1
|
Ye H, Zou X, Fang X. Advancing cell-based therapy in sepsis: An anesthesia outlook. Chin Med J (Engl) 2024; 137:1522-1534. [PMID: 38708689 PMCID: PMC11230747 DOI: 10.1097/cm9.0000000000003097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 05/07/2024] Open
Abstract
ABSTRACT Sepsis poses a health challenge globally owing to markedly high rates of morbidity and mortality. Despite employing bundle therapy over two decades, approaches including transient organ supportive therapy and clinical trials focusing on signaling pathways have failed in effectively reversing multiple organ failure in patients with sepsis. Prompt and appropriate perioperative management for surgical patients with concurrent sepsis is urgent. Consequently, innovative therapies focusing on remedying organ injuries are necessitated. Cell therapy has emerged as a promising therapeutic avenue for repairing local damage to vital organs and restoring homeostasis during perioperative treatment for sepsis. Given the pivotal role of immune cell responses in the pathogenesis of sepsis, stem cell-based interventions that primarily modulate immune responses by interacting with multiple immune cells have progressed into clinical trials. The strides made in single-cell sequencing and gene-editing technologies have advanced the understanding of disease-specific immune responses in sepsis. Chimeric antigen receptor (CAR)-immune cell therapy offers an intriguing option for the treatment of sepsis. This review provides a concise overview of immune cell therapy, its current status, and the strides made in the context of sepsis research, discussing potential strategies for the management of patients with sepsis during perioperative stages.
Collapse
Affiliation(s)
- Hui Ye
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiaoyu Zou
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 312000, China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
2
|
Nicin L, Wagner JUG, Luxán G, Dimmeler S. Fibroblast-mediated intercellular crosstalk in the healthy and diseased heart. FEBS Lett 2021; 596:638-654. [PMID: 34787896 DOI: 10.1002/1873-3468.14234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 01/07/2023]
Abstract
Cardiac fibroblasts constitute a major cell population in the heart. They secrete extracellular matrix components and various other factors shaping the microenvironment of the heart. In silico analysis of intercellular communication based on single-cell RNA sequencing revealed that fibroblasts are the source of the majority of outgoing signals to other cell types. This observation suggests that fibroblasts play key roles in orchestrating cellular interactions that maintain organ homeostasis but that can also contribute to disease states. Here, we will review the current knowledge of fibroblast interactions in the healthy, diseased, and aging heart. We focus on the interactions that fibroblasts establish with other cells of the heart, specifically cardiomyocytes, endothelial cells and immune cells, and particularly those relying on paracrine, electrical, and exosomal communication modes.
Collapse
Affiliation(s)
- Luka Nicin
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt am Main, Germany
| | - Julian U G Wagner
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt am Main, Germany
| | - Guillermo Luxán
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt am Main, Germany
| |
Collapse
|
3
|
Samakova A, Gazova A, Sabova N, Valaskova S, Jurikova M, Kyselovic J. The PI3k/Akt pathway is associated with angiogenesis, oxidative stress and survival of mesenchymal stem cells in pathophysiologic condition in ischemia. Physiol Res 2020; 68:S131-S138. [PMID: 31842576 DOI: 10.33549/physiolres.934345] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischemic diseases are characterized by reduced blood supply to a tissue or an organ due to obstruction of blood vessels. The most serious and most common ischemic diseases include ischemic heart disease, ischemic stroke, and critical limb ischemia. Revascularization is the first choice of therapy, but the cell therapy is being introduced as a possible way of treatment for no-option patients. One of the possibilities of cell therapy is the use of mesenchymal stem cells (MSCs). MSCs are easily isolated from bone marrow and can be defined as non-hematopoietic multipotent adult stem cells population with a defined capacity for self-renewal and differentiation into cell types of all three germ layers depending on their origin. Since 1974, when Friedenstein and coworkers (Friedenstein et al. 1974) first time isolated and characterized MSCs, MSC-based therapy has been shown to be safe and effective. Nevertheless, many scientists and clinical researchers want to improve the success of MSCs in regenerative therapy. The secret of successful cell therapy may lie, along with the homing, in secretion of biologically active molecules including cytokines, growth factors, and chemokines known as MSCs secretome. One of the intracellular signalling mechanism includes the activity of phosphatidylinositol-3-kinase (phosphoinositide 3-kinase) (PI3K) - protein kinase B (serine-threonine protein kinase Akt) (Akt) pathway. This PI3K/Akt pathway plays key roles in many cell types in regulating cell proliferation, differentiation, apoptosis, and migration. Pre-conditioning of MSCs could improve efficacy of signalling mechanism.
