1
|
Li M, Wang Y, Chen Y, Dong L, Liu J, Dong Y, Yang Q, Cai W, Li Q, Peng B, Li Y, Weng X, Wang Y, Zhu X, Gong Z, Chen Y. A comprehensive review on pharmacokinetic mechanism of herb-herb/drug interactions in Chinese herbal formula. Pharmacol Ther 2024; 264:108728. [PMID: 39389315 DOI: 10.1016/j.pharmthera.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/16/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
Oral administration of Chinese Herbal Medicine (CHM) faces various challenges in reaching the target organs including absorption and conversion in the gastrointestinal tract, hepatic metabolism via the portal vein, and eventual systemic circulation. During this process, factors such as gut microbes, physical or chemical barriers, metabolic enzymes, and transporters play crucial roles. Particularly, interactions between different herbs in CHM have been observed both in vitro and in vivo. In vitro, interactions typically manifest as detectable physical or chemical changes, such as facilitating solubilization or producing precipitates when decoctions of multiple herbs are administered. In vivo, such interactions cause alterations in the ADME (absorption, distribution, metabolism, and excretion) profile on metabolic enzymes or transporters in the body, leading to competition, antagonism, inhibition, or activation. These interactions ultimately contribute to differences in the therapeutic and pharmacological effects of multi-herb formulas in CHM. Over the past two thousand years, China has cultivated profound expertise and solid theoretical frameworks over the scientific use of herbs. The combination of multiple herbs in one decoction has been frequently employed to synergistically enhance therapeutic efficacy or mitigate toxic and side effects in clinical settings. Additionally combining herbs with increased toxicity or decreased effect is also regarded as a remedy, a practice that should be approached with caution according to Traditional Chinese Medicine (TCM) physicians. Such historical records and practices serve as a foundation for predicting favorable multi-herb combinations and their potential risks. However, systematic data that are available to support the clinical practice and the exploration of novel herbal formulas remain limited. Therefore, this review aims to summarize the pharmacokinetic interactions and mechanisms of herb-herb or herb-drug combinations from existing works, and to offer guidance as well as evidence for optimizing CHM and developing new medicines with CHM characteristics.
Collapse
Affiliation(s)
- Mengting Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yanli Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Lijinchuan Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jieyuan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Dong
- Guang'an men hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bo Peng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Ma W, Wei S, Li Q, Zeng J, Xiao W, Zhou C, Yoneda KY, Zeki AA, Li T. Simvastatin Overcomes Resistance to Tyrosine Kinase Inhibitors in Patient-derived, Oncogene-driven Lung Adenocarcinoma Models. Mol Cancer Ther 2024; 23:700-710. [PMID: 38237027 PMCID: PMC11065592 DOI: 10.1158/1535-7163.mct-23-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 05/03/2024]
Abstract
There is an unmet clinical need to develop novel strategies to overcome resistance to tyrosine kinase inhibitors (TKI) in patients with oncogene-driven lung adenocarcinoma (LUAD). The objective of this study was to determine whether simvastatin could overcome TKI resistance using the in vitro and in vivo LUAD models. Human LUAD cell lines, tumor cells, and patient-derived xenograft (PDX) models from TKI-resistant LUAD were treated with simvastatin, either alone or in combination with a matched TKI. Tumor growth inhibition was measured by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and expression of molecular targets was assessed by immunoblots. Tumors were assessed by histopathology, IHC stain, immunoblots, and RNA sequencing. We found that simvastatin had a potent antitumor effect in tested LUAD cell lines and PDX tumors, regardless of tumor genotypes. Simvastatin and TKI combination did not have antagonistic cytotoxicity in these LUAD models. In an osimertinib-resistant LUAD PDX model, simvastatin and osimertinib combination resulted in a greater reduction in tumor volume than simvastatin alone (P < 0.001). Immunoblots and IHC stain also confirmed that simvastatin inhibited TKI targets. In addition to inhibiting 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, RNA sequencing and Western blots identified the proliferation, migration, and invasion-related genes (such as PI3K/Akt/mTOR, YAP/TAZ, focal adhesion, extracellular matrix receptor), proteasome-related genes, and integrin (α3β1, αvβ3) signaling pathways as the significantly downregulated targets in these PDX tumors treated with simvastatin and a TKI. The addition of simvastatin is a safe approach to overcome acquired resistance to TKIs in several oncogene-driven LUAD models, which deserve further investigation.
