 12 patients, and a normal or slightly decreased Arden ratio in two patients. Anterior features included shallow anterior chambers (16/17), ciliary pronation (16/17), iris bombe (13/17), iridoschisis (2/17), iris plateau (1/17), narrow angles (16/17) and reduced axial lengths (16/17). Sixteen patients had multiple bilateral small, round, yellow vitelliform deposits distributed throughout the posterior pole, surrounding the optic disc. Initial diagnoses included angle-closure glaucoma (four patients), Best disease (three patients), and central serous chorioretinopathy secondary to choroidal neovascularization (CNV) (one patient), with the remainder diagnosed with ARB. Fourteen patients underwent preventive laser peripheral iridotomy, four of whom also received combined trabeculectomy and iridotomy in both eyes for uncontrolled intraocular pressure. One patient received intravitreal conbercept for CNV. Overall, 15 distinct disease-causing variants of BEST1 were identified, with 14 (82.35%) patients having missense mutations. Common mutations included p. Arg255-256 and p. Ala195Val (both 23.68%), with the most frequent sites in exons 7 and 5. CONCLUSIONS This study provides a comprehensive characterization of anterior segment and genetic features in ARB, with a wide array of morphological abnormalities. Findings are relevant for refining clinical practices and genetic counseling and advancing pathogenesis research.
Collapse
Affiliation(s)
- Dongsheng Zhao
- Department of Ophthalmology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Victoria Y Gu
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yafu Wang
- Department of Ophthalmology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Peng
- Department of Ophthalmology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao Lyu
- Department of Ophthalmology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Fei
- Department of Ophthalmology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Ophthalmology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Zhang
- Department of Ophthalmology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Liu Z, Li K, Wang K, Zhang L, Jia S, Wang H, Jian F, Wu H. Knockdown of best1 Gene in Zebrafish Caused Abnormal Neuronal and Skeletal Development - A Subtype of Craniovertebral Junction Malformation? Neurospine 2024; 21:555-564. [PMID: 38317543 PMCID: PMC11224734 DOI: 10.14245/ns.2347238.619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE To investigate the developmental defects caused by knockdown of best1 gene in zebrafish as a model for a subtype of craniovertebral junction (CVJ) malformation. METHODS Two antisense morpholinos (MOs) were designed targeting zebrafish best1 to block translation (ATG-MO) or to disrupt splicing (I3E4-MO). MOs were microinjected into fertilized one-cell embryos. Efficacy of splicing MO was confirmed by reverse transcription-polymerase chain reaction. Phenotypes were analyzed and quantified by microscopy at multiple developmental stages. Neuronal outgrowth was assessed in transgenic zebrafish expressing green fluorescent protein in neurons. Skeletal ossification was visualized by Calcein staining. RESULTS Knockdown of best1 resulted in zebrafish embryos with shorter body length, curved axis, low survival rate, microcephaly, reduced eye size, smaller head and brain, impaired neuronal outgrowth, and reduced ossification of craniofacial and vertebral bone. CONCLUSION Best1 gene plays critical roles in ophthalmologic, neurological and skeletal development in zebrafish. A patient with a premature stop codon in BEST1 gene exhibited similar phenotypes, implying a subtype of CVJ malformation.
Collapse
Affiliation(s)
- Zhenlei Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (China-INI), Beijing, China
| | - Kang Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (China-INI), Beijing, China
| | - Kai Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (China-INI), Beijing, China
| | - Lei Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (China-INI), Beijing, China
| | - Shanhang Jia
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (China-INI), Beijing, China
| | - He Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (China-INI), Beijing, China
| | - Fengzeng Jian
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (China-INI), Beijing, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (China-INI), Beijing, China
| |
Collapse
|
3
|
Wu V, Swider M, Sumaroka A, Dufour VL, Vance JE, Aleman TS, Aguirre GD, Beltran WA, Cideciyan AV. Retinal response to light exposure in BEST1-mutant dogs evaluated with ultra-high resolution OCT. Vision Res 2024; 218:108379. [PMID: 38460402 PMCID: PMC11009038 DOI: 10.1016/j.visres.2024.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Mutations in BEST1 cause an autosomal recessive disease in dogs where the earliest changes localize to the photoreceptor-RPE interface and show a retina-wide micro-detachment that is modulated by light exposure. The purpose of this study was to define the spatial and temporal details of the outer retina and its response to light with ultra-high resolution OCT across a range of ages and with different BEST1 mutations. Three retinal regions were selected in each eye: near the fovea-like area, near the optic nerve, both in the tapetal area, and inferior to the optic nerve in the non-tapetal area. The OS+ slab thickness was defined between the peak near the junction of inner and outer segments (IS/OS) and the transition between basal RPE, Bruch membrane, choriocapillaris and proximal tapetum (RPE/T). In wildtype (WT) dogs, two tapetal regions showed additional hyperscattering OCT peaks within the OS+ slab likely representing cone and rod outer segment tips (COST and ROST). The inferior non-tapetal region of WT dogs had only one of these peaks, likely ROST. In dogs with BEST1 mutations, all three locations showed a single peak, likely suggesting optical silence of COST. Light-dependent expansion of the micro-detachment by about 10 um was detectable in both tapetal and non-tapetal retina across all ages and BEST1 mutations.
Collapse
Affiliation(s)
- Vivian Wu
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Malgorzata Swider
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander Sumaroka
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Valerie L Dufour
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Tomas S Aleman
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Artur V Cideciyan
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
4
|
Beryozkin A, Sher I, Ehrenberg M, Zur D, Newman H, Gradstein L, Simaan F, Rotenstreich Y, Goldenberg-Cohen N, Bahar I, Blumenfeld A, Rivera A, Rosin B, Deitch-Harel I, Perlman I, Mechoulam H, Chowers I, Leibu R, Ben-Yosef T, Pras E, Banin E, Sharon D, Khateb S. Best Disease: Global Mutations Review, Genotype-Phenotype Correlation, and Prevalence Analysis in the Israeli Population. Invest Ophthalmol Vis Sci 2024; 65:39. [PMID: 38411968 PMCID: PMC10910552 DOI: 10.1167/iovs.65.2.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/04/2024] [Indexed: 02/28/2024] Open
Abstract
Purpose To review all reported disease-causing mutations in BEST1, perform genotype-phenotype correlation, and estimate disease prevalence in the Israeli population. Methods Medical records of patients diagnosed with Best disease and allied diseases from nine Israeli medical centers over the past 20 years were collected, as were clinical data including ocular findings, electrophysiology results, and retina imaging. Mutation detection involved mainly whole exome sequencing and candidate gene analysis. Demographic data were obtained from the Israeli Bureau of Statistics (January 2023). A bibliometric study was also conducted to gather mutation data from online sources. Results A total of 134 patients were clinically diagnosed with Best disease and related conditions. The estimated prevalence of Best disease was calculated to be 1 in 127,000, with higher rates among Arab Muslims (1 in 76,000) than Jews (1 in 145,000). Genetic causes were identified in 76 individuals (57%), primarily showing autosomal-dominant inheritance due to BEST1 mutations (58 patients). Critical conserved domains were identified consisting of a high percentage of dominant missense mutations, primarily in transmembrane domains and the intracellular region (Ca2+ binding domain) of the BEST1 protein. Conclusions This study represents the largest cohort of patients with Best disease reported in Israel and globally. The prevalence in Israel is akin to that in Denmark but is lower than that in the United States. Critical conserved domains within the BEST1 protein are pivotal for normal functioning, and even minor missense alterations in these areas lead to a dominant disease manifestation. Genetic testing is indispensable as the gold standard for Best disease diagnosis due to the variable clinical presentation of the disease.
Collapse
Affiliation(s)
- Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ifat Sher
- Goldschleger Eye Institute, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Miriam Ehrenberg
- Ophthalmology Unit, Schneider Children's Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dinah Zur
- Ophthalmology Division, Tel Aviv Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hadas Newman
- Ophthalmology Division, Tel Aviv Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Libe Gradstein
- Department of Ophthalmology, Soroka Medical Center and Clalit Health Services, Faculty of Health Sciences, Ben-Gurion University, Be'er Sheva, Israel
| | - Francis Simaan
- Department of Ophthalmology, Assaf Harofeh Medical Center, Zerifin, Israel
| | - Ygal Rotenstreich
- Goldschleger Eye Institute, Sheba Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nitza Goldenberg-Cohen
- Department of Ophthalmology, Bnai Zion Medical Center, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Irit Bahar
- Ophthalmology Division, Tel Aviv Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Ophthalmology Department and Laboratory of Eye Research, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, Israel
| | - Anat Blumenfeld
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Antonio Rivera
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Boris Rosin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Iris Deitch-Harel
- Ophthalmology Department and Laboratory of Eye Research, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, Israel
| | - Ido Perlman
- Ophthalmology Division, Tel Aviv Medical Center, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hadas Mechoulam
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itay Chowers
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rina Leibu
- Department of Ophthalmology, Rambam Health Care Center, Haifa, Israel
| | - Tamar Ben-Yosef
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eran Pras
- Department of Ophthalmology, Assaf Harofeh Medical Center, Zerifin, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samer Khateb
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Bianco L, Arrigo A, Antropoli A, Saladino A, Aragona E, Bandello F, Parodi MB. Non-vasogenic cystoid maculopathy in autosomal recessive bestrophinopathy: novel insights from NIR-FAF and OCTA imaging. Ophthalmic Genet 2024; 45:44-50. [PMID: 37041716 DOI: 10.1080/13816810.2023.2191711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/11/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND Autosomal Recessive Bestrophinopathy (ARB) is an inherited retinal disease caused by biallelic mutations in the BEST1 gene. Herein, we report the multimodal imaging findings of ARB presenting with cystoid maculopathy and investigate the short-term response to combined systemic and topical carbonic anhydrase inhibitors (CAIs). MATERIAL AND METHODS An observational, prospective, case series on two siblings affected by ARB is presented. Patients underwent genetic testing and optical coherence tomography (OCT), blue-light fundus autofluorescence (BL-FAF), near-infrared fundus autofluorescence (NIR-FAF), fluorescein angiography (FA), MultiColor imaging, and OCT angiography (OCTA). RESULTS Two male siblings, aged 22 and 16, affected by ARB resulting from c.598C>T, p.(Arg200*) and c.728C>A, p.(Ala243Glu) BEST1 compound heterozygous variants, presented with bilateral multifocal yellowish pigment deposits scattered through the posterior pole that corresponded to hyperautofluorescent deposits on BL-FAF. Vice versa, NIR-FAF mainly disclosed wide hypoautofluorescent areas in the macula. A cystoid maculopathy and shallow subretinal fluid were evident on structural OCT, albeit without evidence of dye leakage or pooling on FA. OCTA demonstrated disruption of the choriocapillaris throughout the posterior pole and sparing of intraretinal capillary plexuses. Six months of combined therapy with oral acetazolamide and topical brinzolamide resulted in limited clinical benefit. CONCLUSIONS We reported two siblings affected by ARB, presenting as non-vasogenic cystoid maculopathy. Prominent alteration of NIR-FAF signal and concomitant choriocapillaris rarefaction on OCTA were noted in the macula. The limited short-term response to combined systemic and topical CAIs might be explained by the impairment of the RPE-CC complex.
