1
|
Takaiwa F. Influence on Accumulation Levels and Subcellular Localization of Prolamins by Fusion with the Functional Peptide in Transgenic Rice Seeds. Mol Biotechnol 2023; 65:1869-1886. [PMID: 36856922 DOI: 10.1007/s12033-023-00666-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/12/2023] [Indexed: 03/02/2023]
Abstract
To exploit the rice seed-based oral vaccine against Sjögren's syndrome, altered peptide ligand of N-terminal 1 (N1-APL7) from its M3 muscarinic acetylcholine receptor (M3R) autoantigen was expressed as fusion protein with the representative four types of rice prolamins (16 kDa, 14 kDa, 13 kDa, and 10 kDa prolamins) under the control of the individual native prolamin promoter. The 10kD:N1-APL7 and 14kD:N1-APL7 accumulated at high levels (287 and 58 µg/grain), respectively, whereas production levels of the remaining ones were remarkably low. Co-expression of these fusion proteins did not enhance the accumulation level of N1-APL7 in an additive manner. Downregulation of endogenous seed storage proteins by RNAi-mediated suppression also did not lead to substantial elevation of the co-expressed prolamin:N1-APL7 products. When transgenic rice seeds were subjected to in vitro proteolysis with pepsin, the 10kD:N1-APL7 was digested more quickly than the endogenous 10 kDa prolamin and the 14kD:N1-APL7 deposited in PB-Is. This difference could be explained by the finding that the 10kD:N1-APL7 was unexpectedly localized in the PB-IIs containing glutelins. These results indicated that not only accumulation level but also subcellular localization of inherent prolamins were highly influenced by the liked N1-APL7 peptide.
Collapse
Affiliation(s)
- Fumio Takaiwa
- Soul Signal Institute, Kojyohama, Shiraoi, Hokkaido, 059-0641, Japan.
- National Institute of Agrobiological Sciences, Kannondai 3-1-3, Tsukuba, Ibaraki, 305-8602, Japan.
| |
Collapse
|
2
|
Pucino V, Certo M, Bulusu V, Cucchi D, Goldmann K, Pontarini E, Haas R, Smith J, Headland SE, Blighe K, Ruscica M, Humby F, Lewis MJ, Kamphorst JJ, Bombardieri M, Pitzalis C, Mauro C. Lactate Buildup at the Site of Chronic Inflammation Promotes Disease by Inducing CD4 + T Cell Metabolic Rewiring. Cell Metab 2019; 30:1055-1074.e8. [PMID: 31708446 PMCID: PMC6899510 DOI: 10.1016/j.cmet.2019.10.004] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 06/21/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
Abstract
Accumulation of lactate in the tissue microenvironment is a feature of both inflammatory disease and cancer. Here, we assess the response of immune cells to lactate in the context of chronic inflammation. We report that lactate accumulation in the inflamed tissue contributes to the upregulation of the lactate transporter SLC5A12 by human CD4+ T cells. SLC5A12-mediated lactate uptake into CD4+ T cells induces a reshaping of their effector phenotype, resulting in increased IL17 production via nuclear PKM2/STAT3 and enhanced fatty acid synthesis. It also leads to CD4+ T cell retention in the inflamed tissue as a consequence of reduced glycolysis and enhanced fatty acid synthesis. Furthermore, antibody-mediated blockade of SLC5A12 ameliorates the disease severity in a murine model of arthritis. Finally, we propose that lactate/SLC5A12-induced metabolic reprogramming is a distinctive feature of lymphoid synovitis in rheumatoid arthritis patients and a potential therapeutic target in chronic inflammatory disorders.
Collapse
Affiliation(s)
- Valentina Pucino
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Vinay Bulusu
- Cancer Research UK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Danilo Cucchi
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Katriona Goldmann
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Elena Pontarini
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Robert Haas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Joanne Smith
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sarah E Headland
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kevin Blighe
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Frances Humby
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Myles J Lewis
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jurre J Kamphorst
- Cancer Research UK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Michele Bombardieri
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
3
|
Matsumoto I, Kurata I, Ohyama A, Kawaguchi H, Ebe H, Osada A, Kondo Y, Tsuboi H, Sumida T. Revisit of autoimmunity to glucose-6-phosphate isomerase in experimental and rheumatoid arthritis. Mod Rheumatol 2019; 30:232-238. [PMID: 31441345 DOI: 10.1080/14397595.2019.1659539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an inflammatory disorder characterized by synovial inflammation in multiple joints. Autoantibodies (Abs) are the hallmark of RA, and as disease-specific and diagnostic markers, rheumatoid factor and anti-citrullinated protein antibody (ACPA) are produced pre-clinically, but their pathogenic roles in RA remain elusive. In this review, we focus on one of the candidate autoantigens in RA; glucose-6-phosphate isomerase (GPI). The arthritogenic role of GPI has been confirmed in two different mouse models: the K/BxN- and GPI-induced arthritis models. Both anti-GPI Abs and citrullinated-GPI peptide Abs have been detected in human RA. Studies conducted in these rodent models have confirmed that the pathogenesis of arthritis involves the localization of autoantigens not only in the joints but also in the circulation. In this review, we revisit and summarize the arthritogenic relevance of GPI in animal RA models and in human RA, and extend the discussion to joint-specific inflammation.
