1
|
Riaz M, Khalid R, Afzal M, Anjum F, Fatima H, Zia S, Rasool G, Egbuna C, Mtewa AG, Uche CZ, Aslam MA. Phytobioactive compounds as therapeutic agents for human diseases: A review. Food Sci Nutr 2023; 11:2500-2529. [PMID: 37324906 PMCID: PMC10261751 DOI: 10.1002/fsn3.3308] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/17/2023] Open
Abstract
Phytobioactive compounds are plant secondary metabolites and bioactive compounds abundantly present in medicinal plants and have remarkable therapeutic potential. Oxidative stress and antibiotic resistance are major causes of present-day ailments such as diabetes, atherosclerosis, cardiovascular disorders, cancer, and inflammation. The data for this review were collected from Google Scholar, PubMed, Directory of Open Access Journals (DOAJ), and Science Direct by using keywords: "Medicinal plants, Phytobioactive compounds, Polyphenols, Alkaloids, Carotenoids etc." Several studies have reported the pharmacological and therapeutic potential of the phytobioactives. Polyphenols, alkaloids, terpenes, and polysaccharides isolated from medicinal plants showed remarkable antioxidant, anticancer, cytotoxic, anti-inflammatory, cardioprotective, hepatoprotective, immunomodulatory, neuroprotective, and antidiabetic activities. This literature review was planned to provide comprehensive insight into the biopharmacological and therapeutic potential of phytobioactive compounds. The techniques used for the extraction and isolation of phytobioactive compounds, and bioassays required for their biological activities such as antioxidant, antimicrobial, anti-inflammatory, and cytotoxic activities, have been discussed. Characterization techniques for the structural elucidation of phytobioactive compounds such as HPLC, TLC, FTIR, GC-MS/MS, and NMR have also been discussed. This review concludes that phytobioactive compounds may be used as potential alternative to synthetic compounds as therapeutic agents for the treatment of various diseases.
Collapse
Affiliation(s)
- Muhammad Riaz
- Department of Allied Health SciencesUniversity of SargodhaSargodhaPakistan
| | - Ramsha Khalid
- Department of BiochemistryUniversity of AgricultureFaisalabadPakistan
| | | | - Fozia Anjum
- Department of ChemistryGovernment College UniversityFaisalabadPakistan
| | - Hina Fatima
- Department of BiochemistryUniversity of AgricultureFaisalabadPakistan
- Department of Basic and Applied Chemistry, Faculty of Science and TechnologyUniversity of Central PunjabLahorePakistan
| | - Saadiya Zia
- Department of BiochemistryUniversity of AgricultureFaisalabadPakistan
| | - Ghulam Rasool
- Department of Allied Health SciencesUniversity of SargodhaSargodhaPakistan
| | - Chukwuebuka Egbuna
- Africa Centre of Excellence in Public Health and Toxicological Research (ACE‐PUTOR), Nutritional Biochemistry and Toxicology UnitUniversity of Port‐HarcourtPort HarcourtNigeria
| | - Andrew G. Mtewa
- Chemistry Section, Malawi Institute of TechnologyMalawi University of Science and TechnologyLimbeMalawi
| | - Chukwuemelie Zedech Uche
- Department of Medical Biochemistry and Molecular Biology, Faculty of Basic Medical SciencesUniversity of NigeriaEnuguNigeria
| | | |
Collapse
|
2
|
Optimization of Extraction of Compound Flavonoids from Chinese Herbal Medicines Based on Quantification Theory and Evaluation of Their Antioxidant Activity. J FOOD QUALITY 2022. [DOI: 10.1155/2022/9955690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plant-derived flavonoids have been attracting increasing research interest because of their multiple health promoting effects, where numerous investigations were carried out on the optimization of extraction and bioactivities. This study aims to optimize the extraction process of compound flavonoids (CFs) from Chinese herbal medicines and detect their antioxidant activity in vitro. CFs were extracted from the raw materials named “medicine food homology,” composed of hawthorn, lotus leaf, tartary buckwheat, cassia seed, Lycium barbarum, and Poria cocos in a mass ratio of 4 : 2 : 2 : 1.5 : 1 : 1. L9 (34) orthogonal design, level effect and engineering average estimation, and quantification theory were utilized to improve the extraction method of CFs, and the predictive model for CFs yield was constructed. The 2,2ʹ-diphenyl-1-picrylhydrazyl (DPPH), 2,2ʹ-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), hydroxyl radical scavenging rate, and reducing power of CFs were measured. The highest CFs yield was obtained under the following extraction condition: liquid-solid ratio of 35 : 1 mL/g, extraction temperature of 75°C, extraction duration of 75 min, and extraction mode enzyme-assisted extraction. The forecasted yield was 37.62%. The result was accurate and the established prediction equation was reliable (R = 0.95). The antioxidant activity of CFs was significantly positively correlated with the concentration from 0.05 to 0.4 mg/mL. The DPPH, ABTS, hydroxyl radical scavenging abilities, and the reducing power of CFs were 81.82 ± 1.75%, 49.35 ± 0.09%, 89.78 ± 0.66%, and 0.232 ± 0.001 at the concentration of 0.4 mg/mL, respectively. CFs could be exploited as natural antioxidants in pharmaceuticals and functional foods.