Collapse
Affiliation(s)
- Lorenzo Bianco
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessio Antropoli
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Bandello
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
6
|
Dhoble P, Robson AG, Webster AR, Michaelides M. Typical best vitelliform dystrophy secondary to biallelic variants in BEST1. Ophthalmic Genet 2024; 45:38-43. [PMID: 36908234 DOI: 10.1080/13816810.2023.2188227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Pathogenic variants in BEST1 can cause autosomal dominant or autosomal recessive dystrophy, typically associated with distinct retinal phenotypes. In heterozygous cases, the disorder is commonly characterized by yellow sub-macular lesions in the early stages, known as Best vitelliform macular dystrophy (BVMD). Biallelic variants usually cause a more severe phenotype including diffuse retinal pigment epithelial irregularity and widespread generalized progressive retinopathy, known as autosomal recessive bestrophinopathy (ARB). This study describes three cases with clinical changes consistent with BVMD, however, unusually associated with autosomal recessive inheritance. MATERIALS AND METHODS Detailed ophthalmic workup included comprehensive ophthalmologic examination, multimodal retinal imaging, full-field and pattern electroretinography (ERG; PERG), and electrooculogram (EOG). Genetic analysis of probands and segregation testing and fundus examination of proband relatives was performed where possible. RESULTS Three unrelated cases presented with a clinical phenotype typical for BVMD and were found to have biallelic disease-causing variants in BEST1. PERG P50 and ERG were normal in all cases. The EOG was subnormal (probands 1 and 3) or normal/borderline (proband 2). Probands 1 and 2 were homozygous for the BEST1 missense variant c.139C>T, p.Arg47Cys, while proband 3 was homozygous for a deletion, c.536_538delACA, p.Asn179del. The parents of proband 1 were phenotypically normal. Parents of proband 1 and 2 were heterozygous for the same missense variant. CONCLUSIONS Individuals with biallelic variants in BEST1 can present with a phenotype indistinguishable from BVMD. The same clinical phenotype may not be evident in those harboring the same variants in the heterozygous state. This has implications for genetic counselling and prognosticationA.
Collapse
Affiliation(s)
- Pankaja Dhoble
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Anthony G Robson
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Andrew R Webster
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
7
|
Zhao B, Chen L, Zhang P, He K, Lei M, Zhang J. Autosomal recessive bestrophinopathy combined with neurofibromatosis type 1 in a patient. BMC Ophthalmol 2023; 23:151. [PMID: 37041514 PMCID: PMC10088182 DOI: 10.1186/s12886-023-02905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/05/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a multisystem genetic disorder that may affect multiple systems of the body. Autosomal recessive bestrophinopathy (ARB) is a rare retinal dystrophy caused by autosomal recessively mutations in bestrophin 1 (BEST1) gene. So far, we have not retrieved any case report of the same patient with both NF1 and BEST1 gene mutations. CASE PRESENTATION An 8-year-old female patient with café-au-lait spots, freckling on skin presented to our ophthalmology clinic for routine ophthalmological examination. Her best corrected visual acuity (BCVA) was 20/20 in both eyes. Slit-lamp examination of both eyes revealed few yellowish-brown dome-shaped Lisch nodules over the iris surface. Fundus examination was notable for bilateral confluent yellowish subretinal deposits at macula, few yellow flecks at temporal retina, and cup-to-disc ratio of 0.2. Optical coherence tomography (OCT) revealed subretinal fluid (SRF) involving the fovea, elongated photoreceptor outer segments and mild intraretinal fluid (IRF) at bilateral macula. Fundus autofluorescence demonstrated hyperautofluorescence in the area corresponding to the subretinal deposits. Whole-exome sequencing and Sanger sequencing were used to investigate genetic mutation in the patient and her parents. A BEST1 gene heterozygous missense c.604 C > T (p.Arg202Trp) was identified in the patient and her mother. Also, the patient carries an NF1 nonsense mutation c.6637 C > T (p.Gln2213*) with the mosaic generalized phenotype. There were no visual impairments or obvious neurological, musculoskeletal, behavioral or other symptoms in this patient, so she was managed conservatively and advised to follow up regularly for a long time. CONCLUSIONS ARB and NF1, which are caused by two different pathogenic gene mutations, have rarely coexisted in the same patient. The discovery of pathogenic gene mutations may play a crucial role in more accurate diagnostics and genetic consultations for individuals and their families.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Ophthalmology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, No.10 eastern section of the third fengcheng Road, Xi'an, 710018, China
| | - Lian Chen
- Department of Ophthalmology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, No.10 eastern section of the third fengcheng Road, Xi'an, 710018, China
| | - Peng Zhang
- Department of Ophthalmology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, No.10 eastern section of the third fengcheng Road, Xi'an, 710018, China.
| | - Ke He
- Department of Ophthalmology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, No.10 eastern section of the third fengcheng Road, Xi'an, 710018, China
| | - Min Lei
- Department of Ophthalmology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, No.10 eastern section of the third fengcheng Road, Xi'an, 710018, China
| | - Juan Zhang
- Department of Ophthalmology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, No.10 eastern section of the third fengcheng Road, Xi'an, 710018, China
| |
Collapse
|
8
|
Cideciyan AV, Jacobson SG, Sumaroka A, Swider M, Krishnan AK, Sheplock R, Garafalo AV, Guziewicz KE, Aguirre GD, Beltran WA, Matsui Y, Kondo M, Heon E. Photoreceptor function and structure in retinal degenerations caused by biallelic BEST1 mutations. Vision Res 2023; 203:108157. [PMID: 36450205 PMCID: PMC9825664 DOI: 10.1016/j.visres.2022.108157] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022]
Abstract
The only approved retinal gene therapy is for biallelic RPE65 mutations which cause a recessive retinopathy with a primary molecular defect located at the retinal pigment epithelium (RPE). For a distinct recessive RPE disease caused by biallelic BEST1 mutations, a pre-clinical proof-of-concept for gene therapy has been demonstrated in canine eyes. The current study was undertaken to consider potential outcome measures for a BEST1 clinical trial in patients demonstrating a classic autosomal recessive bestrophinopathy (ARB) phenotype. Spatial distribution of retinal structure showed a wide expanse of abnormalities including large intraretinal cysts, shallow serous retinal detachments, abnormalities of inner and outer segments, and an unusual prominence of the external limiting membrane. Surrounding the central macula extending from 7 to 30 deg eccentricity, outer nuclear layer was thicker than expected from a cone only retina and implied survival of many rod photoreceptors. Co-localized however, were large losses of rod sensitivity despite preserved cone sensitivities. The dissociation of rod function from rod structure observed, supports a large treatment potential in the paramacular region for biallelic bestrophinopathies.
Collapse
Affiliation(s)
- Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arun K Krishnan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca Sheplock
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra V Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karina E Guziewicz
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yoshitsugu Matsui
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 2L3, Canada
| |
Collapse
|
9
|
Haque OI, Chandrasekaran A, Nabi F, Ahmad O, Marques JP, Ahmad T. A novel compound heterozygous BEST1 gene mutation in two siblings causing autosomal recessive bestrophinopathy. BMC Ophthalmol 2022; 22:493. [PMID: 36527004 PMCID: PMC9756692 DOI: 10.1186/s12886-022-02703-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To describe the clinical features, imaging characteristics, and genetic test results associated with a novel compound heterozygous mutation of the BEST1 gene in two siblings with autosomal recessive bestrophinopathy. METHODS Two siblings underwent a complete ophthalmic examination, including dilated fundus examination, fundus photography, fundus autofluorescence imaging, spectral-domain optical coherence tomography, fluorescein angiography, electroretinography, and electrooculography. A clinical diagnosis of autosomal recessive bestrophinopathy was established based on ocular examination and multimodal retinal imaging. Subsequently, clinical exome sequencing consisting of a panel of 6670 genes was carried out to confirm the diagnosis and assess genetic alterations in the protein-coding region of the genome of the patients. The identified mutations were tested in the two affected siblings and one of their parents. RESULTS Two siblings (a 17-year-old female and a 15-year-old male) presented with reduced visual acuity and bilaterally symmetrical subretinal deposits of hyperautofluorescent materials in the posterior pole, which showed staining in the late phase of fluorescein angiogram. Spectral-domain optical coherence tomography demonstrated hyperreflective subretinal deposits and subretinal fluid accumulation. Both patients shared two mutations in the protein-coding region of the BEST1 gene, c.103G > A, p.(Glu35Lys) and c.313C > A, p.(Arg105Ser) (a novel disease-causing mutation). Sanger sequencing confirmed that the unaffected mother of the proband was carrying p.(Glu35Lys) variant in a heterozygous state. CONCLUSIONS We have identified and described the phenotype of a novel disease-causing mutation NM_004183.4:c.313C > A, p.(Arg105Ser) in a heterozygous state along with a previously reported mutation NM_004183.4:c.103G > A, p.(Glu35Lys) of the BEST1 gene in two related patients with autosomal recessive bestrophinopathy.
Collapse
Affiliation(s)
| | | | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Owais Ahmad
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - João Pedro Marques
- Ophthalmology Unit, Centro Hospitalar E Universitário de Coimbra (CHUC), Coimbra, Portugal
| | | |
Collapse
|
10
|
Microstructural changes of photoreceptor layers detected by ultrahigh-resolution SD-OCT in patients with autosomal recessive bestrophinopathy. Am J Ophthalmol Case Rep 2022; 28:101706. [PMID: 36187441 PMCID: PMC9523351 DOI: 10.1016/j.ajoc.2022.101706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To determine the changes in the microstructures of the photoreceptors in patients with autosomal recessive bestrophinopathy (ARB) by ultrahigh-resolution spectral-domain optical coherence tomography (UHR-SD-OCT). Methods Five eyes of 4 patients with ARB were studied. Cross-sectional images of the fovea were recorded by the UHR-SD-OCT system with a depth resolution of <2.0 μm. Results The UHR-SD-OCT images revealed changes in the outer retinal structures that were dependent on the severity of the photoreceptor atrophy. There was an increase in the reflectivity and appearance of small hyperreflective dots (HRDs) in the outer segments, followed by an irregularity and decrease in the length of the outer segments, then a disruption of the ellipsoid zone (EZ) band, and appearance of large HRDs corresponding to the segmented ellipsoids. Finally, there was a disappearance of the large HRDs followed by a localized thinning of the outer nuclear layer and appearance of hyperreflective foci above the region of the disrupted EZ. Conclusions UHR-SD-OCT can record images that show detailed changes of the microstructures of the photoreceptors at different stages of ARB. These observations should help in determining the mechanisms involved in retinal pathology and should provide important information on the effectiveness of treatments.
Collapse
|
11
|
Cideciyan AV, Jacobson SG, Swider M, Sumaroka A, Sheplock R, Krishnan AK, Garafalo AV, Guziewicz KE, Aguirre GD, Beltran WA, Heon E. Photoreceptor Function and Structure in Autosomal Dominant Vitelliform Macular Dystrophy Caused by BEST1 Mutations. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 36512348 DOI: 10.1167/iovs.63.13.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose The purpose of this study was to evaluate rod and cone function and outer retinal structure within macular lesions, and surrounding extralesional areas of patients with autosomal dominant Best vitelliform macular dystrophy caused by BEST1 mutations. Methods Seventeen patients from seven families were examined with dark- and light-adapted chromatic perimetry and optical coherence tomography. Subsets of patients had long-term follow-up (14-22 years, n = 6) and dark-adaptation kinetics measured (n = 5). Results Within central lesions with large serous retinal detachments, rod sensitivity was severely reduced but visual acuity and cone sensitivity were relatively retained. In surrounding extralesional areas, there was a mild but detectable widening of the subretinal space in some patients and some retinal areas. Available evidence was consistent with subretinal widening causing slower dark-adaptation kinetics. Over long-term follow-up, some eyes showed formation of de novo satellite lesions at retinal locations that years previously demonstrated subretinal widening. A subclinical abnormality consisting of a retina-wide mild thickening of the outer nuclear layer was evident in many patients and thickening increased in the subset of patients with long-term follow-up. Conclusions Outcome measures for future clinical trials should include evaluations of rod sensitivity within central lesions and quantitative measures of outer retinal structure in normal-appearing regions surrounding the lesions.