Collapse
Affiliation(s)
- Isao Matsumoto
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Izumi Kurata
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ayako Ohyama
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hoshimi Kawaguchi
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ebe
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Atsumu Osada
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuya Kondo
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroto Tsuboi
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
4
|
Kudo H, Tsuboi H, Asashima H, Takahashi H, Ono Y, Abe S, Honda F, Kondo Y, Wakasa Y, Takaiwa F, Takano M, Matsui M, Matsumoto I, Sumida T. Transgenic rice seeds expressing altered peptide ligands against the M3 muscarinic acetylcholine receptor suppress experimental sialadenitis-like Sjögren's syndrome. Mod Rheumatol 2019; 30:884-893. [PMID: 31490711 DOI: 10.1080/14397595.2019.1664368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: We previously reported that Rag1-/- mice inoculated with splenocytes from M3 muscarinic acetylcholine receptor (M3R) knockout mice immunized with an M3R peptide mixture developed sialadenitis-like Sjögren's syndrome (M3R-induced sialadenitis [MIS]). We also found that intravenous administration of altered peptide ligand (APL) of N-terminal 1 (N1), which is one of the T-cell epitopes of M3R, suppressed MIS. In this study, we aimed to evaluate the suppressive ability and its mechanisms of rice seeds expressing N1-APL7 against MIS.Methods: Rice seeds expressing N1 and N1-APL7 were orally administered to MIS mice for 2 weeks. The changes in saliva flow and sialadenitis (salivary gland inflammation) were analyzed. The M3R-specific T-cell response in the spleen and the expression of regulatory molecules in the cervical lymph nodes and mesenteric lymph nodes were also analyzed.Results: Oral administration of N1-APL7-expressing rice seeds significantly recovered reduction in saliva flow and suppressed sialadenitis when compared with treatment with nontransgenic rice seeds and N1 rice seeds. IFNγ production from M3R-reactive T cells tended to decline in the N1-APL7 rice-treated group as compared with those in the other groups. In the N1-APL7 rice-treated group, the mRNA expression levels of Foxp3 in the cervical-lymph-node CD4+ T cells were higher than those in the other groups.Conclusion: Oral administration of N1-APL7-expressing rice suppressed MIS via suppression of M3R-specific IFNγ and IL-17 production and via enhancement of regulatory molecule expression.Key messagesWe generated N1-peptide- or N1-APL7-expressing rice seeds. Oral administration of N1-APL7-expressing rice seeds significantly recovered the reduction of saliva flow and suppressed sialadenitis via the suppression of M3R specific IFNγ and IL-17 production and via enhancement of regulatory T (Treg) cells.
Collapse
Affiliation(s)
- Hanae Kudo
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiroto Tsuboi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiromitsu Asashima
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiroyuki Takahashi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuko Ono
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Saori Abe
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Fumika Honda
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuya Kondo
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yuhya Wakasa
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Fumio Takaiwa
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Makoto Takano
- Plant Molecular Farming Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
| | | | - Isao Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Govea-Alonso DO, Arevalo-Villalobos JI, Márquez-Escobar VA, Vimolmangkang S, Rosales-Mendoza S. An overview of tolerogenic immunotherapies based on plant-made antigens. Expert Opin Biol Ther 2019; 19:587-599. [PMID: 30892096 DOI: 10.1080/14712598.2019.1597048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Over the last two decades, genetically engineered plants became attractive and mature platforms for producing vaccines and other relevant biopharmaceuticals. Autoimmune and inflammatory disorders demand the availability of accessible treatments, and one alternative therapy is based on therapeutic vaccines able to downregulate immune responses that favor pathology progression. AREAS COVERED The current status of plant-made tolerogenic vaccines is presented with emphasis on the candidates under evaluation in test animals. Nowadays, this concept has been assessed in models of food and pollen allergies, autoimmune diabetes, asthma, arthritis, and prevention of blocking antibodies induction against a biopharmaceutical used in replacement therapies. EXPERT OPINION According to the current evidence generated at the preclinical level, plant-made tolerogenic therapies are a promise to treat several immune-related conditions, and the beginning of clinical trials is envisaged for the next decade. Advantages and limitations for this technology are discussed.