Collapse
|
3
|
Ganguly R, Gupta A, Pandey AK. Role of baicalin as a potential therapeutic agent in hepatobiliary and gastrointestinal disorders: A review. World J Gastroenterol 2022; 28:3047-3062. [PMID: 36051349 PMCID: PMC9331529 DOI: 10.3748/wjg.v28.i26.3047] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/21/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
Baicalin is a natural bioactive compound derived from Scutellaria baicalensis, which is extensively used in traditional Chinese medicine. A literature survey demonstrated the broad spectrum of health benefits of baicalin such as antioxidant, anticancer, anti-inflammatory, antimicrobial, cardio-protective, hepatoprotective, renal protective, and neuroprotective properties. Baicalin is hydrolyzed to its metabolite baicalein by the action of gut microbiota, which is further reconverted to baicalin via phase 2 metabolism in the liver. Many studies have suggested that baicalin exhibits therapeutic potential against several types of hepatic disorders including hepatic fibrosis, xenobiotic-induced liver injury, fatty liver disease, viral hepatitis, cholestasis, ulcerative colitis, hepatocellular and colorectal cancer. During in vitro and in vivo examinations, it has been observed that baicalin showed a protective role against liver and gut-associated abnormalities by modifying several signaling pathways such as nuclear factor-kappa B, transforming growth factor beta 1/SMAD3, sirtuin 1, p38/mitogen-activated protein kinase/Janus kinase, and calcium/calmodulin-dependent protein kinase kinaseβ/adenosine monophosphate-activated protein kinase/acetyl-coenzyme A carboxylase pathways. Furthermore, baicalin also regulates the expression of fibrotic genes such as smooth muscle actin, connective tissue growth factor, β-catenin, and inflammatory cytokines such as interferon gamma, interleukin-6 (IL-6), tumor necrosis factor-alpha, and IL-1β, and attenuates the production of apoptotic proteins such as caspase-3, caspase-9 and B-cell lymphoma 2. However, due to its low solubility and poor bioavailability, widespread therapeutic applications of baicalin still remain a challenge. This review summarized the hepatic and gastrointestinal protective attributes of baicalin with an emphasis on the molecular mechanisms that regulate the interaction of baicalin with the gut microbiota.
Collapse
Affiliation(s)
- Risha Ganguly
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| |
Collapse
|
4
|
Linarin, a Glycosylated Flavonoid, with Potential Therapeutic Attributes: A Comprehensive Review. Pharmaceuticals (Basel) 2021; 14:ph14111104. [PMID: 34832886 PMCID: PMC8621830 DOI: 10.3390/ph14111104] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Many flavonoids, as eminent phenolic compounds, have been commercialized and consumed as dietary supplements due to their incredible human health benefits. In the present study, a bioactive flavone glycoside linarin (LN) was designated to comprehensively overview its phytochemical and biological properties. LN has been characterized abundantly in the Cirsium, Micromeria, and Buddleja species belonging to Asteraceae, Lamiaceae, and Scrophulariaceae families, respectively. Biological assessments exhibited promising activities of LN, particularly, the remedial effects on central nervous system (CNS) disorders, whereas the remarkable sleep enhancing and sedative effects as well as AChE (acetylcholinesterase) inhibitory activity were highlighted. Of note, LN has indicated promising anti osteoblast proliferation and differentiation, thus a bone formation effect. Further biological and pharmacological assessments of LN and its optimized semi-synthetic derivatives, specifically its therapeutic characteristics on osteoarthritis and osteoporosis, might lead to uncovering potential drug candidates.
