1
|
Ren J, Zuo J, Yin B, Huang D, Wen R, Pei H, Liu J, Zhang Y, Zhu S, Zhen S, Ma Y. Flaxseed Oil Alleviates PFOS-Induced Liver Injury by Regulating Hepatic Cholesterol Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23465-23477. [PMID: 39392608 DOI: 10.1021/acs.jafc.4c04438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Perfluorooctanesulfonate (PFOS) is a widespread, persistent environmental pollutant that exerts apparent liver toxicity. Flaxseed oil (FO), a dietary oil rich in α-linolenic acid, has been demonstrated to possess a diverse array of health benefits. However, whether FO protects against PFOS-induced liver injury and its underlying mechanisms remain unclear. C57/BL6 mice were orally treated with different concentrations of FO alone or in combination with 10 mg/kg of PFOS for 28 consecutive days. Blood and liver tissues were collected for proteomic, histopathological, biochemical, immunohistochemical, and molecular examinations. Results demonstrated that FO supplementation reduced PFOS-induced liver injury, as evidenced by a decrease in histopathological changes, serum transaminase (ALT and AST) levels, levels of oxidative stress, and inflammatory cytokine (TNF-α, IL-1β, and IL-6) levels. Proteomic analyses showed that differentially expressed proteins were enriched in cholesterol metabolic pathways when comparing the PFOS group to the FO supplementation groups. The expression of cholesterol metabolism-related proteins was also subsequently measured, revealing that FO supplementation decreased the protein expressions of SREBP2, HMGCR, and LDLR while increasing the expression of CYP7A1. This study demonstrates that FO can alleviate PFOS-induced hepatotoxicity by regulating hepatic cholesterol metabolism, indicating that FO may serve as an effective dietary intervention for preventing liver injury caused by PFOS.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Jinshi Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Bowen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Dan Huang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Rui Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Huanting Pei
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Jiarui Liu
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yadong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Siqi Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Shuman Zhen
- Department of Radiotherapy, Fourth Hospital of Hebei Medical University, Shijiazhuang 050017, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| |
Collapse
|
2
|
Ahmed H, Fayyaz TB, Khatian N, Usman S, Nisar U, Abid M, Ali SA, Abbas G. Phloroglucinol inhibited glycation via entrapping carbonyl intermediates. PLoS One 2024; 19:e0307708. [PMID: 39052603 PMCID: PMC11271877 DOI: 10.1371/journal.pone.0307708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Advanced glycation end products (AGEs) play an important role in the pathogenesis of age-linked disorders and diabetes mellitus. The aim of this study was to assess the repurposing potential of Phloroglucinol (PHL the antispasmodic drug), as an anti-glycation agent using Fructose-BSA model. The ability of PHL to inhibit AGE formation was evaluated using AGEs formation (Intrinsic fluorescence), fructosamine adduct (NBT) and free lysine availability (TNBSA) assays. The BSA protein conformation was assessed through Thioflavin-T, Congo-Red and Circular Dichroism assays. The lysine blockade and carbonyl entrapment were explored as possible mode of action. Our data showed that PHL significantly decreased the formation of AGEs with an IC50 value of 0.3mM. The fructosamine adducts and free lysine load was found to be reduced. Additionally, the BSA conformation was preserved by PHL. Mechanistic assays did not reveal involvement of lysine blockade as underlying reason for reduction in AGEs load. This was also supported by computational data whereby PHL failed to engage any catalytic residue involved in early fructose-BSA interaction. However, it was found to entrap the carbonyl moieties. In conclusion, the PHL demonstrated anti-glycation potential, which can be attributed to its ability to entrap carbonyl intermediates. Hence, the clinically available antispasmodic drug, presents itself as a promising candidate to be repurposed as anti-glycation agent.
