1
|
Liu C, Sun J, Shen X, Li S, Luo S, Chen N, Zhang Y. Peimine promotes microglial polarization to the M2 phenotype to attenuate drug-resistant epilepsy through suppressing the TLR4/NF-κB/HIF-1α signaling pathway in a rat model and in BV-2 microglia. Heliyon 2024; 10:e34987. [PMID: 39144974 PMCID: PMC11320464 DOI: 10.1016/j.heliyon.2024.e34987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Epilepsy is a chronic neurological disorder. Drug-resistant epilepsy (DRE) accounts for about one-third of epilepsy patients worldwide. Peimine, a main active component of Fritillaria, has been reported to show anti-inflammatory effects. However, its potential therapeutic role in DRE is not yet fully understood. In this work, a DRE rat model was established by injecting 1 μg kainic acid (KA), followed by a 250 mg/kg administration of valproic acid (VPA) from day 4-31. Rats were treated with different doses of peimine (2.5 mg/kg, 5 mg/kg and 10 mg/kg) daily from day 32-62. In vitro, BV-2 microglia were exposed to different doses of peimine (7.5 μg/ml, 15 μg/ml, and 30 μg/ml) in presence of LPS. The aim of this study was to investigate the potential therapeutic effects of peimine on DRE. The results showed that peimine efficiently suppressed the KA-induced epileptic behaviors of rats in a dose-dependent manner, as recorded by electroencephalography. Furthermore, peimine ameliorated hippocampal neuron injury in DRE rats, and promoted an M1-to-M2 microglial phenotype shift in a dose-dependent manner. Mechanistically, peimine inhibited the TLR4/NF-κB/HIF-1α signaling pathway both in vivo and in vitro. Additionally, peimine suppressed the apoptosis of primary neurons induced by LPS-treated microglia. In conclusion, peimine augments the microglial polarization towards an M2 phenotype by inhibiting the TLR4/NF-κB/HIF-1α signaling pathway, thereby attenuating DRE.
Collapse
Affiliation(s)
- Chongchong Liu
- Second Ward of Encephalopathy Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiangyan Sun
- Chronic Disease Prevention and Control Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoming Shen
- Second Ward of Encephalopathy Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Shefang Li
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Sha Luo
- Second Ward of Encephalopathy Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Na Chen
- Department of Geriatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunke Zhang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Li X, Sun C, Zhang J, Hu L, Yu Z, Zhang X, Wang Z, Chen J, Wu M, Liu L. Protective effects of paeoniflorin on cardiovascular diseases: A pharmacological and mechanistic overview. Front Pharmacol 2023; 14:1122969. [PMID: 37324475 PMCID: PMC10267833 DOI: 10.3389/fphar.2023.1122969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/10/2023] [Indexed: 06/17/2023] Open
Abstract
Background and ethnopharmacological relevance: The morbidity and mortality of cardiovascular diseases (CVDs) are among the highest of all diseases, necessitating the search for effective drugs and the improvement of prognosis for CVD patients. Paeoniflorin (5beta-[(Benzoyloxy)methyl] tetrahydro-5-hydroxy-2-methyl-2,5-methano-1H-3,4-dioxacyclobuta [cd] pentalen-1alpha (2H)-yl-beta-D-glucopyranoside, C23H28O11) is mostly derived from the plants of the family Paeoniaceae (a single genus family) and is known to possess multiple pharmacological properties in the treatment of CVDs, making it a promising agent for the protection of the cardiovascular system. Aim of the study: This review evaluates the pharmacological effects and potential mechanisms of paeoniflorin in the treatment of CVDs, with the aim of advancing its further development and application. Methods: Various relevant literatures were searched in PubMed, ScienceDirect, Google Scholar and Web of Science. All eligible studies were analyzed and summarized in this review. Results: Paeoniflorin is a natural drug with great potential for development, which can protect the cardiovascular system by regulating glucose and lipid metabolism, exerting anti-inflammatory, anti-oxidative stress, and anti-arteriosclerotic activities, improving cardiac function, and inhibiting cardiac remodeling. However, paeoniflorin was found to have low bioavailability, and its toxicology and safety must be further studied and analyzed, and clinical studies related to it must be carried out. Conclusion: Before paeoniflorin can be used as an effective therapeutic drug for CVDs, further in-depth experimental research, clinical trials, and structural modifications or development of new preparations are required.