Collapse
Affiliation(s)
- Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Rebecca Sheplock
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Arun K Krishnan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexandra V Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Karina E Guziewicz
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Miyagi M, Takeuchi J, Koyanagi Y, Mizobuchi K, Hayashi T, Ito Y, Terasaki H, Nishiguchi KM, Ueno S. Clinical findings in eyes with BEST1-related retinopathy complicated by choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol 2021; 260:1125-1137. [PMID: 34661736 DOI: 10.1007/s00417-021-05447-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To determine the characteristics of eyes diagnosed with Best vitelliform macular dystrophy (BVMD) and autosomal recessive bestrophinopathy (ARB) complicated by choroidal neovascularization (CNV). METHODS This was a retrospective, multicenter observational case series. Fourteen genetically confirmed BVMD patients and 9 ARB patients who had been examined in 2 ophthalmological institutions in Japan were studied. The findings in a series of ophthalmic examinations including B-scan optical coherence tomography (OCT) and OCT angiography (OCTA) were reviewed. RESULTS CNV was identified in 5 eyes (17.9%) of BVMD patients and in 2 eyes (11.1%) of ARB patients. Three of 5 eyes with BVMD were classified as being at the vitelliruptive stage and 2 eyes at the atrophic stage. The CNV in 2 BVMD eyes were diagnosed as exudative because of acute visual acuity reduction, retinal hemorrhage, and intraretinal fluid, while the CNV in 3 BVMD eyes and 2 ARB eyes were diagnosed as non-exudative. The visual acuity of the two eyes with exudative CNV did not improve despite anti-VEGF treatments. None of the eyes with non-exudative CNV had a reduction of their visual acuity for at least 4 years. All of the CNV were located within hyperreflective materials which were detected in 16 eyes (57.1%) of the BVMD eyes and in 7 eyes (38.9%) of the ARB eyes. CONCLUSIONS CNV is a relatively common complication in BEST1-related retinopathy in Asian population as well. The prognosis of eyes with exudative CNV is not always good, and OCTA can detect CNV in eyes possessing hyperreflective materials.
Collapse
Affiliation(s)
- Mai Miyagi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Takeuchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasuki Ito
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Ophthalmology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
13
|
Pfister TA, Zein WM, Cukras CA, Sen HN, Maldonado RS, Huryn LA, Hufnagel RB. Phenotypic and Genetic Spectrum of Autosomal Recessive Bestrophinopathy and Best Vitelliform Macular Dystrophy. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 34015078 PMCID: PMC8142704 DOI: 10.1167/iovs.62.6.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Autosomal recessive bestrophinopathy (ARB) and vitelliform macular dystrophy (VMD) are distinct phenotypes, typically inherited through recessive and dominant patterns, respectively. Recessively inherited VMD (arVMD) has been reported, suggesting that dominant and recessive BEST1-related retinopathies represent a single disease spectrum. This study compares adVMD, arVMD, and ARB to determine whether a continuum exists and to define clinical and genetic features to aid diagnosis and management. Methods One arVMD patient and nine ARB patients underwent standard ophthalmic examination, imaging, electrophysiology, and genetic assessments. A meta-analysis of reported BEST1 variants was compiled, and clinical parameters were analyzed with regard to inheritance and phenotype. Results Among 10 patients with biallelic BEST1 variants, three novel ARB variants (p.Asp118Ala, p.Leu224Gln, p.Val273del) were discovered. A patient with homozygous p.Glu35Lys was clinically unique, presenting with VMD, including hyperautofluorescence extending beyond the macula, peripheral punctate lesions, and shortened axial-length. A tritan-axis color vision deficit was seen in three of six (50%) of ARB patients. Attempts to distinguish recessively-inherited ARB and dominantly-inherited VMD genotypically, by variant frequency and residue location, did not yield significant differences. Literature meta-analysis with principle component analysis of clinical features demonstrated a spectrum of disease with arVMD falling between adVMD and ARB. Conclusions This study suggests that arVMD is part of a continuum of autosomal recessive and dominant BEST1-related retinopathies. Detailed clinical and molecular assessments of this cohort and the literature are corroborated by unsupervised analysis, highlighting the overlapping heterogeneity among BEST1-associated clinical diagnoses. Tritan-axis color vision deficit is a previously unreported finding associated with ARB.
Collapse
Affiliation(s)
| | - Wadih M Zein
- National Eye Institute, Bethesda, Maryland, United States
| | | | - Hatice N Sen
- National Eye Institute, Bethesda, Maryland, United States
| | - Ramiro S Maldonado
- Department of Ophthalmology, University of Kentucky, Lexington, Kentucky, United States
| | | | | |
Collapse
|
14
|
Albuainain A, Alhatlan H, Alkhars W. A novel variant of autosomal recessive best vitelliform macular dystrophy and management of early-onset complications. Saudi J Ophthalmol 2021; 35:159-163. [PMID: 35391813 PMCID: PMC8982945 DOI: 10.4103/1319-4534.337863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/29/2020] [Accepted: 11/23/2020] [Indexed: 12/01/2022] Open
Abstract
To report an adult with autosomal recessive Best vitelliform macular dystrophy with a new homozygous BEST1 mutation, the management of a cystoid macular edema with intravitreal aflibercept in the proband, and the findings in the parents, carriers of heterozygous BEST1 mutations. A 28-year-old female presented with blurry andreduced vision in her both eyes with bilateral vitelliform macular lesions. The patient's parents were also examined. Examinations included electrooculogram (EOGs), imaging studies, and BEST1 gene testing. Interventions included treatment with intravitreal aflibercept for both eyes. The patient presented with visual acuity of 20/20 OD 20/30 OS, RPE changes, multifocal subretinal yellowish deposits resembling vitelliform deposits and subretinal fluids. Cystoid macular edema developed after one month, causing vision reduction (20/28 OD 20/30 OS). Visual acuity recovered to 20/20 OU after serial intravitreal aflibercept injections. The proband showed subnormal EOG Arden ratios. Molecular testing showed the homozygous missense variant c.695T>G p. (IIe232Ser) In exon 6 of the BEST1 mutations and to the best of our knowledge, this variant, which was confirmed by conventional Sanger sequencing, has neither been annotated in databases nor been described in the literature so for (Human Genome Molecular Database 2018.1). In the heterozygous parents, EOGs were subnormal, and minimal autofluorescence changes were seen.
Collapse
|
15
|
Clinical Heterogeneity in Autosomal Recessive Bestrophinopathy with Biallelic Mutations in the BEST1 Gene. Int J Mol Sci 2020; 21:ijms21249353. [PMID: 33302512 PMCID: PMC7763028 DOI: 10.3390/ijms21249353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Autosomal recessive bestrophinopathy (ARB) has been reported as clinically heterogeneous. Eighteen patients (mean age: 22.5 years; 15 unrelated families) underwent ophthalmological examination, fundus photography, fundus autofluorescence, and optical coherence tomography (OCT). Molecular genetic testing of the BEST1 gene was conducted by the chain-terminating dideoxynucleotide Sanger methodology. Onset of symptoms (3 to 50 years of age) and best-corrected visual acuity (0.02–1.0) were highly variable. Ophthalmoscopic and retinal imaging defined five phenotypes. Phenotype I presented with single or confluent yellow lesions at the posterior pole and midperiphery, serous retinal detachment, and intraretinal cystoid spaces. In phenotype II fleck-like lesions were smaller and extended to the far periphery. Phenotype III showed a widespread continuous lesion with sharp peripheral demarcation. Single (phenotype IV) or multifocal (phenotype V) vitelliform macular dystrophy-like lesions were observed as well. Phenotypes varied within families and in two eyes of one patient. In addition, OCT detected hyperreflective foci (13/36 eyes) and choroidal excavation (11/36). Biallelic mutations were identified in each patient, six of which have not been reported so far [c.454C>T/p.(Pro152Ser), c.620T>A/p.(Leu207His), c.287_298del/p.(Gln96_Asn99del), c.199_200del/p.(Leu67Valfs*164), c.524del/p.(Ser175Thrfs*19), c.590_615del/p.(Leu197Profs*26)]. BEST1-associated ARB presents with a variable age of onset and clinical findings, that can be categorized in 5 clinical phenotypes. Hyperreflective foci and choroidal excavation frequently develop as secondary manifestations.
Collapse
|
16
|
Casalino G, Khan KN, Armengol M, Wright G, Pontikos N, Georgiou M, Webster AR, Robson AG, Grewal PS, Michaelides M. Autosomal Recessive Bestrophinopathy: Clinical Features, Natural History, and Genetic Findings in Preparation for Clinical Trials. Ophthalmology 2020; 128:706-718. [PMID: 33039401 PMCID: PMC8062850 DOI: 10.1016/j.ophtha.2020.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/11/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022] Open
Abstract
Purpose To investigate the clinical course, genetic findings, and phenotypic spectrum of autosomal recessive bestrophinopathy (ARB) in a large cohort of children and adults. Design Retrospective case series. Participants Patients with a detailed clinical phenotype consistent with ARB, biallelic likely disease-causing sequence variants in the BEST1 gene, or both identified at a single tertiary referral center. Methods Review of case notes, retinal imaging (color fundus photography, fundus autofluorescence, OCT), electrophysiologic assessment, and molecular genetic testing. Main Outcome Measures Visual acuity (VA), retinal imaging, and electrophysiologic changes over time. Results Fifty-six eyes of 28 unrelated patients were included. Compound heterozygous variants were detected in most patients (19/27), with 6 alleles recurring in apparently unrelated individuals, the most common of which was c.422G→A, p.(Arg141His; n = 4 patients). Mean presenting VA was 0.52 ± 0.36 logarithm of the minimum angle of resolution (logMAR), and final VA was 0.81 ± 0.75 logMAR (P = 0.06). The mean rate of change in VA was 0.05 ± 0.13 logMAR/year. A significant change in VA was detected in patients with a follow-up of 5 years or more (n = 18) compared with patients with a follow-up of 5 years or less (n = 10; P = 0.001). Presence of subretinal fluid and vitelliform material were early findings in most patients, and this did not change substantially over time. A reduction in central retinal thickness was detected in most eyes (80.4%) over the course of follow-up. Many patients (10/26) showed evidence of generalized rod and cone system dysfunction. These patients were older (P < 0.001) and had worse VA (P = 0.02) than those with normal full-field electroretinography results. Conclusions Although patients with ARB are presumed to have no functioning bestrophin channels, significant phenotypic heterogeneity is evident. The clinical course is characterized by a progressive loss of vision with a slow rate of decline, providing a wide therapeutic window for anticipated future treatment strategies.
Collapse
Affiliation(s)
- Giuseppe Casalino
- Moorfields Eye Hospital NHS Foundation Trust, and UCL Institute of Ophthalmology, University College London, London, United Kingdom; Oftalmico Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Kamron N Khan
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Monica Armengol
- Guy's and St. Thomas' Hospital NHS Foundation Trust, London, United Kingdom
| | - Genevieve Wright
- Moorfields Eye Hospital NHS Foundation Trust, and UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Nikolas Pontikos
- Moorfields Eye Hospital NHS Foundation Trust, and UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Michalis Georgiou
- Moorfields Eye Hospital NHS Foundation Trust, and UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Andrew R Webster
- Moorfields Eye Hospital NHS Foundation Trust, and UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Anthony G Robson
- Moorfields Eye Hospital NHS Foundation Trust, and UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Parampal S Grewal
- Moorfields Eye Hospital NHS Foundation Trust, and UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust, and UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| |
Collapse
|
17
|
IMAGING OF VITELLIFORM MACULAR LESIONS USING POLARIZATION-SENSITIVE OPTICAL COHERENCE TOMOGRAPHY. Retina 2020; 39:558-569. [PMID: 29215532 DOI: 10.1097/iae.0000000000001987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To examine the involvement of the retinal pigment epithelium (RPE) in the presence of vitelliform macular lesions (VML) in Best vitelliform macular dystrophy (BVMD), autosomal recessive bestrophinopathy, and adult-onset vitelliform macular degeneration using polarization-sensitive optical coherence tomography (PS-OCT). METHODS A total of 35 eyes of 18 patients were imaged using a PS-OCT system and blue light fundus autofluorescence imaging. Pathogenic mutations in the BEST1 gene, 3 of which were new, were detected in all patients with BVMD and autosomal recessive bestrophinopathy. RESULTS Polarization-sensitive optical coherence tomography showed a characteristic pattern in all three diseases with nondepolarizing material in the subretinal space consistent with the yellowish VML seen on funduscopy with a visible RPE line below it. A focal RPE thickening was seen in 26 eyes under or at the edge of the VML. Retinal pigment epithelium thickness outside the VML was normal or mildly thinned in patients with BVMD and adult-onset vitelliform macular degeneration but was diffusely thinned or atrophic in patients with autosomal recessive bestrophinopathy. Patients with autosomal recessive bestrophinopathy showed sub-RPE fibrosis alongside the subretinal VML. Polarization-sensitive optical coherence tomography was more reliable in assessing the localization and the integrity of the RPE than spectral domain OCT alone. On spectral domain OCT, identification of the RPE was not possible in 19.4% of eyes. Polarization-sensitive optical coherence tomography allowed for definite identification of the location of VML in respect to the RPE in all eyes, since it provides a tissue-specific contrast. CONCLUSION Polarization-sensitive optical coherence tomography confirms in vivo the subretinal location of VML and is useful in the assessment of RPE integrity.
