1
|
A neural model of vulnerability and resilience to stress-related disorders linked to differential susceptibility. Mol Psychiatry 2022; 27:514-524. [PMID: 33649455 DOI: 10.1038/s41380-021-01047-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
Expert opinion remains divided concerning the impact of putative risk factors on vulnerability to depression and other stress-related disorders. A large body of literature has investigated gene by environment interactions, particularly between the serotonin transporter polymorphism (5-HTTLPR) and negative environments, on the risk for depression. However, fewer studies have simultaneously investigated the outcomes in both negative and positive environments, which could explain some of the inconclusive findings. This is embodied by the concept of differential susceptibility, i.e., the idea that certain common gene polymorphisms, prenatal factors, and traits make some individuals not only disproportionately more susceptible and responsive to negative, vulnerability-promoting environments, but also more sensitive and responsive to positive, resilience-enhancing environmental conditions. Although this concept from the field of developmental psychology is well accepted and supported by behavioral findings, it is striking that its implementation in neuropsychiatric research is limited and that underlying neural mechanisms are virtually unknown. Based on neuroimaging studies that examined how factors mediating differential susceptibility affect brain function, we posit that environmental sensitivity manifests in increased salience network activity, increased salience and default mode network connectivity, and increased salience and central executive network connectivity. These changes in network function may bring about automatic exogenous attention for positive and negative stimuli and flexible attentional set-shifting. We conclude with a call to action; unraveling the neural mechanisms through which differential susceptibility factors mediate vulnerability and resilience may lead us to personalized preventive interventions.
Collapse
|
2
|
Bellia F, Vismara M, Annunzi E, Cifani C, Benatti B, Dell'Osso B, D'Addario C. Genetic and epigenetic architecture of Obsessive-Compulsive Disorder: In search of possible diagnostic and prognostic biomarkers. J Psychiatr Res 2021; 137:554-571. [PMID: 33213890 DOI: 10.1016/j.jpsychires.2020.10.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Obsessive-Compulsive Disorder (OCD) is a prevalent and severe clinical condition whose hallmarks are excessive, unwanted thoughts (obsessions) and repetitive behaviors (compulsions). The onset of symptoms generally occurs during pre-adult life and typically affects subjects in different aspects of their life's, compromising social and professional relationships. Although robust evidence suggests a genetic component in the etiopathogenesis of OCD, the causes of the disorder are still not completely understood. It is thus of relevance to take into account how genes interact with environmental risk factors, thought to be mediated by epigenetic mechanisms. We here provide an overview of genetic and epigenetic mechanisms of OCD, focusing on the modulation of key central nervous system genes, in the attempt to suggest possible disease biomarkers.
Collapse
Affiliation(s)
- Fabio Bellia
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | - Matteo Vismara
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milano, Italy
| | - Eugenia Annunzi
- Faculty of Bioscience, University of Teramo, Teramo, Italy; Department of Neuroscience, Imaging and Clinical Sciences, Gabriele D'Annunzio University, Chieti, Italy
| | - Carlo Cifani
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Beatrice Benatti
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milano, Italy; CRC "Aldo Ravelli", University of Milan, Milano, Italy
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milano, Italy; CRC "Aldo Ravelli", University of Milan, Milano, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA.