Collapse
Affiliation(s)
- A Samakova
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
4
|
Adolfsson E, Helenius G, Friberg Ö, Samano N, Frøbert O, Johansson K. Bone marrow- and adipose tissue-derived mesenchymal stem cells from donors with coronary artery disease; growth, yield, gene expression and the effect of oxygen concentration. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 80:318-326. [PMID: 32189529 DOI: 10.1080/00365513.2020.1741023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) for cardiovascular cell therapy are procured from different sources including bone marrow and adipose tissue. Differently located MSCs differ in growth potential, differentiation ability and gene expression when cultured in vitro, and studies show different healing abilities for different MSC subgroups. In this study, bone marrow derived MSCs (BMSCs) and adipose tissue derived MSCs (ADSCs) from six human donors with coronary artery disease were compared for growth potential and expression of target genes (Angpt1, LIF, HGF, TGF-β1 and VEGF-A) in response to exposure to 1% and 5% O2, for up to 48 h. We found greater growth of ADSCs compared to BMSCs. ADSCs expressed higher levels of Angpt1, LIF and TGF-β1 and equal levels of VEGF-A and HGF as BMSCs. In BMSCs, exposure to low oxygen resulted in upregulation of TGF-β1, whereas other target genes were unaffected. Upregulation was only present at 1% O2. In ADSCs, LIF was upregulated in both oxygen concentrations, whereas Angpt1 was upregulated only at 1% O2. Different response to reduced oxygen culture conditions is of relevance when expanding cells in vitro prior to administration. These findings indicate ADSCs as better suited for cardiovascular cell therapy compared to BMSCs.
Collapse
Affiliation(s)
- Emma Adolfsson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Gisela Helenius
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Örjan Friberg
- Department of Cardiothoracic Surgery, Faculty of Health, Örebro University, Örebro, Sweden
| | - Ninos Samano
- Department of Cardiothoracic Surgery, Faculty of Health, Örebro University, Örebro, Sweden
| | - Ole Frøbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
| | - Karin Johansson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
5
|
Mathiasen AB, Qayyum AA, Jørgensen E, Helqvist S, Kofoed KF, Haack-Sørensen M, Ekblond A, Kastrup J. Bone marrow-derived mesenchymal stromal cell treatment in patients with ischaemic heart failure: final 4-year follow-up of the MSC-HF trial. Eur J Heart Fail 2019; 22:884-892. [PMID: 31863561 DOI: 10.1002/ejhf.1700] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/17/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
AIMS The study assessed 4-year outcomes of intramyocardial injections of autologous bone marrow-derived mesenchymal stromal cells (MSCs) in patients with ischaemic heart failure. METHODS AND RESULTS The MSC-HF trial was a randomized, double-blind, placebo-controlled trial. Patients were randomized 2:1 to intramyocardial injections of MSCs or placebo. The primary endpoint was change in left ventricular end-systolic volume (LVESV), measured by magnetic resonance imaging or computed tomography. Sixty patients aged 30-80 years with ischaemic heart failure, New York Heart Association class II-III, left ventricular ejection fraction (LVEF) <45% and no further treatment options were randomized. Patients were followed clinically for 12 months and in addition 4-year data of hospitalizations and survival were retrieved. After 12 months, LVESV was significantly reduced in the MSC group and not in the placebo group, with difference between groups of 17.0 ± 16.2 mL (95% confidence interval 8.3-25.7, P = 0.0002). There were also significant improvements in LVEF of 6.2% (P < 0.0001), stroke volume of 16.1 mL (P < 0.0001) and myocardial mass (P = 0.009) between groups. A significant dose-response effect was also observed. Moreover, a significant reduction in the amount of scar tissue and quality of life score in the MSC group but not in the placebo group was observed. After 4 years, there were significantly fewer hospitalizations for angina in the MSC group and otherwise no differences in hospitalizations or survival. No side effects were identified. CONCLUSIONS Intramyocardial injections of autologous bone marrow-derived MSCs improved myocardial function and myocardial mass in patients with ischaemic heart failure.