Collapse
|
18
|
Habibi I, Falfoul Y, Todorova MG, Wyrsch S, Vaclavik V, Helfenstein M, Turki A, El Matri K, El Matri L, Schorderet DF. Clinical and Genetic Findings of Autosomal Recessive Bestrophinopathy (ARB). Genes (Basel) 2019; 10:genes10120953. [PMID: 31766397 PMCID: PMC6947566 DOI: 10.3390/genes10120953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022] Open
Abstract
Mutations in BEST1 cause several phenotypes including autosomal dominant (AD) Best vitelliform macular dystrophy type 2 (BVMD), AD vitreo-retino-choroidopathy (ADVIRC), and retinitis pigmentosa-50 (RP50). A rare subtype of Bestrophinopathy exists with biallelic mutations in BEST1. Its frequency is estimated to be 1/1,000,000 individuals. Here we report 6 families and searched for a genotype-phenotype correlation. All patients were referred due to reduced best-corrected visual acuity (BCVA), ranging from 0.1/10 to 3/10. They all showed vitelliform lesions located at the macula, sometimes extending into the midperiphery, along the vessels and the optic disc. Onset of the disease varied from the age of 3 to 25 years. Electrooculogram (EOG) revealed reduction in the EOG light rise in all patients. Molecular analysis revealed previously reported mutations p.(E35K);(E35K), p.(L31M);(L31M), p.(R141H);(A195V), p.(R202W);(R202W), and p.(Q220*);(Q220*) in five families. One family showed a novel mutation: p.(E167G);(E167G). All mutations were heterozygous in the parents. In one family, heterozygous children showed various reductions in the EOG light rise and autofluorescent deposits. Autosomal recessive Bestrophinopathy (ARB), although rare, can be recognized by its phenotype and should be validated by molecular analysis. Genotype-phenotype correlations are difficult to establish and will require the analysis of additional cases.
Collapse
Affiliation(s)
- Imen Habibi
- IRO-Institute for Research in Ophthalmology, 1950 Sion, Switzerland
- Correspondence: ; Tel.: +41-272057900; Fax: +41-272057901
| | - Yosra Falfoul
- Oculogenetic Laboratory LR14SP01, Hedi Rais Institute of Ophthalmology (Department B), Tunis 1007, Tunisia
| | - Margarita G. Todorova
- Department of Ophthalmology, Cantonal Hospital St. Gallen, 9000 St. Gallen, Switzerland
- Department of Ophthalmology, University of Basel, 4000 Basel, Switzerland
| | - Stefan Wyrsch
- Eye Clinic, Lucerne Cantonal Hospital, 6000 Lucerne, Switzerland
| | | | | | - Ahmed Turki
- Oculogenetic Laboratory LR14SP01, Hedi Rais Institute of Ophthalmology (Department B), Tunis 1007, Tunisia
| | - Khaled El Matri
- Oculogenetic Laboratory LR14SP01, Hedi Rais Institute of Ophthalmology (Department B), Tunis 1007, Tunisia
| | - Leila El Matri
- Oculogenetic Laboratory LR14SP01, Hedi Rais Institute of Ophthalmology (Department B), Tunis 1007, Tunisia
| | - Daniel F. Schorderet
- IRO-Institute for Research in Ophthalmology, 1950 Sion, Switzerland
- Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland
- Faculty of Life Sciences, Ecole polytechnique fédérale de Lausanne, 1004 Lausanne, Switzerland
| |
Collapse
|
19
|
Witsberger E, Marmorstein A, Pulido J. Diffuse Outer Layer Opacification: A Novel Finding in Patients With Autosomal Recessive Bestrophinopathy. Asia Pac J Ophthalmol (Phila) 2019; 8:469-475. [PMID: 31789649 PMCID: PMC6903339 DOI: 10.1097/apo.0000000000000261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Autosomal recessive bestrophinopathy (ARB) is a rare inherited retinal dystrophy resulted from mutations in bestrophin-1 (BEST1) which affect functioning of the retinal pigment epithelium (RPE). Descriptions of disease findings in patients with ARB to date have focused only on macular changes. In this case series, we report previously undescribed mid-peripheral retinal changes occurring in 4 patients with ARB. DESIGN Case series. METHODS A single-center, retrospective review of medical records from Mayo Clinic patients with ARB was performed. Imaging reviewed include fundus photography, fundus autofluorescence, spectral domain optical coherence tomography (OCT), and fluorescein angiography. Demographic information and disease progression were noted. RESULTS 4 affected patients from 3 families were identified. All 4 patients were female, and mean age was 12.5 years (range 5-19 years). Diffuse mid-peripheral whitening was consistently noted on fundus photography. Concomitant OCT imaging demonstrated areas of hyperreflectivity in the photoreceptor outer segment layer in areas corresponding to whitening seen on fundus photography. In 1 patient who was followed for 12 years, this finding persisted. Subretinal fluid was also consistently present. Other pathologic imaging findings observed in each patient were in agreement with previous reports of ARB. CONCLUSIONS This is the first descriptive report of pathologic findings occurred beyond the posterior pole in patients with ARB. These mid-peripheral retinal changes potentially imply that the entirety of the RPE is affected by mutations in BEST1, as also suggested by previous electro-oculogram (EOG) findings. Such implications will be important when developing treatment trials, as past trials have focused only on the posterior pole of the RPE.
Collapse
|
20
|
Jaffal L, Joumaa WH, Assi A, Helou C, Condroyer C, El Dor M, Cherfan G, Zeitz C, Audo I, Zibara K, El Shamieh S. Novel Missense Mutations in BEST1 Are Associated with Bestrophinopathies in Lebanese Patients. Genes (Basel) 2019; 10:genes10020151. [PMID: 30781664 PMCID: PMC6409913 DOI: 10.3390/genes10020151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/25/2022] Open
Abstract
To identify Bestrophin 1 (BEST1) causative mutations in six Lebanese patients from three families, of whom four had a presumed clinical diagnosis of autosomal recessive bestrophinopathy (ARB) and two showed a phenotype with a single vitelliform lesion, patients were subjected to standard ophthalmic examinations. In addition, BEST1 exons and their flanking regions were amplified and sequenced by Sanger sequencing. Co-segregation and detailed bio-informatic analyses were performed. Clinical examination results were consistent with ARB diagnosis for all index patients showing multifocal vitelliform lesions and a markedly reduced light peak in the electrooculogram, including the two patients with a single vitelliform lesion. In all cases, most likely disease-causing BEST1 mutations co-segregated with the phenotype. The ARB cases showed homozygous missense variants (M1, c.209A>G, p.(Asp70Gly) in exon 3, M2, c.1403C>T; p.(Pro468Leu) in exon 10 and M3, c.830C>T, p.(Thr277Met) in exon 7), while the two patients with a single vitelliform lesion were compound heterozygous for M1 and M2. To our knowledge, this is the first study describing mutations in Lebanese patients with bestrophinopathy, where novel biallelic BEST1 mutations associated with two phenotypes were identified. Homozygous mutations were associated with multifocal lesions, subretinal fluid, and intraretinal cysts, whereas compound heterozygous ones were responsible for a single macular vitelliform lesion.
Collapse
Affiliation(s)
- Lama Jaffal
- Department of Biological and Environmental Sciences, Faculty of Science, Beirut Arab University, Debbieh 1107 2809, Lebanon.
| | - Wissam H Joumaa
- Rammal Hassan Rammal Research Laboratory, PhyToxE research group, Department of Life and Earth Sciences, Faculty of Sciences, Lebanese University, Nabatieh 1700, Lebanon.
| | - Alexandre Assi
- Retinal Service, Beirut Eye & ENT Specialist Hospital, Beirut 1106, Lebanon.
| | - Charles Helou
- Retinal Service, Beirut Eye & ENT Specialist Hospital, Beirut 1106, Lebanon.
| | - Christel Condroyer
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| | - Maya El Dor
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| | - Georges Cherfan
- Retinal Service, Beirut Eye & ENT Specialist Hospital, Beirut 1106, Lebanon.
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, F-75012 Paris, France.
- University College London Institute of Ophthalmology, London EC1V 9EL, UK.
| | - Kazem Zibara
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
- ER045, PRASE, DSST, Lebanese University, Beirut, Lebanon.
| | - Said El Shamieh
- Rammal Hassan Rammal Research Laboratory, PhyToxE research group, Department of Life and Earth Sciences, Faculty of Sciences, Lebanese University, Nabatieh 1700, Lebanon.
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut 1107 2809, Lebanon.
| |
Collapse
|
21
|
Clinical and Mutation Analysis of Patients with Best Vitelliform Macular Dystrophy or Autosomal Recessive Bestrophinopathy in Chinese Population. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4582816. [PMID: 30498755 PMCID: PMC6220750 DOI: 10.1155/2018/4582816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/21/2018] [Accepted: 09/19/2018] [Indexed: 12/18/2022]
Abstract
Mutations in the gene BEST1 usually cause bestrophinopathies, such as the rare progressive diseases Best vitelliform macular dystrophy (BVMD) and autosomal recessive bestrophinopathy (ARB). This study aimed to investigate the clinical characteristics of patients with BVMD or ARB carrying BEST1 mutations. A total of 12 probands including 9 patients with a clinical diagnosis of BVMD and 3 patients with a clinical diagnosis of ARB were recruited for genetics analysis. All patients underwent detailed ophthalmic examination. All coding exons of the BEST1 gene were screened by PCR-based DNA sequencing. Programs of PolyPhen-2, SIFT, and MutationTaster were used to analyze the potential pathogenicity of the mutations in BEST1. In the 9 unrelated patients with BVMD, one heterozygous BEST1 mutation was revealed in 8 patients and two compound heterozygous mutations in 1 patient. In the 3 unrelated patients with ARB, two compound heterozygous mutations were revealed in 2 patients and three compound heterozygous mutations in 1 patient. Molecular analyses identified a total of 15 mutations, including 3 novel mutations (c.424A>G p.S142G, c.436G>A p.A146T, and c.155T>C p.L52P). Antivascular endothelial growth factor (VEGF) drugs were given to two affected eyes, especially those also exhibiting choroidal neovascularization (CNV), and no serious adverse events occurred. Our study indicates that there is wide genotypic and phenotypic variability in patients with BVMD or ARB in China. The screening of BEST1 gene is significant for the precise diagnosis of BVMD and ARB.