| | - Claudio D'Addario
- Faculty of Bioscience, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Wood J, LaPalombara Z, Ahmari SE. Monoamine abnormalities in the SAPAP3 knockout model of obsessive-compulsive disorder-related behaviour. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0023. [PMID: 29352023 DOI: 10.1098/rstb.2017.0023] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2017] [Indexed: 01/05/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a leading cause of illness-related disability, but the neural mechanisms underlying OCD symptoms are unclear. One potential mechanism of OCD pathology is monoamine dysregulation. Because of the difficulty of studying monoamine signalling in patients, animal models offer a viable alternative to understanding this aspect of OCD pathophysiology. We used HPLC to characterize post-mortem monoamine levels in lateral orbitofrontal cortex (OFC), medial OFC, medial prefrontal cortex and dorsal and ventral striatum of SAPAP-3 knockout (KO) mice, a well-validated model of compulsive-like behaviours in OCD. As predicted from previous studies, excessive grooming was significantly increased in SAPAP-3 KO mice. Overall levels of the serotonin metabolite 5-hydroxyindoleacetic acid (HIAA) and the ratio of 5HIAA/serotonin (serotonin turnover) were increased in all cortical and striatal regions examined. In addition, dihydroxyphenylacetic acid/dopamine ratio was increased in lateral OFC, and HVA/dopamine ratio was increased in lateral and medial OFC. No baseline differences in serotonin or dopamine tissue content were observed. These data provide evidence of monoaminergic dysregulation in a translational model of OCD symptoms and are consistent with aberrant cortical and striatal serotonin and dopamine release/metabolism in SAPAP-3 KO mice. These results are guiding ongoing experiments using circuit and cell-type specific manipulations of dopamine and serotonin to determine the contributions of these monoaminergic systems to compulsive behaviours, and serve here as a touchstone for an expanded discussion of these techniques for precise circuit dissection.This article is part of the discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Jesse Wood
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, 450 Technology Drive, Room 227, Pittsburgh, PA 15219, USA.,Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, 450 Technology Drive, Room 227, Pittsburgh, PA 15219, USA
| | - Zoe LaPalombara
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, 450 Technology Drive, Room 227, Pittsburgh, PA 15219, USA.,Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, 450 Technology Drive, Room 227, Pittsburgh, PA 15219, USA
| | - Susanne E Ahmari
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh, 450 Technology Drive, Room 227, Pittsburgh, PA 15219, USA .,Center for Neuroscience Program and Center for the Neural Basis of Cognition, University of Pittsburgh, 450 Technology Drive, Room 227, Pittsburgh, PA 15219, USA
| |
Collapse
|
4
|
Cauda F, Nani A, Costa T, Palermo S, Tatu K, Manuello J, Duca S, Fox PT, Keller R. The morphometric co-atrophy networking of schizophrenia, autistic and obsessive spectrum disorders. Hum Brain Mapp 2018; 39:1898-1928. [PMID: 29349864 PMCID: PMC5895505 DOI: 10.1002/hbm.23952] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022] Open
Abstract
By means of a novel methodology that can statistically derive patterns of co-alterations distribution from voxel-based morphological data, this study analyzes the patterns of brain alterations of three important psychiatric spectra-that is, schizophrenia spectrum disorder (SCZD), autistic spectrum disorder (ASD), and obsessive-compulsive spectrum disorder (OCSD). Our analysis provides five important results. First, in SCZD, ASD, and OCSD brain alterations do not distribute randomly but, rather, follow network-like patterns of co-alteration. Second, the clusters of co-altered areas form a net of alterations that can be defined as morphometric co-alteration network or co-atrophy network (in the case of gray matter decreases). Third, within this network certain cerebral areas can be identified as pathoconnectivity hubs, the alteration of which is supposed to enhance the development of neuronal abnormalities. Fourth, within the morphometric co-atrophy network of SCZD, ASD, and OCSD, a subnetwork composed of eleven highly connected nodes can be distinguished. This subnetwork encompasses the anterior insulae, inferior frontal areas, left superior temporal areas, left parahippocampal regions, left thalamus and right precentral gyri. Fifth, the co-altered areas also exhibit a normal structural covariance pattern which overlaps, for some of these areas (like the insulae), the co-alteration pattern. These findings reveal that, similarly to neurodegenerative diseases, psychiatric disorders are characterized by anatomical alterations that distribute according to connectivity constraints so as to form identifiable morphometric co-atrophy patterns.