Collapse
|
5
|
Wu Z, Yang K, Zhang A, Chang W, Zheng A, Chen Z, Cai H, Liu G. Effects of Lactobacillus acidophilus on the growth performance, immune response, and intestinal barrier function of broiler chickens challenged with Escherichia coli O157. Poult Sci 2021; 100:101323. [PMID: 34280647 PMCID: PMC8319008 DOI: 10.1016/j.psj.2021.101323] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/06/2021] [Accepted: 06/04/2021] [Indexed: 11/25/2022] Open
Abstract
We studied the effects of Lactobacillus acidophilus (L. acidophilus) on the growth performance, intestinal morphology, barrier function, and immune response of broilers challenged with Escherichia coli O157 (E. Coli). A total of 360 1-day-old Cobb male broilers were tested in a 3 × 2 factorial arrangement with 3 dietary L. acidophilus levels (0, 5 × 108 CFU/kg, and 10 × 108 CFU/kg of diet) and 2 disease challenge treatments (control or E. coli challenged). Results showed that E. coli challenge decreased the ADG, ADFI, and BW of broilers from 15 to 21 d (P < 0.05), increased the jejunum intestinal wall thickness, and significantly increased the mortality rate. E. coli challenge significantly (P < 0.05) decreased the serum IgA and IgM contents and peripheral blood CD3+ T cell counts (P < 0.05), increased the serum CRP, DAO, and LPS levels at 21 d; upregulated the mRNA expression of iNOS, IL-8, IL-1β in the jejunum and iNOS in the spleen, and downregulated the occludin and ZO-1 mRNA expression in the ileum at 21 d compared with uninfected birds (P < 0.05). Dietary L. acidophilus supplementation consistently showed higher BW, ADG, ADFI, and jejunum and ileum V:C ratio at 14 d and 21 d in the presence and absence of E. coli challenge (P < 0.05). L. acidophilus supplementation reduced the mortality rate caused by E. coli challenge (P < 0.05), decreased the serum CRP, DAO, and LPS levels at 14 d and 21 d; upregulated the mRNA expression of occludin and ZO-1 in the jejunum and ileum, and downregulated the mRNA expression of iNOS, IL-8, and IL-1β in the jejunum in E. coli challenged birds at 21 d (P < 0.05). Dietary supplementation with L. acidophilus can improve the growth performance, intestinal health, and survival of broilers challenged with E. coli.
Collapse
Affiliation(s)
- Zhengke Wu
- Feed Research Institute of Chinese Academy of Agricultural Science, Key Laboratory of Feed Biotechnology of Agricultural Ministry and Rural Affairs, Beijing 100081, China
| | - Kexin Yang
- Feed Research Institute of Chinese Academy of Agricultural Science, Key Laboratory of Feed Biotechnology of Agricultural Ministry and Rural Affairs, Beijing 100081, China
| | - Anrong Zhang
- Feed Research Institute of Chinese Academy of Agricultural Science, Key Laboratory of Feed Biotechnology of Agricultural Ministry and Rural Affairs, Beijing 100081, China
| | - Wenhuan Chang
- Feed Research Institute of Chinese Academy of Agricultural Science, Key Laboratory of Feed Biotechnology of Agricultural Ministry and Rural Affairs, Beijing 100081, China
| | - Aijuan Zheng
- Feed Research Institute of Chinese Academy of Agricultural Science, Key Laboratory of Feed Biotechnology of Agricultural Ministry and Rural Affairs, Beijing 100081, China
| | - Zhimin Chen
- Feed Research Institute of Chinese Academy of Agricultural Science, Key Laboratory of Feed Biotechnology of Agricultural Ministry and Rural Affairs, Beijing 100081, China
| | - Huiyi Cai
- Feed Research Institute of Chinese Academy of Agricultural Science, Key Laboratory of Feed Biotechnology of Agricultural Ministry and Rural Affairs, Beijing 100081, China; National Engineering Research Center of Biological Feed, Beijing 100081, China
| | - Guohua Liu
- Feed Research Institute of Chinese Academy of Agricultural Science, Key Laboratory of Feed Biotechnology of Agricultural Ministry and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
6
|
Yang JY, Li M, Zhang CL, Liu D. Pharmacological properties of baicalin on liver diseases: a narrative review. Pharmacol Rep 2021; 73:1230-1239. [PMID: 33595821 PMCID: PMC8460515 DOI: 10.1007/s43440-021-00227-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Baicalin is the main active component of Scutellaria baicalensis, widely used in traditional Chinese medicine thanks to its various pharmacological effects, such as anti-tumor, anti-inflammatory, and antibacterial properties, as well as cardiovascular, hepatic, and renal protective effect. Recently, the protective effects of baicalin on liver disease have received much more attention. Several studies showed that baicalin protects against several types of liver diseases including viral hepatitis, fatty liver disease, xenobiotic induced liver injury, cholestatic liver injury, and hepatocellular carcinoma, with a variety of pharmacological mechanisms. A comprehensive understanding of the mechanism of baicalin can provide a valuable reference for its clinical use, but up to now, no narrative review is available that summarizes the pharmacological effects of baicalin to clarify its potential use in the treatment of liver diseases. Therefore, this review summarizes the progress of baicalin research and the underlying mechanism in the treatment of various liver diseases, to promote further research and its clinical application.