Collapse
|
22
|
Next generation sequencing identifies novel disease-associated BEST1 mutations in Bestrophinopathy patients. Sci Rep 2018; 8:10176. [PMID: 29976937 PMCID: PMC6033935 DOI: 10.1038/s41598-018-27951-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/13/2018] [Indexed: 12/30/2022] Open
Abstract
Bestinopathies are a spectrum of retinal disorders associated with mutations in BEST1 including autosomal recessive bestrophinopathy (ARB) and autosomal dominant Best vitelliform macular dystrophy (BVMD). We applied whole-exome sequencing on four unrelated Indian families comprising eight affected and twelve unaffected individuals. We identified five mutations in BEST1, including p.Tyr131Cys in family A, p.Arg150Pro in family B, p.Arg47His and p.Val216Ile in family C and p.Thr91Ile in family D. Among these, p.Tyr131Cys, p.Arg150Pro and p.Val216Ile have not been previously reported. Further, the inheritance pattern of BEST1 mutations in the families confirmed the diagnosis of ARB in probands in families A, B and C, while the inheritance of heterozygous BEST1 mutation in family D (p.Thr91Ile) was suggestive of BVMD. Interestingly, the ARB families A and B carry homozygous mutations while family C was a compound heterozygote with a mutation in an alternate BEST1 transcript isoform, highlighting a role for alternate BEST1 transcripts in bestrophinopathy. In the BVMD family D, the heterozygous BEST1 mutation found in the proband was also found in the asymptomatic parent, suggesting an incomplete penetrance and/or the presence of additional genetic modifiers. Our report expands the list of pathogenic BEST1 genotypes and the associated clinical diagnosis.
Collapse
|
23
|
BEST1 gene therapy corrects a diffuse retina-wide microdetachment modulated by light exposure. Proc Natl Acad Sci U S A 2018; 115:E2839-E2848. [PMID: 29507198 PMCID: PMC5866594 DOI: 10.1073/pnas.1720662115] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One of the most common forms of monogenic macular degeneration worldwide is caused by dominant or recessive bestrophinopathies associated with mutations in the BEST1 gene. Disease expression is known to start with a retina-wide electrophysiological defect leading to localized vitelliform and atrophic lesions and vision loss. To develop lasting therapies for this incurable disease, there is a need for greater understanding of the early pathophysiology before lesion formation. Here we find that the loss of retinal pigment epithelium apical microvilli and resulting microdetachment of the retina represent the earliest features of canine bestrophinopathies. We show that retinal light exposure expands, and dark adaptation contracts, the microdetachments. Subretinal adeno-associated virus-based gene therapy corrects both the vitelliform lesions and the light-modulated microdetachments. Mutations in the BEST1 gene cause detachment of the retina and degeneration of photoreceptor (PR) cells due to a primary channelopathy in the neighboring retinal pigment epithelium (RPE) cells. The pathophysiology of the interaction between RPE and PR cells preceding the formation of retinal detachment remains not well-understood. Our studies of molecular pathology in the canine BEST1 disease model revealed retina-wide abnormalities at the RPE-PR interface associated with defects in the RPE microvillar ensheathment and a cone PR-associated insoluble interphotoreceptor matrix. In vivo imaging demonstrated a retina-wide RPE–PR microdetachment, which contracted with dark adaptation and expanded upon exposure to a moderate intensity of light. Subretinal BEST1 gene augmentation therapy using adeno-associated virus 2 reversed not only clinically detectable subretinal lesions but also the diffuse microdetachments. Immunohistochemical analyses showed correction of the structural alterations at the RPE–PR interface in areas with BEST1 transgene expression. Successful treatment effects were demonstrated in three different canine BEST1 genotypes with vector titers in the 0.1-to-5E11 vector genomes per mL range. Patients with biallelic BEST1 mutations exhibited large regions of retinal lamination defects, severe PR sensitivity loss, and slowing of the retinoid cycle. Human translation of canine BEST1 gene therapy success in reversal of macro- and microdetachments through restoration of cytoarchitecture at the RPE–PR interface has promise to result in improved visual function and prevent disease progression in patients affected with bestrophinopathies.
Collapse
|
24
|
Abdalla YF, De Salvo G, Elsahn A, Self JE. Novel Presenting Phenotype in a Child With Autosomal Dominant Best's Vitelliform Macular Dystrophy. Ophthalmic Surg Lasers Imaging Retina 2017; 48:580-585. [PMID: 28728185 DOI: 10.3928/23258160-20170630-10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/07/2017] [Indexed: 11/20/2022]
Abstract
Best's macular dystrophy (BMD) usually manifests with visual failure in the first or second decade of life; however, there is a large variability in expressivity of the disease, and some patients have no manifestation other than a pathological electro-oculogram (EOG). Autosomal dominant Best's vitelliform macular dystrophy (AD-BVMD) has a very specific phenotype that varies with the stage of the disease. In recent years, the authors have seen description of another clinical entity known as autosomal recessive BMD. Herein, the authors describe a 5-year-old girl referred from a peripheral hospital for investigation with a positive family history of BMD. Clinical findings included best-corrected visual acuity of 0.325 and 0.300 in the right and left eyes, respectively, by Sonksen logMar test, full color vision, normal orthoptic examination, and a small degree of hyperopia consistent with age. Macular optical coherence tomography (OCT) showed intraretinal fluid cysts and EOG showed reduced Arden ratio. Genetic testing was done for the proband and her father, who were found to be heterozygous for c.37C>T p. (Arg13Cys). The proband's younger sister will be reviewed and followed up once of age. The authors identified a new phenotype of AD-BVMD; although this is a single patient, more young children with BMD can now be scanned with the availability of hand-held OCT with better knowledge of the phenotype. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:580-585.].
Collapse
|
25
|
Hardin JS, Schaefer GB, Sallam AB, Williams MK, Uwaydat S. A unique case series of autosomal recessive bestrophinopathy exhibiting multigenerational inheritance. Ophthalmic Genet 2017; 38:570-574. [PMID: 28481155 DOI: 10.1080/13816810.2017.1318926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Autosomal recessive bestrophinopathy (ARB) is a retinal disease caused by biallelic mutations of the BEST1 gene. It has a variable phenotype with white flecks in the retina, multifocal yellow subretinal deposits, macular edema, choroidal neovascularization, hyperopia, and electrophysiological abnormalities. We describe a family with ARB and multigenerational inheritance. METHODS Three generations of a Middle Eastern family (a woman, one son, and two grandchildren) were evaluated by our ocular genetics team. Eye examinations, fundus photography, and optical coherence tomography (OCT) were performed. Genetic testing was obtained on examined patients and available relatives. RESULTS The proband demonstrated counting fingers vision and white flecks in the retinal periphery, with macular subretinal fluid (SRF), loss of outer photoreceptor segments, and epiretinal membrane (ERM) on OCT. Two grandchildren demonstrated decreased vision, multifocal yellow subretinal deposits, and SRF on OCT. Two grandchildren examined elsewhere were reported to be similarly affected. A son's examination was normal except for extra-macular scars (from prior toxoplasmosis) and ERM. Genetic history revealed consanguinity and testing showed homozygosity for BEST1 mutations in the proband and two grandchildren c.473G>A/c.473G>A (R218H /R218H) and heterozygosity in two unaffected sons and two unaffected daughters-in-law c.473G>A/WT (p.R218H/WT). DISCUSSION We present a consanguineous family of five affected individuals with ARB and four confirmed carriers. Their pedigree was consistent with dominant inheritance and incomplete penetrance. Genetic testing clarified the diagnosis and mode of inheritance. We describe the genetic findings, phenotypic variability, and recessive inheritance of an often dominantly inherited mutation as notable elements in their case.
Collapse
Affiliation(s)
- Joshua S Hardin
- a Jones Eye Institute, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - G Bradley Schaefer
- b Section of Genetics and Metabolism , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Ahmed B Sallam
- a Jones Eye Institute, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - M Kathryn Williams
- b Section of Genetics and Metabolism , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Sami Uwaydat
- a Jones Eye Institute, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| |
Collapse
|
26
|
Guziewicz KE, Sinha D, Gómez NM, Zorych K, Dutrow EV, Dhingra A, Mullins RF, Stone EM, Gamm DM, Boesze-Battaglia K, Aguirre GD. Bestrophinopathy: An RPE-photoreceptor interface disease. Prog Retin Eye Res 2017; 58:70-88. [PMID: 28111324 PMCID: PMC5441932 DOI: 10.1016/j.preteyeres.2017.01.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
Bestrophinopathies, one of the most common forms of inherited macular degenerations, are caused by mutations in the BEST1 gene expressed in the retinal pigment epithelium (RPE). Both human and canine BEST1-linked maculopathies are characterized by abnormal accumulation of autofluorescent material within RPE cells and bilateral macular or multifocal lesions; however, the specific mechanism leading to the formation of these lesions remains unclear. We now provide an overview of the current state of knowledge on the molecular pathology of bestrophinopathies, and explore factors promoting formation of RPE-neuroretinal separations, using the first spontaneous animal model of BEST1-associated retinopathies, canine Best (cBest). Here, we characterize the nature of the autofluorescent RPE cell inclusions and report matching spectral signatures of RPE-associated fluorophores between human and canine retinae, indicating an analogous composition of endogenous RPE deposits in Best Vitelliform Macular Dystrophy (BVMD) patients and its canine disease model. This study also exposes a range of biochemical and structural abnormalities at the RPE-photoreceptor interface related to the impaired cone-associated microvillar ensheathment and compromised insoluble interphotoreceptor matrix (IPM), the major pathological culprits responsible for weakening of the RPE-neuroretina interactions, and consequently, formation of vitelliform lesions. These salient alterations detected at the RPE apical domain in cBest as well as in BVMD- and ARB-hiPSC-RPE model systems provide novel insights into the pathological mechanism of BEST1-linked disorders that will allow for development of critical outcome measures guiding therapeutic strategies for bestrophinopathies.
Collapse
Affiliation(s)
- Karina E Guziewicz
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA.
| | - Divya Sinha
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Néstor M Gómez
- Department of Anatomy & Cell Biology, School of Dental Medicine, University of Pennsylvania, PA 19104, USA
| | - Kathryn Zorych
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA
| | - Emily V Dutrow
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA
| | - Anuradha Dhingra
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, PA 19104, USA
| | - Robert F Mullins
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Edwin M Stone
- Department of Ophthalmology & Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - David M Gamm
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Gustavo D Aguirre
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, PA 19104, USA
| |
Collapse
|
27
|
Uggenti C, Briant K, Streit AK, Thomson S, Koay YH, Baines RA, Swanton E, Manson FD. Restoration of mutant bestrophin-1 expression, localisation and function in a polarised epithelial cell model. Dis Model Mech 2016; 9:1317-1328. [PMID: 27519691 PMCID: PMC5117222 DOI: 10.1242/dmm.024216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 07/21/2016] [Indexed: 01/13/2023] Open
Abstract
Autosomal recessive bestrophinopathy (ARB) is a retinopathy caused by mutations in the bestrophin-1 protein, which is thought to function as a Ca2+-gated Cl− channel in the basolateral surface of the retinal pigment epithelium (RPE). Using a stably transfected polarised epithelial cell model, we show that four ARB mutant bestrophin-1 proteins were mislocalised and subjected to proteasomal degradation. In contrast to the wild-type bestrophin-1, each of the four mutant proteins also failed to conduct Cl− ions in transiently transfected cells as determined by whole-cell patch clamp. We demonstrate that a combination of two clinically approved drugs, bortezomib and 4-phenylbutyrate (4PBA), successfully restored the expression and localisation of all four ARB mutant bestrophin-1 proteins. Importantly, the Cl− conductance function of each of the mutant bestrophin-1 proteins was fully restored to that of wild-type bestrophin-1 by treatment of cells with 4PBA alone. The functional rescue achieved with 4PBA is significant because it suggests that this drug, which is already approved for long-term use in infants and adults, might represent a promising therapy for the treatment of ARB and other bestrophinopathies resulting from missense mutations in BEST1. Summary: Chemical chaperone 4PBA fully restores Cl− conductance activity for mutant bestrophin-1 proteins associated with inherited retinal dystrophy, autosomal recessive bestrophinopathy.