Collapse
Affiliation(s)
- Hammad Ahmed
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Talha Bin Fayyaz
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Najeeb Khatian
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Shumaila Usman
- Department of Molecular Medicine, Ziauddin University, Karachi, Pakistan
| | - Uzair Nisar
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Mohammad Abid
- H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Abid Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical & Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ghulam Abbas
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| |
Collapse
|
3
|
Barkizatova G, Turgumbayeva A, Zhakipbekov K, Bekesheva K, Arystanov Z, Arystanova T, Kayupova F, Zhumalina K, Toxanbayeva Z, Ibragimova A, Blinova O, Utegenova G, Iztileu N, Shynykul Z. Exploring the Pharmacological Potential of Lithospermum officinale L.: A Review of Phytochemicals and Ethnomedicinal Uses. Molecules 2024; 29:1856. [PMID: 38675676 PMCID: PMC11055044 DOI: 10.3390/molecules29081856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Exploring phytochemicals from ethnomedicinal plants for pharmacological applications is a promising research area. By studying ethnomedicine, researchers can identify plants used for centuries to treat ailments and investigate their phytochemicals. Consequently, phytochemicals can be isolated, characterized, and tested for pharmacological activities, leading to new drug development. This research also helps preserve traditional knowledge and biodiversity. Lithospermum officinale L., found in Eurasia, Argentina (South), Colombia, and the United States, is valued for its medicinal properties, including anti-inflammatory, antioxidant, and antimicrobial effects. The current review emphasizes L. officinale L. as a significant reservoir of bioactive phytochemicals, with alkaloids, quinones, glucosides, phenolics, flavonoids, and lipids identified as the principal metabolites. It also unveils the unexplored potential of this plant for future research endeavors. Continued research on L. officinale L. can unlock its full potential, providing insights into its medicinal uses and contributing to biodiversity preservation.
Collapse
Affiliation(s)
- Gulzhanat Barkizatova
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole Bi St. 94, Almaty 050000, Kazakhstan;
| | - Aknur Turgumbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Kairat Zhakipbekov
- Department of Organization, Management and Economics of Pharmacy and Clinical Pharmacy, Asfendiyarov Kazakh National Medical University, Tole Bi St. 94, Almaty 050000, Kazakhstan;
| | - Kuralay Bekesheva
- JSC “Scientific Centre for Anti-Infectious Drug”, Astana 010000, Kazakhstan;
| | - Zhalgaskali Arystanov
- Department of Pharmaceutical Disciplines, Astana Medical University, Beibitshilik Street 49/A, Astana 010000, Kazakhstan; (Z.A.); (T.A.); (N.I.)
| | - Tanagul Arystanova
- Department of Pharmaceutical Disciplines, Astana Medical University, Beibitshilik Street 49/A, Astana 010000, Kazakhstan; (Z.A.); (T.A.); (N.I.)
| | - Farida Kayupova
- Department of Pharmacy, Kazakh-Russian Medical University, Abylai Khan St. 51/53, Almaty 050004, Kazakhstan; (F.K.); (K.Z.)
| | - Klara Zhumalina
- Department of Pharmacy, Kazakh-Russian Medical University, Abylai Khan St. 51/53, Almaty 050004, Kazakhstan; (F.K.); (K.Z.)
| | - Zhanat Toxanbayeva
- Department of Pharmacology, Pharmacotherapy and Clinical Pharmacology, South Kazakhstan Medical Academy, Al Farabi Sq. 1, Shymkent 160019, Kazakhstan; (Z.T.); (A.I.)
| | - Aigul Ibragimova
- Department of Pharmacology, Pharmacotherapy and Clinical Pharmacology, South Kazakhstan Medical Academy, Al Farabi Sq. 1, Shymkent 160019, Kazakhstan; (Z.T.); (A.I.)
| | - Olga Blinova
- Department of Organization and Management of Pharmaceutical Business, South Kazakhstan Medical Academy, Alfarabi Sq. 1, Shymkent 160000, Kazakhstan; (O.B.); (G.U.)