Collapse
Affiliation(s)
- Jin-Yu Yang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei, China
| | - Min Li
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei, China
| | - Cheng-Liang Zhang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
7
|
Su L, Wang R, Qiu T, Wang J, Meng J, Zhu J, Wang D, Wu Y, Liu J. The protective effect of baicalin on duck hepatitis A virus type 1-induced duck hepatic mitochondria dysfunction by activating nuclear erythroid 2-related factor 2/antioxidant responsive element signaling pathway. Poult Sci 2021; 100:101032. [PMID: 33744612 PMCID: PMC8010464 DOI: 10.1016/j.psj.2021.101032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/09/2021] [Accepted: 01/21/2021] [Indexed: 01/21/2023] Open
Abstract
Duck hepatitis A virus type 1 (DHAV-1) is the main pathogen of duck viral hepatitis, but the efficacy of the licensed commercial vaccine needs to be further improved. Therapeutic measures of specific drugs for DHAV-1-infected ducklings need to be urgently developed. Baicalin possesses good antiviral effects. This study aims to investigate the mechanism of baicalin in protecting hepatic mitochondrial function from DHAV-1. The ELISA method was used to detect changes of hepatic and mitochondrial catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX), inducible nitric oxide synthase (iNOS), adenosine triphosphate (ATP), and malondialdehyde (MDA) levels in vivo and vitro. Hematoxylin and eosin sections and transmission electron microscopy were used to observe liver pathological changes and mitochondrial structural changes. The changes in mitochondrial membrane potential were detected by JC-1 staining method. Western blot and quantitative real-time PCR were employed to analyze the gene and protein expressions in the nuclear erythroid 2-related factor 2 (Nrf2)/antioxidant responsive element (ARE) pathway in duck embryonic hepatocytes infected with DHAV-1. Results showed the administration of baicalin increased the survival rate of ducklings, and alleviated hepatic damage caused by DHAV-1 by enhancing the antioxidant enzyme activities of the liver and mitochondria, including SOD, GPX, CAT, and reducing lipid peroxidative damage (MDA content) and iNOS activities. The mitochondrial ultrastructure changed and the significant increase of ATP content showed that baicalin maintained the structural integrity and ameliorated mitochondrial dysfunction after DHAV-1 infection. In vitro, DHAV-1 infection led to loss of mitochondrial membrane potential and lipid peroxidation and decreased antioxidative enzyme activities (SOD, GPX) and mitochondrial respiratory chain complex activities (succinate dehydrogenase, cytochrome c oxidase). Baicalin relieved the above changes caused by DHAV-1 and activated the gene and protein expressions of Nrf2, which activated ARE-dependent genes including heme oxygenase-1 (HO-1), nicotinamide adenine dinucleotide phosphate quinone oxidoreductase 1 (NQO1), SOD-1, and GPX-1. In addition, baicalin increased the protein expressions of antioxidative enzymes (SOD, GPX). Hence, baicalin protects the liver against oxidative stress in hepatic mitochondria caused by DHAV-1 via activating the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Linglin Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Rui Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Tianxin Qiu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jinli Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jinwu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jinyue Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Deyun Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Yi Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China
| | - Jiaguo Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P R China.