Collapse
Affiliation(s)
- Weijie Ma
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
- Current address: Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Sixi Wei
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
- Current address: Department of Biochemistry, Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Qianping Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
- Current address: Department of Thoracic Surgery, Shanghai Sixth People’s Hospital, Shanghai, China
| | - Jie Zeng
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Wenwu Xiao
- Medical Service, Veterans Affairs Northern California Health Care System, 10535 Hospital Way, Mather, CA
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | - Chihong Zhou
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, California, USA
| | - Ken Y. Yoneda
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, UC Davis Lung Center, Sacramento, California, USA
| | - Amir A. Zeki
- Medical Service, Veterans Affairs Northern California Health Care System, 10535 Hospital Way, Mather, CA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, UC Davis Lung Center, Sacramento, California, USA
| | - Tianhong Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
- Medical Service, Veterans Affairs Northern California Health Care System, 10535 Hospital Way, Mather, CA
| |
Collapse
|
3
|
Wang Z, Zhou K, Liang Z, Zhang H, Song Y, Yang X, Xiang D, Xie Q. In Vitro Investigation on the Effect of Dendrobine on the Activity of Cytochrome P450 Enzymes. PLANTA MEDICA 2023; 89:72-78. [PMID: 35523232 DOI: 10.1055/a-1806-2935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dendrobine is the major active ingredient of Dendrobium nobile, Dendrobium chrysotoxum, and Dendrobium fimbriatum, all of which are used in traditional Chinese medicine owing to their antitumor and anti-inflammation activities. Hence, investigation on the interaction of dendrobine with cytochrome P450 enzymes could provide a reference for the clinical application of Dendrobium. The effects of dendrobine on cytochrome P450 enzymes activities were investigated in the presence of 0, 2.5, 5, 10, 25, 50, and 100 µM dendrobine in pooled human liver microsomes. The specific inhibitors were employed as the positive control and the blank groups were set as the negative control. The Lineweaver-Burk plots were plotted to characterize the specific inhibition model and obtain the kinetic parameters. The study reveals that dendrobine significantly inhibited the activity of CYP3A4, 2C19, and 2D6 with IC50 values of 12.72, 10.84, and 15.47 µM, respectively. Moreover, the inhibition of CYP3A4 was found to be noncompetitive (Ki = 6.41 µM) and time dependent (KI = 2.541 µM-1, Kinact = 0.0452 min-1), while the inhibition of CYP2C19 and 2D6 was found to be competitive with the Ki values of 5.22 and 7.78 µM, respectively, and showed no time-dependent trends. The in vitro inhibitory effect of dendrobine implies the potential drug-drug interaction between dendrobine and CYP3A4-, 2C9-, and 2D6-metabolized drugs. Nonetheless, these findings need further in vivo validation.
Collapse
Affiliation(s)
- Zhiheng Wang
- Department of Acupuncture, Xingtai People's Hospital, Hebei Medical University Affiliated Hospital, Xingtai, Hebei, China
| | - Kuilong Zhou
- Internal Medicine of TCM, Xingtai People's Hospital, Hebei Medical University Affiliated Hospital, Xingtai, Hebei, China
| | - Zhijie Liang
- Department of Acupuncture, Xingtai People's Hospital, Hebei Medical University Affiliated Hospital, Xingtai, Hebei, China
| | - Huiting Zhang
- Department of Acupuncture, Xingtai People's Hospital, Hebei Medical University Affiliated Hospital, Xingtai, Hebei, China
| | - Yangjie Song
- Department of Acupuncture, Xingtai People's Hospital, Hebei Medical University Affiliated Hospital, Xingtai, Hebei, China
| | - Xiaomin Yang
- Department of Acupuncture, Xingtai People's Hospital, Hebei Medical University Affiliated Hospital, Xingtai, Hebei, China
| | - Dongguo Xiang
- Department of Acupuncture, Xingtai People's Hospital, Hebei Medical University Affiliated Hospital, Xingtai, Hebei, China
| | - Qingfan Xie
- Department of Rehabilitation Medicine, Xingtai People's Hospital, Hebei Medical University Affiliated Hospital, Xingtai, Hebei, China
| |
Collapse
|
4
|
Weng Q, Chen C, Xiong J, Liu YN, Pan X, Cui J, Cai JP, Xu RA. Effect of Baicalein on the Pharmacokinetics of Cilostazol and Its Two Metabolites in Rat Plasma Using UPLC-MS/MS Method. Front Pharmacol 2022; 13:888054. [PMID: 35571101 PMCID: PMC9091372 DOI: 10.3389/fphar.2022.888054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to explore the effect of baicalein on the pharmacokinetics of cilostazol (CLZ) and its two metabolites 3,4-dehydro cilostazol (3,4-CLZ) and 4'-trans-hydroxy cilostazol (4'-CLZ) in rats using a newly established ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. Ticagrelor was used as an internal standard (IS), then cilostazol and its two metabolites were separated by means of a UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 μm) using gradient elution method with 0.4 ml/min of flow rate. Acetonitrile as organic phase and water with 0.1% formic acid as aqueous phase constructed the mobile phase. Selective reaction monitoring (SRM) mode and positive ion mode were preferentially chosen to detect the analytes. Twelve SD rats were divided into two groups (n = 6) when CLZ was administered orally (10 mg/kg) with or without oral baicalein (80 mg/kg). The selectivity, linearity, recovery, accuracy, precision, matrix effect and stability of UPLC-MS/MS assay were satisfied with the standards of United States Food and Drug Administration guidelines. In control group, AUC0-∞ and Cmax of CLZ were 2,169.5 ± 363.1 ng/ml*h and 258.9 ± 82.6 ng/ml, respectively. The corresponding results were 3,767.6 ± 1,049.8 ng/ml*h and 308.6 ± 87.9 ng/ml for 3, 4-CLZ, 728.8 ± 189.9 ng/ml*h and 100.3 ± 51.3 ng/ml for 4'-CLZ, respectively. After combination with baicalein, AUC0-∞ and Cmax of CLZ were 1.48, 1.38 times higher than the controls. Additionally, AUC0-∞ and Cmax were separately decreased by 36.12 and 19.54% for 3,4-CLZ, 13.11 and 44.37% for 4'-CLZ. Baicalein obviously alters the pharmacokinetic parameters of CLZ, 3,4-CLZ and 4'-CLZ in rats. These results suggested that there was a potential drug-drug interaction between baicalein and CLZ. Therefore, it must raise the awareness when concomitant use of CLZ with baicalein, the dosage regimen of CLZ should be taken into consideration, if this result is confirmed in clinical studies.
Collapse
Affiliation(s)
- Qinghua Weng
- The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), Wenzhou, China
| | - Chaojie Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianhua Xiong
- The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), Wenzhou, China
| | - Ya-Nan Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinxin Pan
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jian-Ping Cai
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Ren-Ai Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|