Collapse
Affiliation(s)
- Dania O Govea-Alonso
- a Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Jaime I Arevalo-Villalobos
- a Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Verónica A Márquez-Escobar
- a Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Sornkanok Vimolmangkang
- c Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences , Chulalongkorn University , Bangkok , Thailand.,d Research Unit for Plant-Produced Pharmaceuticals , Chulalongkorn University , Bangkok , Thailand
| | - Sergio Rosales-Mendoza
- a Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| |
Collapse
|
6
|
Jang SW, Kim Y, Khan AL, Na CI, Lee IJ. Exogenous short-term silicon application regulates macro-nutrients, endogenous phytohormones, and protein expression in Oryza sativa L. BMC PLANT BIOLOGY 2018; 18:4. [PMID: 29301510 PMCID: PMC5755014 DOI: 10.1186/s12870-017-1216-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/18/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Silicon (Si) has been known to regulate plant growth; however, the underlying mechanisms of short-term exogenous Si application on the regulation of calcium (Ca) and nitrogen (N), endogenous phytohormones, and expression of essential proteins have been little understood. RESULTS Exogenous Si application significantly increased Si content as compared to the control. Among Si treatments, 1.0 mM Si application showed increased phosphorus content as compared to other Si treatments (0.5, 2.0, and 4.0 mM). However, Ca accumulation was significantly reduced (1.8- to 2.0-fold) at the third-leaf stage in the control, whereas all Si treatments exhibited a dose-dependent increase in Ca as determined by radioisotope 45Ca analysis. Similarly, the radioisotope 15N for nitrogen localization and uptake showed a varying but reduced response (ranging from 1.03-10.8%) to different Si concentrations as compared to 15N application alone. Physiologically active endogenous gibberellin (GA1) was also significantly higher with exogenous Si (1.0 mM) as compared to GA20 and the control plants. A similar response was noted for endogenous jasmonic and salicylic acid synthesis in rice plants with Si application. Proteomic analysis revealed the activation of several essential proteins, such as Fe-S precursor protein, putative thioredoxin, Ser/Thr phosphatase, glucose-6-phosphate isomerase (G6P), and importin alpha-1b (Imp3), with Si application. Among the most-expressed proteins, confirmatory gene expression analysis for G6P and Imp3 showed a similar response to those of the Si treatments. CONCLUSIONS In conclusion, the current results suggest that short-term exogenous Si can significantly regulate rice plant physiology by influencing Ca, N, endogenous phytohormones, and proteins, and that 1.0 mM Si application is more beneficial to plants than higher concentrations.
Collapse
Affiliation(s)
- Soo-Won Jang
- Natural Resources Research Institute, R&D Headquarters, Korea Ginseng Corporation, Daejeon, 34128 South Korea
| | - Yoonha Kim
- Division of Plant Biosciences, Kyungpook National University, Daegu, 41566 South Korea
| | - Abdul Latif Khan
- UoN Chair of Oman’s Medicinal Plants & Marine Natural Products, University of Nizwa, 616 Nizwa, Oman
| | - Chae-In Na
- Department of Agronomy, Gyeongsang National University, Jinju, 52828 South Korea
| | - In-Jung Lee
- Division of Plant Biosciences, Kyungpook National University, Daegu, 41566 South Korea
- Crop Physiology Laboratory, Division of Plant Biosciences, Kyungpook National University, Daegu, 41566 South Korea
| |
Collapse
|
7
|
Hirota T, Tsuboi H, Takahashi H, Asashima H, Ohta M, Wakasa Y, Matsumoto I, Takaiwa F, Sumida T. Suppression of GPI-induced arthritis by oral administration of transgenic rice seeds expressing altered peptide ligands. ACTA ACUST UNITED AC 2017; 40:28-34. [PMID: 28539551 DOI: 10.2177/jsci.40.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the effects and mechanisms of transgenic rice seeds expressing the altered peptide ligand (APL) of human glucose-6-phosphate-isomerase (hGPI325-339) in mice model of GPI induced arthritis (GIA). METHODS We generated transgenic rice expressing APL12 which was analog peptide of hGPI325-339. The transgenic rice seeds were orally administered prophylactically before the induction of GIA. The severity of arthritis and titers of serum anti-GPI antibodies were evaluated. We examined IL-17 production from splenocytes and inguinal lymph node (iLN) and mesenteric lymph nodes (mLN) cells and analyzed the expression levels of functional molecules from splenocytes and iLN cells. RESULTS Prophylactic treatment of GIA mice with APL12 transgenic rice seeds (APL12-TG) significantly improved the severity of arthritis, histopathological arthritis scores, and decreased titers of serum anti-GPI antibodies, BAFF mRNA in iLN cells, IL-17 production in splenocytes and iLN cells compared with non-transgenic rice-treated mice. APL12-TG-treated GIA mice showed upregulation of Foxp3 and GITR protein in CD4+CD25+ cells in the spleen. CONCLUSION APL12-TG improved the severity of GIA through a decrease in production of IL-17 and anti-GPI antibodies via upregulation of Foxp3 and GITR expression on regulatory T cells in spleen.
Collapse
Affiliation(s)
- Tomoya Hirota
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba
| | - Hiroto Tsuboi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba
| | - Hiroyuki Takahashi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba
| | - Hiromitsu Asashima
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba
| | - Masaru Ohta
- Functional Transgenic Crops Research Unit, National Institute of Agrobiological Sciences
| | - Yuhya Wakasa
- Functional Transgenic Crops Research Unit, National Institute of Agrobiological Sciences
| | - Isao Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba
| | - Fumio Takaiwa
- Functional Transgenic Crops Research Unit, National Institute of Agrobiological Sciences
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba
| |
Collapse
|