| |
Collapse
|
8
|
Hu Q, Zhang W, Wu Z, Tian X, Xiang J, Li L, Li Z, Peng X, Wei S, Ma X, Zhao Y. Baicalin and the liver-gut system: Pharmacological bases explaining its therapeutic effects. Pharmacol Res 2021; 165:105444. [PMID: 33493657 DOI: 10.1016/j.phrs.2021.105444] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
With the development of high-throughput screening and bioinformatics technology, natural products with a range of pharmacological targets in multiple diseases have become important sources of new drug discovery. These compounds are derived from various plants, including the dried root of Scutellaria baicalensis Georgi, which is often used as a traditional Chinese herb named Huangqin, a popular medication used for thousands of years in China. Many studies have shown that baicalin, an extract from Scutellaria baicalensis Georgi, exerts various protective effects on liver and gut diseases. Baicalin plays a therapeutic role mainly by mediating downstream apoptosis and immune response pathways induced by upstream oxidative stress and inflammation. During oxidative stress regulation, PI3K/Akt/NRF2, Keap-1, NF-κB and HO-1 are key factors associated with the healing effects of baicalin on NAFLD/NASH, ulcerative colitis and cholestasis. In the inflammatory response, IL-6, IL-1β, TNF-α, MIP-2 and MIP-1α are involved in the alleviation of NAFLD/NASH, cholestasis and liver fibrosis by baicalin, as are TGF-β1/Smads, STAT3 and NF-κB. Regarding the apoptosis pathway, Bax, Bcl-2, Caspase-3 and Caspase-9 are key factors related to the suppression of hepatocellular carcinoma and attenuation of liver injury and colorectal cancer. In addition to immune regulation, PD-1/PDL-1 and TLR4-NF-κB are correlated with the alleviation of hepatocellular carcinoma, ulcerative colitis and colorectal cancer by baicalin. Moreover, baicalin regulates intestinal flora by promoting the production of SCFAs. Furthermore, BA is involved in the interactions of the liver-gut axis by regulating TGR5, FXR, bile acids and the microbiota. In general, a comprehensive analysis of this natural compound was conducted to determine the mechanism by which it regulates bile acid metabolism, the intestinal flora and related signaling pathways, providing new insights into the pharmacological effects of baicalin. The mechanism linking the liver and gut systems needs to be elucidated to draw attention to its great clinical importance.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junbao Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Longxuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhihao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shizhang Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
9
|
Yang F, Feng C, Yao Y, Qin A, Shao H, Qian K. Antiviral effect of baicalin on Marek's disease virus in CEF cells. BMC Vet Res 2020; 16:371. [PMID: 33008383 PMCID: PMC7532598 DOI: 10.1186/s12917-020-02595-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Baicalin, the main metabolic component of Scutellaria baicalensis Georgi, has various pharmacological properties including anti-inflammatory, anti-oxidant, anti-apoptotic, anti-bactericidal and anti-viral. The purpose of this study was to investigate the anti-Marek's disease virus (MDV) activities of baicalin in CEF cells. RESULTS Here, we showed that baicalin could inhibit viral mRNA, protein levels and overall plaque formation in a time-dependent manner. We also found that baicalin could consistently inhibit MDV replication and directly affect the virus infectivity. Moreover, baicalin treatment has no effect on expression level of antiviral cytokine and inflammatory cytokines in MDV infected CEFs. CONCLUSIONS These results demonstrate that baicalin could be a potential drug against MDV infection.
Collapse
Affiliation(s)
- Fan Yang
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, Jiangsu, 225009, P.R. China.,Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, Jiangsu, 225009, P.R. China.,The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, 225009, P.R. China
| | - Chun Feng
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, Jiangsu, 225009, P.R. China.,Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, Jiangsu, 225009, P.R. China.,The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, 225009, P.R. China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Surrey, GU24 0NF, UK
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, Jiangsu, 225009, P.R. China.,Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, Jiangsu, 225009, P.R. China.,The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, 225009, P.R. China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, Jiangsu, 225009, P.R. China.,Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, Jiangsu, 225009, P.R. China.,The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, 225009, P.R. China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, Jiangsu, 225009, P.R. China. .,Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, Jiangsu, 225009, P.R. China. .,The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, 225009, P.R. China. .,Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P.R. China. .,, Yangzhou, P. R. China.