| | - Gulnara Utegenova
- Department of Organization and Management of Pharmaceutical Business, South Kazakhstan Medical Academy, Alfarabi Sq. 1, Shymkent 160000, Kazakhstan; (O.B.); (G.U.)
| | - Nurzhan Iztileu
- Department of Pharmaceutical Disciplines, Astana Medical University, Beibitshilik Street 49/A, Astana 010000, Kazakhstan; (Z.A.); (T.A.); (N.I.)
| | - Zhanserik Shynykul
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
4
|
Wu G. Roles of Nutrients in the Brain Development, Cognitive Function, and Mood of Dogs and Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:177-202. [PMID: 38625529 DOI: 10.1007/978-3-031-54192-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The brain is the central commander of all physical activities and the expression of emotions in animals. Its development and cognitive health critically depend on the neural network that consists of neurons, glial cells (namely, non-neuronal cells), and neurotransmitters (communicators between neurons). The latter include proteinogenic amino acids (e.g., L-glutamate, L-aspartate, and glycine) and their metabolites [e.g., γ-aminobutyrate, D-aspartate, D-serine, nitric oxide, carbon monoxide, hydrogen sulfide, and monoamines (e.g., dopamine, norepinephrine, epinephrine, and serotonin)]. In addition, some non-neurotransmitter metabolites of amino acids, such as taurine, creatine, and carnosine, also play important roles in brain development, cognitive health, behavior, and mood of dogs and cats. Much evidence shows that cats require dietary ω3 (α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid) and ω6 (linoleic acid and arachidonic acid) polyunsaturated fatty acids for the development of the central nervous system. As an essential component of membranes of neurons and glial cells, cholesterol is also crucial for cognitive development and function. In addition, vitamins and minerals are required for the metabolism of AAs, lipids, and glucose in the nervous system, and also act as antioxidants. Thus, inadequate nutrition will lead to mood disorders. Some amino acids (e.g., arginine, glycine, methionine, serine, taurine, tryptophan, and tyrosine) can help to alleviate behavioral and mood disorders (e.g., depression, anxiety and aggression). As abundant providers of all these functional amino acids and lipids, animal-sourced foods (e.g., liver, intestinal mucosa, and meat) play important roles in brain development, cognitive function, and mood of dogs and cats. This may explain, in part, why dogs and cats prefer to eat visceral organs of their prey. Adequate provision of nutrients in all phases of the life cycle (pregnancy, lactation, postnatal growth, and adulthood) is essential for optimizing neurological health, while preventing cognitive dysfunction and abnormal behavior.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Anwar L, Ali SA, Khan S, Uzairullah MM, Mustafa N, Ali UA, Siddiqui F, Bhatti HA, Rehmani SJ, Abbas G. Fenugreek seed ethanolic extract inhibited formation of advanced glycation end products via scavenging reactive carbonyl intermediates. Heliyon 2023; 9:e16866. [PMID: 37484294 PMCID: PMC10360956 DOI: 10.1016/j.heliyon.2023.e16866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
Senescence is a natural phenomenon of growing old. It accelerates under certain conditions like diabetes mellitus resulting in early decline of bodily functions, which can be avoided by many claimed functional foods. The present study aims to investigate the anti-aging ability of Fenugreek seeds (Trigonellafoenum-graecum); a common ingredient of Indo-Pak cuisines. Briefly, the Fenugreek seeds extract (FgSE) in concentrationsof0.1, 0.5 and 1 mg/ml inhibited the formation of Advanced Glycation End products (AGEs) and fructosamine adducts in Bovine serum albumin (BSA)/fructose model in vitro. The BSA conformational analysis via Circular Dichorism and Congo red assays showed that it preserves secondary structure of BSA in aforementioned model. Although mechanistic studies revealed insignificant lysine blocking ability of Fenugreek by OPA assay, however carbonyl entrapping was found to be 24%, 34% and 42% at 0.1, 0.5 and 1 mg/ml, respectively. In vivo model of High Fructose diet (HFD) induced glycation, FgSE treatment in doses of 10, 25 & 50 mg/kg markedly improved Escape latency (p < 0.01) and preserved cognition in Morris Water Maze. Our data further exhibits significant decrease of CML (Nε-carboxymethyl lysine) levels in serum and hippocampus byFgSE treatment in comparison with HFD group. Therefore, we deduced that FgSE prevents glycation-induced memory decline via entrapping the reactive carbonyl intermediates, formed during production of AGEs. Hence, as a promising functional food it slows down the harmful process of glycation and aging associated morbidities.