Collapse
Affiliation(s)
- Carolina Uggenti
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Kit Briant
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Anne-Kathrin Streit
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Steven Thomson
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Yee Hui Koay
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Richard A Baines
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Eileithyia Swanton
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Forbes D Manson
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
28
|
Nakanishi A, Ueno S, Hayashi T, Katagiri S, Kominami T, Ito Y, Gekka T, Masuda Y, Tsuneoka H, Shinoda K, Hirakata A, Inoue M, Fujinami K, Tsunoda K, Iwata T, Terasaki H. Clinical and Genetic Findings of Autosomal Recessive Bestrophinopathy in Japanese Cohort. Am J Ophthalmol 2016; 168:86-94. [PMID: 27163236 DOI: 10.1016/j.ajo.2016.04.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/18/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE To report the clinical and genetic findings of 9 Japanese patients with autosomal recessive bestrophinopathy (ARB). DESIGN Retrospective, multicenter observational case series. METHODS Nine ARB patients from 7 unrelated Japanese families that were examined in 3 institutions in Japan were studied. A series of ophthalmic examinations including fundus photography, spectral-domain optical coherence tomography, fundus autofluorescence, electrooculography (EOG), electroretinography, and the results of genetic analysis were reviewed. RESULTS Genetic analyses identified 7 pathogenic variants in BEST1 including 2 novel variants, c.478G>C (p.A160P) and c.948+1delG. Homozygous variants were found in 4 families and compound heterozygous variants were found in 3 families. Two patients were diagnosed as ARB only after the whole exome sequencing analyses. The Arden ratio of the EOG was less than 1.5 in all 7 patients tested. Vitelliform lesions typical for Best vitelliform macular dystrophy were not seen in any of the patients. Seven patients shared some of the previously described features of ARB: subretinal deposits, extensive subretinal fluid, and cystoid macular edema (CME). However, the other 2 patients with severe retinal degeneration lacked these features. Focal choroidal excavations were present bilaterally in 2 patients. One case had a marked reduction of the CME and expansion of subretinal deposits over an 8-year of follow-up period. CONCLUSIONS Japanese ARB patients had some but not all of the previously described features. Genetic analyses are essential to diagnose ARB correctly in consequence of considerable phenotypic variations.
Collapse
|
29
|
Kubota D, Gocho K, Akeo K, Kikuchi S, Sugahara M, Matsumoto CS, Shinoda K, Mizota A, Yamaki K, Takahashi H, Kameya S. Detailed analysis of family with autosomal recessive bestrophinopathy associated with new BEST1 mutation. Doc Ophthalmol 2016; 132:233-43. [PMID: 27071392 PMCID: PMC4880638 DOI: 10.1007/s10633-016-9540-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/07/2016] [Indexed: 11/26/2022]
Abstract
Purpose To describe the clinical and genetic findings in a patient with autosomal recessive bestrophinopathy (ARB) and his healthy parents. Methods The patient and his healthy non-consanguineous parents underwent detailed ophthalmic evaluations including electro-oculography (EOG), spectral-domain optical coherence tomography (SD-OCT), and fundus autofluorescence (FAF) imaging. Mutation analysis of the BEST1 gene was performed by Sanger sequencing. Results The FAF images showed multiple spots of increased autofluorescence, and the sites of these spots corresponded to the yellowish deposits detected by ophthalmoscopy. SD-OCT showed cystoid macular changes and a shallow serous macular detachment. The Arden ratio of the EOG was markedly reduced to 1.1 in both eyes. Genetic analysis of the proband detected two sequence variants of the BEST1 gene in the heterozygous state: a novel variant c.717delG, p.V239VfsX2 and an already described c.763C>T, p.R255W variant associated with Best vitelliform macular dystrophy and ARB. The proband’s father carried the c.717delG, p.V239VfsX2 variant in the heterozygous state, and the mother carried the c.763C>T, p.R255W variant in the heterozygous state. The parents who were heterozygous for the BEST1 variants had normal visual acuity, EOG, SD-OCT, and FAF images. Conclusions In a truncating BEST1 mutation, the phenotype associated with ARB is most likely due to a marked decrease in the expression of BEST1 promoted by the nonsense-mediated decay surveillance mechanism, and it may depend on the position of the premature termination of the codon created.
Collapse
Affiliation(s)
- Daiki Kubota
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan
| | - Kiyoko Gocho
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan
| | - Keiichiro Akeo
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan
| | - Sachiko Kikuchi
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan
| | - Michitaka Sugahara
- Inoue Eye Clinic, 4-3 Surugadai, Kanda, Chiyoda-ku, Tokyo, 101-0062, Japan
- Sugahara Eye Clinic, 1-13-3, Minami-senju, Arakawa-ku, Tokyo, 116-0003, Japan
| | - Celso Soiti Matsumoto
- Department of Ophthalmology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kei Shinoda
- Department of Ophthalmology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Atsushi Mizota
- Department of Ophthalmology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kunihiko Yamaki
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan
| | - Hiroshi Takahashi
- Department of Ophthalmology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Shuhei Kameya
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba, 270-1694, Japan.
| |
Collapse
|
30
|
Abstract
PURPOSE To report the ocular phenotype in patients with autosomal recessive bestrophinopathy and carriers, and to describe novel BEST1 mutations. METHODS Patients with clinically suspected and subsequently genetically proven autosomal recessive bestrophinopathy underwent full ophthalmic examination and investigation with fundus autofluorescence imaging, spectral domain optical coherence tomography, electroretinography, and electrooculography. Mutation analysis of the BEST1 gene was performed through direct Sanger sequencing. RESULTS Five affected patients from four families were identified. Mean age was 16 years (range, 6-42 years). All affected patients presented with reduced visual acuity and bilateral, hyperautofluorescent subretinal yellowish deposits within the posterior pole. Spectral domain optical coherence tomography demonstrated submacular fluid and subretinal vitelliform material in all patients. A cystoid maculopathy was seen in all but one patient. In 1 patient, the location of the vitelliform material was seen to change over a follow-up period of 3 years despite relatively stable vision. Visual acuity and fundus changes were unresponsive to topical and systemic carbonic anhydrase inhibitors and systemic steroids. Carriers had normal ocular examinations including normal fundus autofluorescence. Three novel mutations were detected. CONCLUSION Three novel BEST1 mutations are described, suggesting that many deleterious variants in BEST1 resulting in haploinsufficiency are still unknown. Mutations causing autosomal recessive bestrophinopathy are mostly located outside of the exons that usually harbor vitelliform macular dystrophy-associated dominant mutations.
Collapse
|
31
|
Wivestad Jansson R, Berland S, Bredrup C, Austeng D, Andréasson S, Wittström E. Biallelic Mutations in the BEST1 Gene: Additional Families with Autosomal Recessive Bestrophinopathy. Ophthalmic Genet 2015; 37:183-93. [PMID: 26333019 DOI: 10.3109/13816810.2015.1020558] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE To describe the genotype and phenotype of patients with autosomal recessive bestrophinopathy (ARB), and heterozygous carriers. METHODS The members of three unrelated ARB families were investigated. Molecular genetic analysis was performed on 11 members of these families. Ten members were examined clinically; including visual acuity, slit-lamp examination, biomicroscopy, fundus photography, and Goldmann applanation tonometry. Measurements were also made of the anterior chamber depth and axial length, and optical coherence tomography (OCT), electrooculography (EOG), and full-field electroretinography (full-field ERG) were performed. Multifocal electroretinography (mfERG) was performed on eight members of these families. RESULTS Two novel combinations of missense mutations in the BEST1 gene were identified: p.R141H/p.M325T in three patients with ARB in two unrelated Norwegian families, and p.R141H/p.I201T was found in an ARB patient in a Swedish family. All four patients with ARB had clinical and electrophysiological features of ARB. All the heterozygous carriers of the p.R141H mutation were clinically normal, and showed normal OCT, EOG and full-field ERG findings, but had mildly abnormal mfERG results. Only one heterozygous carrier of the p.M325T mutation was studied and he was clinically normal, showing normal OCT and full-field ERG results, but subnormal EOG and mfERG findings. The heterozygous carrier of the p.I201T mutation was clinically normal, showing normal OCT, EOG and full-field ERG results, but subnormal mfERG results. CONCLUSIONS We have shown that the two novel combinations of compound heterozygous mutations p.R141H/p.M325T and p.R141H/p.I201T in the BEST1 gene can also lead to the ARB phenotype.
Collapse
Affiliation(s)
- Ragnhild Wivestad Jansson
- a Department of Clinical Medicine , Section of Ophthalmology, University of Bergen , Bergen , Norway .,b Department of Ophthalmology , Haukeland University Hospital , Bergen , Norway
| | - Siren Berland
- c Department of Pathology , Section of Clinical Genetics, St. Olav's Hospital , Trondheim , Norway
| | - Cecilie Bredrup
- b Department of Ophthalmology , Haukeland University Hospital , Bergen , Norway
| | - Dordi Austeng
- d Department of Ophthalmology , Trondheim University Hospital , Trondheim , Norway , and
| | - Sten Andréasson
- e Department of Ophthalmology , Lund University , Lund , Sweden
| | | |
Collapse
|
32
|
Katagiri S, Hayashi T, Ohkuma Y, Sekiryu T, Takeuchi T, Gekka T, Kondo M, Iwata T, Tsuneoka H. Mutation analysis of BEST1 in Japanese patients with Best's vitelliform macular dystrophy. Br J Ophthalmol 2015. [PMID: 26201355 DOI: 10.1136/bjophthalmol-2015-306830] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE To describe the clinical and genetic features of Japanese patients with Best's vitelliform macular dystrophy (BVMD). PATIENTS AND METHODS This study examined 22 patients, including 16 probands from 16 families with BVMD. Comprehensive ophthalmic examinations were performed, including dilated funduscopy, full-field electroretinography (ERG) and electro-oculography (EOG). BEST1 mutation analysis was performed by Sanger sequencing. RESULTS All 16 probands exhibited characteristic BVMD fundus appearances, abnormal EOG, and normal ERG responses with the exception of one diabetic retinopathy proband. Genetic analysis identified 12 BEST1 variants in 13 probands (81%). Of these, 10 variants (p.T2A, p.R25W, p.F80L, p.V81M, p.A195V, p.R218H, p.G222E, p.V242M, p.D304del and p.E306D) have been previously reported in BVMD, while two variants (p.S7N and p.P346H) were novel, putative disease-causing variants. Single BEST1 variants were found in 12 probands. The one proband with compound heterozygous variants (p.S7N and p.R218H) exhibited typical BVMD phenotypes (pseudohypopyon stage and vitelliruptive stage in the right and left eyes, respectively). CONCLUSIONS Twelve different variants, two of which (p.S7N and p.P346H) were novel, were identified in the 13 Japanese families with BVMD. Compound heterozygous variants were found in one proband exhibiting a typical BVMD phenotype. Our results suggest that BEST1 variants do play a large role in Japanese patients with BVMD.
Collapse
Affiliation(s)
- Satoshi Katagiri
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasuhiro Ohkuma
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tetsuju Sekiryu
- Department of Ophthalmology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomokazu Takeuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tamaki Gekka
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University School of Medicine, Mie, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Hiroshi Tsuneoka
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
33
|
Best vitelliform macular dystrophy: literature review. Open Med (Wars) 2014. [DOI: 10.2478/s11536-013-0333-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractBest vitelliform macular dystrophy (BVD) is a slowly progressive form of macular dystrophy. In most cases this disease begins in childhood although sometimes it can develop in later age. The diagnosis of BVD is based on family history, clinical and electrophysiological findings. Clinical signs are variable, yet the majority of patients have a typical yellow yolk-like macular lesion in the eye fundus. Lesions are usually bilateral, but in rare cases can be unilateral. Atrophy of the macula may develop after many years. The mutations responsible for Best vitelliform macular dystrophy are found in a gene called VMD2, which encodes a transmembrane protein named bestrophin-1 (hBest1) that is a Ca2+-sensitive chloride channel. Most reported cases causing the disease are in exons 2, 4, 6 and 8 in patients with BVD. In this article we discuss the etiology of Best’s vitelliform macular dystrophy, clinical presentation, diagnostics, genetic and current treatment possibilities.