Collapse
Affiliation(s)
- Xiaoya Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changxin Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Lanqing Hu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaonan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zeping Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiye Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Wang Z, Zhou K, Liang Z, Zhang H, Song Y, Yang X, Xiang D, Xie Q. In Vitro Investigation on the Effect of Dendrobine on the Activity of Cytochrome P450 Enzymes. PLANTA MEDICA 2023; 89:72-78. [PMID: 35523232 DOI: 10.1055/a-1806-2935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dendrobine is the major active ingredient of Dendrobium nobile, Dendrobium chrysotoxum, and Dendrobium fimbriatum, all of which are used in traditional Chinese medicine owing to their antitumor and anti-inflammation activities. Hence, investigation on the interaction of dendrobine with cytochrome P450 enzymes could provide a reference for the clinical application of Dendrobium. The effects of dendrobine on cytochrome P450 enzymes activities were investigated in the presence of 0, 2.5, 5, 10, 25, 50, and 100 µM dendrobine in pooled human liver microsomes. The specific inhibitors were employed as the positive control and the blank groups were set as the negative control. The Lineweaver-Burk plots were plotted to characterize the specific inhibition model and obtain the kinetic parameters. The study reveals that dendrobine significantly inhibited the activity of CYP3A4, 2C19, and 2D6 with IC50 values of 12.72, 10.84, and 15.47 µM, respectively. Moreover, the inhibition of CYP3A4 was found to be noncompetitive (Ki = 6.41 µM) and time dependent (KI = 2.541 µM-1, Kinact = 0.0452 min-1), while the inhibition of CYP2C19 and 2D6 was found to be competitive with the Ki values of 5.22 and 7.78 µM, respectively, and showed no time-dependent trends. The in vitro inhibitory effect of dendrobine implies the potential drug-drug interaction between dendrobine and CYP3A4-, 2C9-, and 2D6-metabolized drugs. Nonetheless, these findings need further in vivo validation.
Collapse
Affiliation(s)
- Zhiheng Wang
- Department of Acupuncture, Xingtai People's Hospital, Hebei Medical University Affiliated Hospital, Xingtai, Hebei, China
| | - Kuilong Zhou
- Internal Medicine of TCM, Xingtai People's Hospital, Hebei Medical University Affiliated Hospital, Xingtai, Hebei, China
| | - Zhijie Liang
- Department of Acupuncture, Xingtai People's Hospital, Hebei Medical University Affiliated Hospital, Xingtai, Hebei, China
| | - Huiting Zhang
- Department of Acupuncture, Xingtai People's Hospital, Hebei Medical University Affiliated Hospital, Xingtai, Hebei, China
| | - Yangjie Song
- Department of Acupuncture, Xingtai People's Hospital, Hebei Medical University Affiliated Hospital, Xingtai, Hebei, China
| | - Xiaomin Yang
- Department of Acupuncture, Xingtai People's Hospital, Hebei Medical University Affiliated Hospital, Xingtai, Hebei, China
| | - Dongguo Xiang
- Department of Acupuncture, Xingtai People's Hospital, Hebei Medical University Affiliated Hospital, Xingtai, Hebei, China
| | - Qingfan Xie
- Department of Rehabilitation Medicine, Xingtai People's Hospital, Hebei Medical University Affiliated Hospital, Xingtai, Hebei, China
| |
Collapse
|
4
|
Meng M, Li X, Zhang X, Sun B. Baicalein inhibits the pharmacokinetics of simvastatin in rats via regulating the activity of CYP3A4. PHARMACEUTICAL BIOLOGY 2021; 59:880-883. [PMID: 34214011 PMCID: PMC8259816 DOI: 10.1080/13880209.2021.1942927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
CONTEXT Baicalein and simvastatin possess similar pharmacological activities and indications. The risk of their co-administration was unclear. OBJECTIVE The interaction between baicalein and simvastatin was investigated to provide reference and guidance for the clinical application of the combination of these two drugs. MATERIALS AND METHODS The pharmacokinetics of simvastatin was investigated in Sprague-Dawley rats (n = 6). The rats were pre-treated with 20 mg/kg baicalein for 10 days and then administrated with 40 mg/kg simvastatin. The single administration of simvastatin was set as the control group. The rat liver microsomes were employed to assess the metabolic stability and the effect of baicalein on the activity of CYP3A4. RESULTS Baicalein significantly increased the AUC(0-t) (2018.58 ± 483.11 vs. 653.05 ± 160.10 μg/L × h) and Cmax (173.69 ± 35.49 vs. 85.63 ± 13.28 μg/L) of simvastatin. The t1/2 of simvastatin was prolonged by baicalein in vivo and in vitro. The metabolic stability of simvastatin was also improved by the co-administration of baicalein. Baicalein showed an inhibitory effect on the activity of CYP3A4 with the IC50 value of 12.03 μM, which is responsible for the metabolism of simvastatin. DISCUSSION AND CONCLUSION The co-administration of baicalein and simvastatin may induce drug-drug interaction through inhibiting CYP3A4. The dose of baicalein and simvastatin should be adjusted when they are co-administrated.