Collapse
Affiliation(s)
- Laila Anwar
- H.E.J. Research Institute of Chemistry, ICCBS, University of Karachi, Karachi, Pakistan
- Faculty of Pharmacy, Hamdard University, Karachi, Pakistan
| | - Syed Abid Ali
- H.E.J. Research Institute of Chemistry, ICCBS, University of Karachi, Karachi, Pakistan
| | - Sana Khan
- H.E.J. Research Institute of Chemistry, ICCBS, University of Karachi, Karachi, Pakistan
| | | | - Nazish Mustafa
- Dr. Panjwani Center for Molecular Medicine & Drug Research, ICCBS, University of Karachi, Karachi, Pakistan
| | | | | | - Huma Aslam Bhatti
- H.E.J. Research Institute of Chemistry, ICCBS, University of Karachi, Karachi, Pakistan
| | | | - Ghulam Abbas
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| |
Collapse
|
6
|
Younis IY, Ibrahim RM, El-Halawany A, Hegazy MEF, Efferth T, Mohsen E. Chemometric discrimination of Hylocereus undulatus from different geographical origins via their metabolic profiling and antidiabetic activity. Food Chem 2023; 404:134650. [DOI: 10.1016/j.foodchem.2022.134650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/02/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
7
|
Effect of Linoleic Acid on Cholesterol Levels in a High-Fat Diet-Induced Hypercholesterolemia Rat Model. Metabolites 2022; 13:metabo13010053. [PMID: 36676979 PMCID: PMC9864559 DOI: 10.3390/metabo13010053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality worldwide, accounting for almost one-third of all deaths. The risk factors for developing this disease include high levels of serum total cholesterol (TC), triglycerides (TG), and low-density lipoprotein (LDL), alongside low levels of high-density lipoprotein (HDL). Dietary linoleic acid has been suggested to reduce these risk factors. This study aims to determine the effects of linoleic acid on cholesterol levels, liver function tests, and structural changes in liver tissue in comparison with fenofibrate in a hypercholesterolemic rat model. Thirty-six male Sprague Dawley rats (150-180 g) were divided into non-hypercholesterolemic and hypercholesterolemic groups. Hypercholesterolemia was induced in the rats by feeding them with a high-fat diet for two weeks. After two weeks, the non-hypercholesterolemic and hypercholesterolemic rats were equally divided into six groups (n = 6): control non-hypercholesterolemic rats, non-hypercholesterolemic rats treated with fenofibrate (60 mg/kg), non-hypercholesterolemic rats treated with linoleic acid (5 mg/kg), control hypercholesterolemic rats, hypercholesterolemic rats treated with fenofibrate (60 mg/kg), and hypercholesterolemic rats treated with linoleic acid (5 mg/kg). The changes in the rats' body weight, serum lipid profiles, atherogenic indices, and liver function test results were obtained. The rats' liver tissues were stained for histopathological analysis. The linoleic acid-treated hypercholesterolemic rats exhibited significantly reduced serum TC, TG, LDL, aspartate aminotransferase, and alanine aminotransferase levels, as well as increased HDL levels compared with the control hypercholesterolemic rats. These linoleic acid effects were comparable to those in the fenofibrate-treated hypercholesterolemic rats. In conclusion, linoleic acid possesses early anti-hypercholesterolemic properties, which may be due to the reductions in serum cholesterol levels and mild early structural changes in the liver tissues of hypercholesterolemic rats. Therefore, continued studies on linoleic acid in atherosclerotic and/or obese animal models are suggested.