Collapse
Affiliation(s)
- Franco Cauda
- GCS‐FMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
- Focus Lab, Department of PsychologyUniversity of TurinTurinItaly
| | - Andrea Nani
- GCS‐FMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
- Focus Lab, Department of PsychologyUniversity of TurinTurinItaly
- Michael Trimble Neuropsychiatry Research Group, University of Birmingham and BSMHFTBirminghamUK
| | - Tommaso Costa
- GCS‐FMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
- Focus Lab, Department of PsychologyUniversity of TurinTurinItaly
| | - Sara Palermo
- Department of NeuroscienceUniversity of TurinTurinItaly
| | - Karina Tatu
- GCS‐FMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
- Focus Lab, Department of PsychologyUniversity of TurinTurinItaly
| | - Jordi Manuello
- GCS‐FMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
- Focus Lab, Department of PsychologyUniversity of TurinTurinItaly
| | - Sergio Duca
- GCS‐FMRI, Koelliker Hospital and Department of PsychologyUniversity of TurinTurinItaly
| | - Peter T. Fox
- Research Imaging Institute, University of Texas Health Science Center At San AntonioSan AntonioTexas
- South Texas Veterans Health Care SystemSan AntonioTexas
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit ASL Citta’ Di TorinoTurinItaly
| |
Collapse
|
5
|
Grünblatt E, Marinova Z, Roth A, Gardini E, Ball J, Geissler J, Wojdacz TK, Romanos M, Walitza S. Combining genetic and epigenetic parameters of the serotonin transporter gene in obsessive-compulsive disorder. J Psychiatr Res 2018; 96:209-217. [PMID: 29102815 DOI: 10.1016/j.jpsychires.2017.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
Abstract
While genetic variants have been reported to be associated with obsessive-compulsive disorder (OCD), the small effect sizes suggest that epigenetic mechanisms such as DNA methylation may also be relevant. The serotonin transporter (SLC6A4) gene has been extensively investigated in relation to OCD, since serotonin reuptake inhibitors are the pharmacological treatment of choice for the disorder. The current study set three questions: Firstly, whether the high expressing loci of the SLC6A4 polymorphisms, 5-HTTLPR + rs25531, rs25532 and rs16965628 are associated with family-based (n = 164 trios) and case-control OCD (n = 186, 152, respectively). This was also examined by a meta-analysis. Secondly, whether DNA methylation and RNA levels of the SLC6A4 differ in saliva and blood of a subset of samples from pediatric and adult OCD patients and matched controls. And lastly, whether morning awakening cortisol levels correlate with the above. A meta-analysis confirmed the association of the LA-allele with OCD (OR = 1.21, p = 0.00018), maintaining significance in the early-onset OCD subgroup (OR = 1.21, p = 0.022). There was no association between rs25532 or rs16965628 and OCD. Our preliminary data showed that SLC6A4 DNA methylation levels in an amplicon located at the beginning of the first intron were significantly higher in the saliva of pediatric OCD patients compared to controls and adult patients with OCD, but no alterations in RNA levels or in polymorphism interactions were observed. Morning awakening salivary cortisol levels positively correlated with methylation levels, and negatively correlated with RNA levels. This study further supports the involvement of the SLC6A4 gene in OCD through both genetic and epigenetic mechanisms. This finding needs to be explored further in an independent large sample.
Collapse
Affiliation(s)
- Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland.
| | - Zoya Marinova
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander Roth
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Elena Gardini
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Juliane Ball
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Julia Geissler
- Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Tomasz K Wojdacz
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Build. 1230, DK-8000 Aarhus, Denmark; Aarhus Institute of Advanced Studies, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
| | - Marcel Romanos
- Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| |
Collapse
|
6
|
Little K, Olsson CA, Whittle S, Macdonald JA, Sheeber LB, Youssef GJ, Simmons JG, Sanson AV, Foley DL, Allen NB. Sometimes It's Good to be Short: The Serotonin Transporter Gene, Positive Parenting, and Adolescent Depression. Child Dev 2017; 90:1061-1079. [PMID: 29094757 DOI: 10.1111/cdev.12987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In threatening environments, the short (S) allele of 5-HTTLPR is proposed to augment risk for depression. However, it is unknown whether 5-HTTLPR variation increases risk for depression in environments of deprivation, lacking positive or nurturant features. Two independent longitudinal studies (n = 681 and 176, respectively) examined whether 5-HTTLPR moderated associations between low levels of positive parenting at 11-13 years and subsequent depression at 17-19 years. In both studies only LL homozygous adolescents were at greater risk for depression with decreasing levels of positive parenting. Thus, while the S allele has previously been identified as a susceptible genotype, these findings suggest that the L allele may also confer sensitivity to depression in the face of specific environmental challenges.
Collapse
Affiliation(s)
- Keriann Little
- University of Melbourne.,Murdoch Childrens Research Institute.,Deakin University
| | - Craig A Olsson
- University of Melbourne.,Murdoch Childrens Research Institute.,Deakin University
| | | | - Jacqui A Macdonald
- University of Melbourne.,Murdoch Childrens Research Institute.,Deakin University
| | | | - George J Youssef
- Murdoch Childrens Research Institute.,Deakin University.,Monash University
| | | | | | | | | |
Collapse
|