Collapse
Affiliation(s)
- Meng Meng
- Department of Cardiovascular Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Xin Li
- Department of Nursing, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Xiuwen Zhang
- Department of Critical Care Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Bin Sun
- Department of Emergency, Yidu Central Hospital of Weifang, Weifang, Shandong, China
- CONTACT Bin Sun Department of Emergency, Yidu Central Hospital of Weifang, No. 4138, South Linglongshan Road, Weifang, Shandong262500, China
| |
Collapse
|
5
|
Zhang J, Fan M, Yu X, Zhang B. The pharmacokinetic study on the interaction between nobiletin and anemarsaponin BII in vivo and in vitro. PHARMACEUTICAL BIOLOGY 2021; 59:1528-1532. [PMID: 34726569 PMCID: PMC8567955 DOI: 10.1080/13880209.2021.1990355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT The interaction between nobiletin and anemarsaponin BII could affect the pharmacological activity of these two drugs during their combination. OBJECTIVE The co-administration of nobiletin and anemarsaponin BII was investigated to explore the interaction and the potential mechanism. MATERIALS AND METHODS Male Sprague-Dawley rats were only orally administrated with 50 mg/kg nobiletin as the control and another six rats were pre-treated with 100 mg/kg anemarsaponin BII for 7 d followed by the administration of nobiletin. The transport and metabolic stability of nobiletin were evaluated in vitro, and the effect of anemarsaponin BII on the activity of CYP3A4 was also assessed to explore the potential mechanism underlying the interaction. RESULTS The increasing Cmax (2309.67 ± 68.06 μg/L vs. 1767.67 ± 68.86 μg/L), AUC (28.84 ± 1.34 mg/L × h vs. 19.57 ± 2.76 mg/L × h), prolonged t1/2 (9.80 ± 2.33 h vs. 6.24 ± 1.53 h), and decreased clearance rate (1.46 ± 0.26 vs. 2.42 ± 0.40) of nobilein was observed in rats. Anemarsaponin BII significantly enhanced the metabolic stability of nobiletin in rat liver microsomes (half-life increased from 31.56 min to 39.44 min) and suppressed the transport of nobiletin in Caco-2 cells (efflux rate decreased from 1.57 ± 0.04 to 1.30 ± 0.03). The inhibitory effect of anemarsaponin BII on CYP3A4 was also found with an IC50 value of 10.23 μM. DISCUSSION AND CONCLUSIONS The interaction between anemarsaponin BII and nobiletin was induced by the inhibition of CYP3A4, which should draw special attention in their clinical co-administration.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Medicinal Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Meiling Fan
- Department of Medicine, Qingdao Municipal Hospital (East Campus), Qingdao, Shandong, China
| | - Xia Yu
- Department of Anesthesia and Perioperative Medicine, Dongying Hospital of Traditional Chinese Medicine, Dongying, Shandong, China
| | - Bin Zhang
- Department of Medicinal Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|