Collapse
|
8
|
Sun X, Yu J, Wang Y, Luo J, Zhang G, Peng X. Flaxseed oil ameliorates aging in d-galactose induced rats via altering gut microbiota and mitigating oxidative damage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6432-6442. [PMID: 35567370 DOI: 10.1002/jsfa.12010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/21/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Aging causes decreased antioxidant capacity and chronic inflammation and may even elevate cancer risks. Previous studies reported that flaxseed oil (FO) can alleviate age-related diseases, including improving alcoholic liver disease, atherosclerosis and diabetes. However, whether the intestinal microbiota accountable for this alleviation is still unknown. This study aims to study the antioxidant effects of FO in an aging rat model and the underlying mechanism between the intestinal microbiota and aging. RESULTS Our results presented that serum and liver antioxidant capacities in FO group were up-regulated, and liver inflammation in FO group was reduced. The 16S rDNA sequencing showed that FO regulated the microbial community, including up-regulation of four families of Lactobacillus and six families of Clostridium. In addition, FO had also adjusted the relative abundance of several genera such as Ruminococcaceae_UCG-005 and Prevotella_9, which may be the key bacteria associated with the aging process. Colonic transcriptome analysis showed that there were 1679 differentially expressed genes (DEGs) in the Model group and the FO group (134 up-regulated and 1545 down-regulated). Gene set enrichment analysis (GSEA) revealed FO down-regulates the expression of the upstream genes Ptprc, Lck, Zap70, Lat and Lcp2 in the T cell receptor signaling pathway. CONCLUSION In conclusion, FO improved antioxidant capacity and reduced intestinal microbial disturbances caused by aging damage, indicating that dietary FO has the potential to fight aging damage. This study provides a more comprehensive view of dietary intervention to improve aging. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Juntong Yu
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Guangwen Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Kapsiani S, Howlin BJ. Random forest classification for predicting lifespan-extending chemical compounds. Sci Rep 2021; 11:13812. [PMID: 34226569 PMCID: PMC8257600 DOI: 10.1038/s41598-021-93070-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/18/2021] [Indexed: 11/09/2022] Open
Abstract
Ageing is a major risk factor for many conditions including cancer, cardiovascular and neurodegenerative diseases. Pharmaceutical interventions that slow down ageing and delay the onset of age-related diseases are a growing research area. The aim of this study was to build a machine learning model based on the data of the DrugAge database to predict whether a chemical compound will extend the lifespan of Caenorhabditis elegans. Five predictive models were built using the random forest algorithm with molecular fingerprints and/or molecular descriptors as features. The best performing classifier, built using molecular descriptors, achieved an area under the curve score (AUC) of 0.815 for classifying the compounds in the test set. The features of the model were ranked using the Gini importance measure of the random forest algorithm. The top 30 features included descriptors related to atom and bond counts, topological and partial charge properties. The model was applied to predict the class of compounds in an external database, consisting of 1738 small-molecules. The chemical compounds of the screening database with a predictive probability of ≥ 0.80 for increasing the lifespan of Caenorhabditis elegans were broadly separated into (1) flavonoids, (2) fatty acids and conjugates, and (3) organooxygen compounds.
Collapse
Affiliation(s)
- Sofia Kapsiani
- Department of Chemistry, FEPS, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Brendan J Howlin
- Department of Chemistry, FEPS, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|
10
|
Youn K, Lee S, Jun M. Gamma-linolenic acid ameliorates Aβ-induced neuroinflammation through NF-κB and MAPK signalling pathways. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|