Collapse
|
34
|
Abstract
PURPOSE To report a case of Best vitelliform macular dystrophy complicated by macular hole. METHODS History and clinical examination, electroretinogram, and optical coherence tomography. RESULTS We report a case of a 20-year-old boy with progressive visual loss in his left eye. In fundus examination, there was a typical vitelliform lesion in the right eye and a macular hole in the left eye. The electroretinogram Arden ratio was <1.1 in both eyes. Optical coherence tomography revealed deposition of hyperreflective material and hyporeflective area between the junction of the inner segment and outer segment of the photoreceptors and the retinal pigment epithelium in the right eye, and large full-thickness macular hole with cystoid changes in the retinal layers in the left eye. There was no associated retinal detachment. CONCLUSION Although extremely rare, macular hole should be considered as a cause of the significant visual loss in patients with Best vitelliform macular dystrophy.
Collapse
|
35
|
Crowley C, Paterson R, Lamey T, McLaren T, De Roach J, Chelva E, Khan J. Autosomal recessive bestrophinopathy associated with angle-closure glaucoma. Doc Ophthalmol 2014; 129:57-63. [PMID: 24859690 PMCID: PMC4074353 DOI: 10.1007/s10633-014-9444-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/12/2014] [Indexed: 11/26/2022]
Abstract
PURPOSE Abnormalities in the BEST1 gene have recently been recognised as causing autosomal recessive bestrophinopathy (ARB). ARB has been noted to have a variable phenotypic presentation, distinct from that of autosomal dominant Best vitelliform macular dystrophy (BVMD). Both conditions are associated with deposits in the retina, a reduced or absent electro-oculography (EOG) light rise, and the risk of developing angle-closure glaucoma. Herein, we describe the clinical and genetic characteristics of a young male diagnosed with ARB associated with angle-closure glaucoma resulting from a novel homozygous mutation in BEST1. METHODS All research involved in this case adhered to the tenets of the Declaration of Helsinki. The proband underwent slitlamp examination, retinal autofluorescence imaging and optical coherence tomography after presenting with deteriorating vision. The findings prompted genetic testing with bi-directional DNA sequencing of coding and flanking intronic regions of BEST1. The proband's family members were subsequently screened. RESULTS A provisional diagnosis of ARB was made based on the findings of subretinal and schitic lesions on fundoscopy and retinal imaging, together with abnormal EOG and electroretinography. Genetic testing identified a novel homozygous mutation in BEST1, c.636+1 G>A. Family members were found to carry one copy of the mutation and had no clinical or electrophysiological evidence of disease. The proband was additionally diagnosed with angle-closure glaucoma requiring topical therapy, peripheral iridotomies and phacoemulsification. CONCLUSIONS Phenotypic overlap, reduced penetrance, variable expressivity and the ongoing discovery of new forms of bestrophinopathies add to the difficulty in distinguishing these retinal diseases. All patients diagnosed with ARB or BVMD should be examined for narrow angles and glaucoma, given their frequent association with these conditions.
Collapse
Affiliation(s)
- C Crowley
- Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, WA, 6009, Australia,
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Adult-onset foveomacular vitelliform dystrophy (AOFVD) is a clinically heterogeneous maculopathy that may mimic other conditions and be difficult to diagnose. It is characterized by late onset, slow progression and high variability in morphologic and functional alterations. Diagnostic evaluation should include careful ophthalmoscopy and imaging studies. The typical ophthalmoscopic findings are bilateral, asymmetric, foveal or perifoveal, yellow, solitary, round to oval elevated subretinal lesions, often with central pigmentation. The lesions characteristically demonstrate increased autofluorescence and hypofluorescent lesions surrounded by irregular annular hyperfluorescence on fluorescein angiography. Optical coherence tomography studies demonstrate homogenous or heterogeneous hyperreflective material between the retinal pigment epithelium and the neurosensory retina. The visual prognosis is generally favorable, but visual loss can occur from chorioretinal atrophy and choroidal neovascularization.
Collapse
|
37
|
Moskova-Doumanova V, Pankov R, Lalchev Z, Doumanov J. Best1 Shot Through the Eye—Structure, Functions and Clinical Implications of Bestrophin-1 Protein. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
Sharon D, Al-Hamdani S, Engelsberg K, Mizrahi-Meissonnier L, Obolensky A, Banin E, Sander B, Jensen H, Larsen M, Schatz P. Ocular phenotype analysis of a family with biallelic mutations in the BEST1 gene. Am J Ophthalmol 2014; 157:697-709.e1-2. [PMID: 24345323 DOI: 10.1016/j.ajo.2013.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/04/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE To investigate the genetic cause and perform a comprehensive clinical analysis of a Danish family with autosomal recessive bestrophinopathy; to investigate whether Bestrophin may be expressed in normal human retina. DESIGN Retrospective clinical and molecular genetic analysis and immunohistochemical observational study. METHODS setting: National referral center. participants: A family with 5 individuals and biallelic BEST1 mutations, and enucleated eyes from 2 individuals with nonaffected retinas. observation procedures: Molecular genetic analysis included sequencing of BEST1 and co-segregation analysis. Clinical investigations included electro-oculography, full-field electroretinography, multifocal electroretinography, spectral-domain optical coherence tomography, and fundus autofluorescence imaging. Immunohistochemical analysis was performed. main outcome measures: BEST1 mutations, imaging findings, electroretinography amplitudes, and implicit times. RESULTS The index case was compound heterozygous for p.A195V and a novel 15 base pair deletion leading to p.Q238L. The index case at age 10 demonstrated multifocal vitelliform changes that were hyperautofluorescent, cystoid macular edema in the inner nuclear layer, no light rise in the electro-oculography, and a reduced central but preserved peripheral retinal function by multifocal electroretinography. Full-field electroretinography demonstrated a reduced rod response and inner retina dysfunction. Retinal structure was normal in all 3 family members who carried a sequence change in BEST1. Electro-oculography light peak was reduced in both the mother and sister (heterozygous for p.Q238L). Immunohistochemistry could not confirm the presence of Bestrophin in normal human retina. CONCLUSIONS Because of a relatively well preserved retinal function, autosomal recessive bestrophinopathy may be a suitable first candidate, among the BEST1-related ocular conditions, for gene replacement therapy.
Collapse
|
39
|
Pasquay C, Wang LF, Lorenz B, Preising MN. Bestrophin 1 – Phenotypes and Functional Aspects in Bestrophinopathies. Ophthalmic Genet 2013; 36:193-212. [DOI: 10.3109/13816810.2013.863945] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Johnson AA, Lee YS, Stanton JB, Yu K, Hartzell CH, Marmorstein LY, Marmorstein AD. Differential effects of Best disease causing missense mutations on bestrophin-1 trafficking. Hum Mol Genet 2013; 22:4688-97. [PMID: 23825107 DOI: 10.1093/hmg/ddt316] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in bestrophin-1 (Best1) cause Best vitelliform macular dystrophy (BVMD), a dominantly inherited retinal degenerative disease. Best1 is a homo-oligomeric anion channel localized to the basolateral surface of retinal pigment epithelial (RPE) cells. A number of Best1 mutants mislocalize in Madin-Darby canine kidney (MDCK) cells. However, many proteins traffic differently in MDCK and RPE cells, and MDCK cells do not express endogenous Best1. Thus, effects of Best1 mutations on localization in MDCK cells may not translate to RPE cells. To determine whether BVMD causing mutations affect Best1 localization, we compared localization and oligomerization of Best1 with Best1 mutants V9M, W93C, and R218C. In MDCK cells, Best1 and Best1(R218C) were basolaterally localized. Best1(W93C) and Best1(V9M) accumulated in cells. In cultured fetal human retinal pigment epithelium cells (fhRPE) expressing endogenous Best1, Best1(R218C) and Best1(W93C) were basolateral. Best1(V9M) was intracellular. All three mutants exhibited similar fluorescence resonance energy transfer (FRET) efficiencies to, and co-immunoprecipitated with Best1, indicating unimpaired oligomerization. When human Best1 was expressed in RPE in mouse eyes it was basolaterally localized. However, Best1(V9M) accumulated in intracellular compartments in mouse RPE. Co-expression of Best1 and Best1(W93C) in MDCK cells resulted in basolateral localization of both Best1 and Best1(W93C), but co-expression of Best1 with Best1(V9M) resulted in mislocalization of both proteins. We conclude that different mutations in Best1 cause differential effects on its localization and that this effect varies with the presence or absence of wild-type (WT) Best1. Furthermore, MDCK cells can substitute for RPE when examining the effects of BVMD causing mutations on Best1 localization if co-expressed with WT Best1.
Collapse
|
41
|
|
42
|
Frequency, genotype, and clinical spectrum of best vitelliform macular dystrophy: data from a national center in Denmark. Am J Ophthalmol 2012; 154:403-412.e4. [PMID: 22633354 DOI: 10.1016/j.ajo.2012.02.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 02/24/2012] [Accepted: 02/28/2012] [Indexed: 11/22/2022]
Abstract
PURPOSE To estimate the prevalence, genotype, and clinical spectrum of Best vitelliform macular dystrophy (Best disease). DESIGN Retrospective epidemiologic and clinical and molecular genetic observational study. METHODS setting: National referral center. participants: Forty-five individuals diagnosed with Best disease. observation procedures: Retrospective review of patients diagnosed according to clinical findings and sequencing of BEST1. Patients with recently established molecular genetic diagnosis were followed up including multifocal electroretinography (mfERG), spectral-domain optical coherence tomography (SD-OCT), and fundus autofluorescence (FAF) imaging. main outcome measures:BEST1 mutations, SD-OCT and FAF findings, mfERG amplitudes, prevalence estimate of Best disease. RESULTS BEST1 mutations described previously in Danish patients with Best disease are reviewed. In addition, we identified a further 8 families and 1 sporadic case, in whom 6 BEST1 missense mutations were found, 4 of which are novel. The mutation c.904G>T (p.Asp302Asn) was identified in members of 4 unrelated families. Structural alterations ranged from precipitate-like alterations at the level of the photoreceptor outer segments (OS) to choroidal neovascularization. The extent of the former correlated with the reduction of retinal function. A prevalence estimate of Best disease in Denmark based on the number of diagnosed cases was 1.5 per 100 000 individuals. CONCLUSIONS Our data expand the mutation spectrum of BEST1 in patients with Best disease. Alterations of the OS overlying lesions with subretinal fluid are similar to those seen in central serous retinopathy and may indicate impaired turnover of OS. Our frequency estimate confirms that Best disease is one of the most common causes of early macular degeneration.