Collapse
Affiliation(s)
- Anders B Mathiasen
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Abbas A Qayyum
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Erik Jørgensen
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Helqvist
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Klaus F Kofoed
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Cardiac Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Annette Ekblond
- Cardiac Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Haack-Sørensen M, Juhl M, Follin B, Harary Søndergaard R, Kirchhoff M, Kastrup J, Ekblond A. Development of large-scale manufacturing of adipose-derived stromal cells for clinical applications using bioreactors and human platelet lysate. Scandinavian Journal of Clinical and Laboratory Investigation 2018; 78:293-300. [PMID: 29661028 DOI: 10.1080/00365513.2018.1462082] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In vitro expanded adipose-derived stromal cells (ASCs) are a useful resource for tissue regeneration. Translation of small-scale autologous cell production into a large-scale, allogeneic production process for clinical applications necessitates well-chosen raw materials and cell culture platform. We compare the use of clinical-grade human platelet lysate (hPL) and fetal bovine serum (FBS) as growth supplements for ASC expansion in the automated, closed hollow fibre quantum cell expansion system (bioreactor). Stromal vascular fractions were isolated from human subcutaneous abdominal fat. In average, 95 × 106 cells were suspended in 10% FBS or 5% hPL medium, and loaded into a bioreactor coated with cryoprecipitate. ASCs (P0) were harvested, and 30 × 106 ASCs were reloaded for continued expansion (P1). Feeding rate and time of harvest was guided by metabolic monitoring. Viability, sterility, purity, differentiation capacity, and genomic stability of ASCs P1 were determined. Cultivation of SVF in hPL medium for in average nine days, yielded 546 × 106 ASCs compared to 111 × 106 ASCs, after 17 days in FBS medium. ASCs P1 yields were in average 605 × 106 ASCs (PD [population doublings]: 4.65) after six days in hPL medium, compared to 119 × 106 ASCs (PD: 2.45) in FBS medium, after 21 days. ASCs fulfilled ISCT criteria and demonstrated genomic stability and sterility. The use of hPL as a growth supplement for ASCs expansion in the quantum cell expansion system provides an efficient expansion process compared to the use of FBS, while maintaining cell quality appropriate for clinical use. The described process is an obvious choice for manufacturing of large-scale allogeneic ASC products.