| |
Collapse
|
10
|
Baicalin relieves inflammation stimulated by lipopolysaccharide via upregulating TUG1 in liver cells. J Physiol Biochem 2019; 75:463-473. [PMID: 31396818 DOI: 10.1007/s13105-019-00698-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023]
Abstract
Hepatitis has become a major social, health, and economic problem worldwide. Herein, we tested the beneficial influence of baicalin, a flavonoid extracted from the roots of Scutellaria baicalensis, on human normal liver L-02 and THLE2 cell apoptosis and inflammatory reaction stimulated by lipopolysaccharide (LPS) and possible molecular mechanisms. L-02 and THLE2 cell viability and apoptosis after LPS and/or baicalin treatment were tested using CCK-8 assay and Annexin V-FITC/PI apoptosis kit, respectively. qRT-PCR was used to measure the MCP-1, IL-6, TNF-α, and lncRNA taurine upregulated gene 1 (TUG1) expressions in L-02 and THLE2 cells. sh-TUG1 was transfected to knockdown TUG1. SB203580 was used as inhibitor of p38MAPK pathway, while SP600125 was used as inhibitor of JNK pathway. We discovered that LPS stimulation caused L-02 and THLE2 cell apoptosis and inflammatory reaction. Baicalin relieved the L-02 and THLE2 cell apoptosis and inflammatory reaction stimulated by LPS. Moreover, LPS lowered the TUG1 expression in L-02 cells, while baicalin promoted the TUG1 expression in L-02 and L-02 and THLE2 cells, as well as inactivated p38MAPK and JNK pathways in LPS-stimulated L-02 cells. Besides, knockdown of TUG1 activated p38MAPK and JNK pathways and promoted inflammatory cytokine expression in L-02 cells. In conclusion, this study further affirmed the beneficial influences of baicalin on LPS-stimulated human normal liver cell apoptosis and inflammatory reaction. Baicalin relived liver cell inflammation stimulated by LPS might be via upregulating TUG1 and then inactivating p38MAPK and JNK pathways.
Collapse
|
11
|
Ibtisham F, Zhao Y, Nawab A, Liguang H, Wu J, Xiao M, Zhao Z, An L. The Effect of High Temperature on Viability, Proliferation, Apoptosis and Anti-oxidant Status of Chicken Embryonic Fibroblast Cells. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2017-0685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Y Zhao
- Guangdong Ocean University, China
| | - A Nawab
- Guangdong Ocean University, China
| | | | - J Wu
- Guangdong Ocean University, China
| | - M Xiao
- Guangdong Ocean University, China
| | - Z Zhao
- Guangdong Ocean University, China
| | - L An
- Guangdong Ocean University, China
| |
Collapse
|
12
|
Li S, Tan HY, Wang N, Cheung F, Hong M, Feng Y. The Potential and Action Mechanism of Polyphenols in the Treatment of Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8394818. [PMID: 29507653 PMCID: PMC5817364 DOI: 10.1155/2018/8394818] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022]
Abstract
Liver disease, involving a wide range of liver pathologies from fatty liver, hepatitis, and fibrosis to cirrhosis and hepatocellular carcinoma, is a serious health problem worldwide. In recent years, many natural foods and herbs with abundant phytochemicals have been proposed as health supplementation for patients with hepatic disorders. As an important category of phytochemicals, natural polyphenols have attracted increasing attention as potential agents for the prevention and treatment of liver diseases. The striking capacities in remitting oxidative stress, lipid metabolism, insulin resistance, and inflammation put polyphenols in the spotlight for the therapies of liver diseases. It has been reported that many polyphenols from a wide range of foods and herbs exert therapeutic effects on liver injuries via complicated mechanisms. Therefore, it is necessary to have a systematical review to sort out current researches to help better understand the potentials of polyphenols in liver diseases. In this review, we aim to summarize and update the existing evidence of natural polyphenols in the treatment of various liver diseases by in vitro, in vivo, and clinical studies, while special attention is paid to the action mechanisms.
Collapse
Affiliation(s)
- Sha Li
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hor Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Shenzhen Institute of Research and Innovation, Pok Fu Lam, The University of Hong Kong, Hong Kong
| | - Fan Cheung
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ming Hong
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Shenzhen Institute of Research and Innovation, Pok Fu Lam, The University of Hong Kong, Hong Kong
| |
Collapse
|