Collapse
|
43
|
Cascavilla ML, Querques G, Stenirri S, Battaglia Parodi M, Querques L, Bandello F. Unilateral vitelliform phenotype in autosomal recessive bestrophinopathy. Ophthalmic Res 2012; 48:146-50. [PMID: 22584882 DOI: 10.1159/000338750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2012] [Indexed: 11/19/2022]
Abstract
AIMS It was the aim of this study to report on a patient in whom a novel mutation in the BEST1 gene was responsible for unilateral vitelliform phenotype in autosomal recessive bestrophinopathy (ARB). METHODS An 8-year-old young girl (proband) with unilateral vitelliform phenotype underwent a complete ophthalmologic examination at baseline (time of diagnosis) and 2 years later. Genomic DNA was extracted to look for BEST1 gene mutations in the patient and her parents. RESULTS Fundus autofluorescence imaging and spectral-domain optical coherence tomography showed unchanged findings in the right eye over the 2-year follow-up period. Conversely, both fundus autofluorescence imaging and spectral-domain optical coherence tomography showed a partial reabsorption of the hyper-autofluorescent/hyper-reflective subretinal material in the left macula over the 2-year follow-up period. On BEST1 gene analysis, the patient presented a novel mutation c.535_537delAAC (p.Asn179del) in homozygous condition; interestingly, despite the absence of parents' consanguinity, both the father and mother showed the same novel mutation in heterozygous condition. CONCLUSION This case of unilateral vitelliform phenotype further supports the notion that ARB represents a disease spectrum in terms of severity, age at onset and heritability.
Collapse
Affiliation(s)
- Maria Lucia Cascavilla
- Department of Ophthalmology, University Vita Salute San Raffaele, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | |
Collapse
|
44
|
A novel compound heterozygous mutation in the BEST1 gene causes autosomal recessive Best vitelliform macular dystrophy. Eye (Lond) 2012; 26:866-71. [PMID: 22422030 DOI: 10.1038/eye.2012.27] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To determine the genetic basis of early onset autosomal recessive Best vitelliform macular dystrophy (arBVMD) in a family with three affected children. DESIGN Clinical and family-based genetic study. METHODS Seven subjects making up a family with three children affected by Best vitelliform macular dystrophy were studied. Standard ophthalmic exam with dilated ophthalmoscopy and imaging were performed in each individual. The eleven exons of BEST1 were directly sequenced. RESULTS All three affected children have the clinical characteristic features of Best vitelliform macular dystrophy: large macular vitelliform lesions, scattered vitelliform lesions along the arcades and in the peripheral retina, and an accumulation of serous retinal fluid. A novel compound heterozygous mutation in the BEST1 gene was found in the three affected individuals (L41P and I201T). The unaffected parents and children only harbor one heterozygous mutation. CONCLUSION arBVMD can be caused by the compound heterozygous mutation L41P and I201T in the BEST1 gene.
Collapse
|
45
|
MacDonald IM, Gudiseva HV, Villanueva A, Greve M, Caruso R, Ayyagari R. Phenotype and genotype of patients with autosomal recessive bestrophinopathy. Ophthalmic Genet 2011; 33:123-9. [PMID: 21809908 DOI: 10.3109/13816810.2011.592172] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To describe the phenotype and genotype of patients with autosomal recessive bestrophinopathy. METHODOLOGY The phenotype of the subjects was described after a complete ophthalmological examination, and in various cases, ancillary testing of the visual field, optical coherent tomography, full field electroretinography and electrophysiology. Genetic analysis was carried out by screening the Bestrophin-1 (BEST1) gene for mutations by dideoxy sequencing and segregation analysis. RESULTS We identified three previously described mutations (Ala195Val, Leu191Pro and Arg141His) and two potentially pathogenic changes (Trp93Pro and Trp287Ter) in the Best-1 gene. Two patients carried compound heterozygous mutations, Trp93Pro/Ala195Val, and Leu191Pro/Trp287Ter. Two sisters were homozygous for an Arg141His mutation. All individuals with Best1 gene mutations had signs of maculopathy. CONCLUSIONS Our observations expand the limited number of phenotypes associated with mutations in the Best1 gene. Patients with compound heteroyzygous Best1 mutations developed atypical forms of Best disease. Two siblings with homozygous Arg141His mutation developed symptoms of typical Best vitelliform dystrophy while their parents had clinical features of mild maculopathy.
Collapse
|
46
|
Guziewicz KE, Slavik J, Lindauer SJP, Aguirre GD, Zangerl B. Molecular consequences of BEST1 gene mutations in canine multifocal retinopathy predict functional implications for human bestrophinopathies. Invest Ophthalmol Vis Sci 2011; 52:4497-505. [PMID: 21498618 DOI: 10.1167/iovs.10-6385] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Bestrophin-1 gene (BEST1) mutations are responsible for a broad spectrum of human retinal phenotypes, jointly called bestrophinopathies. Canine multifocal retinopathy (cmr), caused by mutations in the dog gene ortholog, shares numerous phenotypic features with human BEST1-associated disorders. The purpose of this study was the assessment of molecular consequences and pathogenic outcomes of the cmr1 (C(73)T/R(25)X) premature termination and the cmr2 (G(482)A/G(161)D) missense mutation of the canine model compared with the C(87)G/Y(29)X mutation observed in human patients. METHODS Dogs carrying the BEST1 mutation were introduced into a breeding colony and used to produce either carrier or affected offspring. Eyes were collected immediately after euthanatization at the disease-relevant ages and were harvested for expression studies. In parallel, an in vitro cell culture model system was developed and compared with in vivo RESULTS RESULTS The results demonstrate that cmr1 and human C(87)G-mutated transcripts bypass the nonsense-mediated mRNA decay machinery, suggesting the AUG proximity effect as an underlying transcriptional mechanism. The truncated protein, however, is not detectable in either species. The in vitro model accurately recapitulates transcriptional and translational expression events observed in vivo and, thus, implies loss of bestrophin-1 function in cmr1-dogs and Y(29)X-affected patients. Immunofluorescence microscopy of cmr2 mutant showed mislocalization of the protein. CONCLUSIONS Molecular evaluation of cmr mutations in vivo and in vitro constitutes the next step toward elucidating genotype-phenotype interactions concerning human bestrophinopathies and emphasizes the importance of the canine models for studying the complexity of the BEST1 disease mechanism.
Collapse
Affiliation(s)
- Karina E Guziewicz
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6010, USA
| | | | | | | | | |
Collapse
|
47
|
Autosomal recessive vitelliform macular dystrophy in a large cohort of vitelliform macular dystrophy patients. Retina 2011; 31:581-95. [PMID: 21273940 DOI: 10.1097/iae.0b013e318203ee60] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To report 11 cases of autosomal recessive vitelliform macular dystrophy and to compare their molecular findings and phenotypic characteristics with those of patients with the more common and well-described dominant form of the disease. METHODS Blood samples were obtained from 435 unrelated individuals with a clinical diagnosis of vitelliform macular dystrophy and screened for mutations in the coding sequences of BEST1. Medical records and retinal photographs of selected patients were reviewed. RESULTS Nine of the 435 probands were found to have 2 plausible disease-causing variations in BEST1, while 198 individuals were found to have heterozygous variations compatible with autosomal dominant inheritance. Inheritance phase was determined in three of the recessive families. Six novel disease-causing mutations were identified among these recessive patients: Arg47Cys, IVS7-2A>G, IVS7+4G>A, Ile205del12ATCCTGCTCCAGAG, Pro274Arg, and Ile366delCAGGTGTGGC. Forty-four novel disease-causing mutations were identified among the patients with presumed autosomal dominant disease. The phenotype of patients with recessive alleles for BEST1 ranged from typical vitelliform lesions to extensive extramacular deposits. CONCLUSION The authors provide evidence that two abnormal BEST1 alleles, neither of which causes macular disease alone, can act in concert to cause early-onset vitelliform macular dystrophy.
Collapse
|
48
|
Wittström E, Ponjavic V, Bondeson ML, Andréasson S. Anterior Segment Abnormalities and Angle-Closure Glaucoma in a Family with a Mutation in theBEST1Gene and Best Vitelliform Macular Dystrophy. Ophthalmic Genet 2011; 32:217-27. [DOI: 10.3109/13816810.2011.567884] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Guerriero S, Preising MN, Ciccolella N, Causio F, Lorenz B, Fischetto R. Autosomal recessive bestrophinopathy: new observations on the retinal phenotype - clinical and molecular report of an Italian family. Ophthalmologica 2011; 225:228-35. [PMID: 21412020 DOI: 10.1159/000324472] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 01/21/2011] [Indexed: 11/19/2022]
Abstract
PURPOSE To describe the genotype and phenotype in a 9-year-old boy with bilateral retinopathy. METHODS The patient, his healthy (by history) nonconsanguineous parents and his sister were examined by best-corrected visual acuity, matrix frequency doubling technology, monocular static field analysis, fundus autofluorescence imaging, optical coherence tomography, Ganzfeld electroretinography (ERG), pattern ERG, multifocal ERG, electro-oculography and genotyping of the BEST1 gene. RESULTS The patient presented with an Arden ratio of 1.25, an unremarkable ERG and fluorescent yellow deposits distributed throughout the fundus suggestive of autosomal recessive bestrophinopathy (ARB). Genotyping revealed a homozygous nonsense mutation in BEST1 (p.R200X). The parents and the sister, who were heterozygous mutation carriers, presented with normal ophthalmological function. CONCLUSIONS ARB is a rare retinal disorder. We contribute a novel patient report indicative of ARB, assessed by clinical examination and confirmed by genotyping of BEST1, to the short list of ARB cases in the literature.
Collapse
Affiliation(s)
- S Guerriero
- Departments of Ophthalmology and ORL, University of Bari, Italy.
| | | | | | | | | | | |
Collapse
|
50
|
Meunier I, Sénéchal A, Dhaenens CM, Arndt C, Puech B, Defoort-Dhellemmes S, Manes G, Chazalette D, Mazoir E, Bocquet B, Hamel CP. Systematic screening of BEST1 and PRPH2 in juvenile and adult vitelliform macular dystrophies: a rationale for molecular analysis. Ophthalmology 2011; 118:1130-6. [PMID: 21269699 DOI: 10.1016/j.ophtha.2010.10.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To evaluate a genetic approach of BEST1 and PRPH2 screening according to age of onset, family history, and Arden ratio in patients with juvenile vitelliform macular dystrophy (VMD2) or adult-onset vitelliform macular dystrophy (AVMD), which are characterized by autofluorescent deposits. DESIGN Clinical, electrophysiologic, and molecular retrospective study. PARTICIPANTS The database of a clinic specialized in genetic sensory diseases was screened for patients with macular vitelliform dystrophy. Patients with an age of onset less than 40 years were included in the VMD2 group (25 unrelated patients), and patients with an age of onset more than 40 years were included in the AVMD group (19 unrelated patients). METHODS Clinical, fundus photography, and electro-oculogram (EOG) findings were reviewed. Mutation screening of BEST1 and PRPH2 genes was systematically performed. MAIN OUTCOME MEASURES Relevance of age of onset, family history, and Arden ratio were reviewed. RESULTS Patients with VMD2 carried a BEST1 mutation in 60% of the cases. Seven novel mutations in BEST1 (p.V9L, p.F80V, p.I73V, p.R130S, pF298C, pD302A, and p.179delN) were found. Patients with VMD2 with a positive family history or a reduced Arden ratio carried a BEST1 mutation in 70.5% of cases and in 83% if both criteria were fulfilled. Patients with AVMD carried a PRPH2 mutation in 10.5% of cases and did not carry a BEST1 mutation. The probability of finding a PRPH2 mutation increased in the case of a family history (2/5 patients). Electro-oculogram was normal in 3 of 15 patients with BEST1 mutations and reduced in the 3 patients with PRPH2 mutations. CONCLUSIONS Age of onset is a major criterion to distinguish VMD2 from AVMD. Electro-oculogram is not as relevant because decreased or normal Arden ratios have been associated with mutations in both genes and diseases. A positive family history increased the probability of finding a mutation. BEST1 screening should be recommended to patients with an age of onset less than 40 years, and PRPH2 screening should be recommended to patients with an age of onset more than 40 years. For an onset between 30 and 40 years, PRPH2 can be screened if no mutation has been detected in BEST1. FINANCIAL DISCLOSURE(S) The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Isabelle Meunier
- Centre de Référence Maladies Sensorielles Génétiques, Hôpital Gui de Chauliac, Montpellier, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|