Collapse
Affiliation(s)
- Mandana Haack-Sørensen
- a Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet Copenhagen University Hospital , Copenhagen , Denmark
| | - Morten Juhl
- a Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet Copenhagen University Hospital , Copenhagen , Denmark
| | - Bjarke Follin
- a Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet Copenhagen University Hospital , Copenhagen , Denmark
| | - Rebekka Harary Søndergaard
- a Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet Copenhagen University Hospital , Copenhagen , Denmark
| | - Maria Kirchhoff
- b Department of Clinical Genetics , Rigshospitalet Copenhagen University Hospital , Copenhagen , Denmark
| | - Jens Kastrup
- a Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet Copenhagen University Hospital , Copenhagen , Denmark
| | - Annette Ekblond
- a Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet Copenhagen University Hospital , Copenhagen , Denmark
| |
Collapse
|
7
|
Rationale and Design of the First Double-Blind, Placebo-Controlled Trial with Allogeneic Adipose Tissue-Derived Stromal Cell Therapy in Patients with Ischemic Heart Failure: A Phase II Danish Multicentre Study. Stem Cells Int 2017; 2017:8506370. [PMID: 29056973 PMCID: PMC5625749 DOI: 10.1155/2017/8506370] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/24/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ischemic heart failure (IHF) has a poor prognosis in spite of optimal therapy. We have established a new allogeneic Cardiology Stem Cell Centre adipose-derived stromal cell (CSCC_ASC) product from healthy donors. It is produced without animal products, in closed bioreactor systems and cryopreserved as an off-the-shelf product ready to use. STUDY DESIGN A multicentre, double-blind, placebo-controlled phase II study with direct intramyocardial injections of allogeneic CSCC_ASC in patients with chronic IHF. A total of 81 patients will be randomised at 2 : 1 to CSCC_ASC or placebo. There is no HLA tissue type matching needed between the patients and the donors. METHODS The treatment will be delivered by direct injections into the myocardium. The primary endpoint is change in the left ventricle endsystolic volume at 6-month follow-up. Secondary endpoints are safety and changes in left ventricle ejection fraction, myocardial mass, stroke volume, and cardiac output. Other secondary endpoints are change in clinical symptoms, 6-minute walking test, and the quality of life after 6 and 12 months. CONCLUSION The aim of the present study is to demonstrate safety and the regenerative efficacy of the allogeneic CSCC_ASC product from healthy donors in a double-blind, placebo-controlled, multicentre study in patients with IHF.
Collapse
|
8
|
Kastrup J, Haack-Sørensen M, Juhl M, Harary Søndergaard R, Follin B, Drozd Lund L, Mønsted Johansen E, Ali Qayyum A, Bruun Mathiasen A, Jørgensen E, Helqvist S, Jørgen Elberg J, Bruunsgaard H, Ekblond A. Cryopreserved Off-the-Shelf Allogeneic Adipose-Derived Stromal Cells for Therapy in Patients with Ischemic Heart Disease and Heart Failure-A Safety Study. Stem Cells Transl Med 2017; 6:1963-1971. [PMID: 28880460 PMCID: PMC6430047 DOI: 10.1002/sctm.17-0040] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
The present first‐in‐human clinical trial evaluated the safety and feasibility of a newly developed and cryopreserved Cardiology Stem Cell Centre adipose‐derived stromal cell (CSCC_ASC) product from healthy donors for intramyocardial injection in ten patients with ischemic heart disease and ischemic heart failure (IHF). Batches of CSCC_ASC were isolated from three healthy donors by liposuction from abdominal adipose tissue. Adipose mesenchymal stromal cells were culture expanded in bioreactors without the use of animal constituents, cryopreserved, and stored in vials in nitrogen dry‐storage containers until use. Direct injection of CSCC_ASC into the myocardium did not cause any complications or serious adverse events related to either treatment or cell administration in a 6‐month follow‐up period. Four out of ten heart failure patients developed donor‐specific de novo human leukocyte antigen (HLA) class I antibodies, and two out of ten patients had donor‐specific HLA antibodies already at baseline. There were no clinical symptoms or changes in inflammatory parameters in the follow‐up period that indicated an ongoing immune response. There was a tendency toward improvement in cardiac function after CSCC_ASC treatment at 6‐month follow‐up: left ventricular end systolic volume decreased and left ventricular ejection fraction increased. In addition, exercise capacity increased. These changes were independent of the presence or absence of HLA antibodies. It is concluded that the newly developed cryopreserved product CSCC_ASC from healthy donors was a safe and feasible treatment. We observed a tendency toward efficacy in patients with IHF. These findings have to be confirmed in larger placebo controlled clinical trials. Stem Cells Translational Medicine2017;6:1963–1971
Collapse
Affiliation(s)
- Jens Kastrup
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Denmark.,Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Morten Juhl
- Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Rebekka Harary Søndergaard
- Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Bjarke Follin
- Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Lisbeth Drozd Lund
- Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Ellen Mønsted Johansen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Abbas Ali Qayyum
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Anders Bruun Mathiasen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Erik Jørgensen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Steffen Helqvist
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Jens Jørgen Elberg
- Department of Plastic Surgery, Breast Surgery & Burns, Rigshospitalet, University of Copenhagen, Denmark
| | - Helle Bruunsgaard
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, Rigshospitalet, University of Copenhagen, Denmark.,The Heart Centre, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
9
|
Qayyum AA, Kaur KP, Mathiasen AB, Haack-Sørensen M, Ekblond A, Kastrup J. Influence of patient related factors on number of mesenchymal stromal cells reached after in vitro culture expansion for clinical treatment. Scandinavian Journal of Clinical and Laboratory Investigation 2017; 77:541-548. [PMID: 28737959 DOI: 10.1080/00365513.2017.1354258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Number of stromal cells injected in patients with ischaemic heart disease (IHD) may be of importance for the treatment efficacy, which in turn may be influenced by various patient-related factors. In this study, we investigate whether patient-related factors influence the number of autologous stromal cells reached after in vitro culture expansion for clinical therapy. METHODS Culture expansion data from 111 patients with IHD treated with autologous stromal cells in three clinical trials were used. We correlated the final cell count after two passages of cultivation with different patient factors. RESULTS There was a significant relation between body mass index (BMI) and the number of adipose derived stromal cells (ASCs) reached after culture expansion and for all patients included into the three studies (r = 0.375, p = .019 and r = 0.200, p = .036, respectively). Moreover, there was a significantly higher number of ASCs reached in patients with hypertension compared to those without hypertension and for all patients overall (68.8 ± 39.6 × 106 vs. 39.1 ± 23.6 × 106, p = .020 and 62.0 ± 55.0 × 106 vs. 29.0 ± 19.3 × 106, p < .001, respectively). The same tendency was seen with bone marrow derived mesenchymal stromal cells (MSCs) in patients with hypertension compared to those without hypertension (58.4 ± 61.8 × 106 vs. 22.6 ± 13.3 × 106, p < .001) and in males compared to females (56.4 ± 61.5 × 106 vs. 30.9 ± 27.9 × 106, p = .041). Moreover, a significant negative correlation between left ventricular ejection fraction and number of MSCs was found (r = -0.287, p = .017). CONCLUSIONS Patient related factors such as BMI, hypertension and gender may influence the number of MSCs reached after in vitro culture expansion.
Collapse
Affiliation(s)
- Abbas Ali Qayyum
- a Department of Cardiology & Cardiac Catheterization Laboratory 2014 , The Heart Centre, Rigshospitalet University Hospital of Copenhagen , Copenhagen , Denmark
| | - Kamal Preet Kaur
- a Department of Cardiology & Cardiac Catheterization Laboratory 2014 , The Heart Centre, Rigshospitalet University Hospital of Copenhagen , Copenhagen , Denmark
| | - Anders Bruun Mathiasen
- a Department of Cardiology & Cardiac Catheterization Laboratory 2014 , The Heart Centre, Rigshospitalet University Hospital of Copenhagen , Copenhagen , Denmark
| | - Mandana Haack-Sørensen
- b Cardiology Stem Cell Centre , The Heart Centre, Rigshospitalet University Hospital of Copenhagen , Copenhagen , Denmark
| | - Annette Ekblond
- b Cardiology Stem Cell Centre , The Heart Centre, Rigshospitalet University Hospital of Copenhagen , Copenhagen , Denmark
| | - Jens Kastrup
- a Department of Cardiology & Cardiac Catheterization Laboratory 2014 , The Heart Centre, Rigshospitalet University Hospital of Copenhagen , Copenhagen , Denmark.,b Cardiology Stem Cell Centre , The Heart Centre, Rigshospitalet University Hospital of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
10
|
Gjesdal K. Scandinavian Cardiovascular Journal - 50 years anniversary. SCAND CARDIOVASC J 2016; 50:251-252. [PMID: 27735190 DOI: 10.1080/14017431.2016.1249021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Knut Gjesdal
- a Cardiology Department , Oslo University Hospital Ullevål, Institute of Clinical Medicine, Oslo University , Oslo , Norway
| |
Collapse
|