1
|
Cárdenas-León CG, Mäemets-Allas K, Kuuse K, Salazar-Olivo LA, Jaks V. Enhanced proliferative capacity of human preadipocytes achieved by an optimized cultivating method that induces transient activity of hTERT. Biochem Biophys Res Commun 2020; 529:455-461. [PMID: 32703451 DOI: 10.1016/j.bbrc.2020.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/04/2020] [Indexed: 11/19/2022]
Abstract
Human mesenchymal stromal cells (MSC) are an important tool for basic and translational research. Large amounts of MSC are required for in vitro and in vivo studies, however, the limited life-span and differentiation ability in vitro hamper their optimal use. Here we report that 1:1 mixture of L15 and mTeSR1 culture media increased the life-span of IPI-SA3-C4, a normal non-immortalized human subcutaneous preadipocyte strain by 20% while retaining their adipogenic capacity and stable karyotype. The increased proliferative capacity was accompanied by increased expression of the stem markers POU5F1, SOX2, MYC and hTERT, and inhibition of hTERT activity abolished the growth advantage of L15-mTeSR1. Consequently, the described MSC culture would considerably enhance the utility of MSC for in vitro studies.
Collapse
Affiliation(s)
- Claudia G Cárdenas-León
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Kati Kuuse
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Luis A Salazar-Olivo
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, Mexico
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Estonia; Dermatology Clinic, Tartu University Hospital, Tartu, Estonia.
| |
Collapse
|
2
|
Cárdenas-León CG, Montoya-Contreras A, Mäemets-Allas K, Jaks V, Salazar-Olivo LA. A human preadipocyte cell strain with multipotent differentiation capability as an in vitro model for adipogenesis. In Vitro Cell Dev Biol Anim 2020; 56:399-411. [PMID: 32535758 DOI: 10.1007/s11626-020-00468-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
Abstract
Murine 3T3 cell lines constitute a standard model system for in vitro study of mammalian adipogenesis although they do not faithfully reflect the biology of the human adipose cells. Several human adipose cell lines and strains have been used to recapitulate human adipogenesis in vitro, but to date there is no generally accepted in vitro model for human adipogenesis. We obtained a clonal strain of human subcutaneous adipose stromal cells, IPI-SA3-C4, and characterized its utility as an in vitro model for human subcutaneous adipogenesis. IPI-SA3-C4 cells showed a high proliferative potential for at least 30 serial passages, reached 70 cumulative population doublings and exhibited a population doubling time of 47 h and colony forming efficiency of 12% at the 57th cumulative population doublings. IPI-SA3-C4 cells remained diploid (46XY) even at the 56th cumulative population doublings and expressed the pluripotency markers POU5F1, NANOG, KLF4, and MYC even at 50th cumulative population doublings. Under specific culture conditions, IPI-SA3-C4 cells displayed cellular hallmarks and molecular markers of adipogenic, osteogenic, and chondrogenic lineages and showed adipogenic capacity even at the 66th cumulative population doublings. These characteristics show IPI-SA3-C4 cells as a promising potential model for human subcutaneous adipogenesis in vitro.
Collapse
Affiliation(s)
- Claudia G Cárdenas-León
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216, San Luis Potosí, SLP, Mexico
| | - Angélica Montoya-Contreras
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216, San Luis Potosí, SLP, Mexico
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Luis A Salazar-Olivo
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, 78216, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
3
|
Muñoz-Talavera A, Gómez-Lim MÁ, Salazar-Olivo LA, Reinders J, Lim K, Escobedo-Moratilla A, López-Calleja AC, Islas-Carbajal MC, Rincón-Sánchez AR. Expression of the Biologically Active Insulin Analog SCI-57 in Nicotiana Benthamiana. Front Pharmacol 2019; 10:1335. [PMID: 31798448 PMCID: PMC6868099 DOI: 10.3389/fphar.2019.01335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/18/2019] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus is a growing problem worldwide; however, only 23% of low-income countries have access to insulin, and ironically it costs higher in such countries than high-income ones. Therefore, new strategies for insulin and insulin analogs production are urgently required to improve low-cost access to therapeutic products, so as to contain the diabetes epidemic. SCI-57 is an insulin analog with a greater affinity for the insulin receptor and lower thermal degradation than native insulin. It also shows native mitogenicity and insulin-like biological activity. In this work, SCI-57 was transiently expressed in the Nicotiana benthamiana (Nb) plant, and we also evaluated some of its relevant biological effects. An expression plasmid was engineered to translate an N-terminal ubiquitin and C-terminal endoplasmic reticulum-targeting signal KDEL, in order to increase protein expression and stability. Likewise, the effect of co-expression of influenza M2 ion channel (M2) on the expression of insulin analog SCI-57 (SCI-57/M2) was evaluated. Although using M2 increases yield, it tends to alter the SCI-57 amino acid sequence, possibly promoting the formation of oligomers. Purification of SCI-57 was achieved by FPLC cation exchange and ultrafiltration of N. benthamiana leaf extract (NLE). SCI-57 exerts its anti-diabetic properties by stimulating glucose uptake in adipocytes, without affecting the lipid accumulation process. Expression of the insulin analog in agroinfiltrated plants was confirmed by SDS-PAGE, RP-HPLC, and MS. Proteome changes related to the expression of heterologous proteins on N. benthamiana were not observed; up-regulated proteins were related to the agroinfiltration process. Our results demonstrate the potential for producing a biologically active insulin analog, SCI-57, by transient expression in Nb.
Collapse
Affiliation(s)
- Adriana Muñoz-Talavera
- Department of Physiology, Institute of Experimental and Clinical Therapeutics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Miguel Ángel Gómez-Lim
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato, Mexico
| | - Luis A Salazar-Olivo
- Division of Molecular Biology, Institute for Scientific and Technological Research of San Luis Potosí, San Luis Potosí, Mexico
| | - Jörg Reinders
- Scientific Support Unit Analytical Chemistry, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Katharina Lim
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Abraham Escobedo-Moratilla
- CONACYT-Consortium for Research, Innovation, and Development of the Drylands (CIIDZA), IPICYT, San Luis Potosí, Mexico
| | - Alberto Cristian López-Calleja
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute, Irapuato, Mexico
| | - María Cristina Islas-Carbajal
- Department of Physiology, Institute of Experimental and Clinical Therapeutics, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| | - Ana Rosa Rincón-Sánchez
- Institute of Molecular Biology and Gene Therapy, Department of Molecular Biology and Genomic, University Center for Health Sciences, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
4
|
Tremp M, Menzi N, Tchang L, di Summa PG, Schaefer DJ, Kalbermatten DF. Adipose-Derived Stromal Cells from Lipomas: Isolation, Characterisation and Review of the Literature. Pathobiology 2016; 83:258-66. [PMID: 27225269 DOI: 10.1159/000444501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/04/2016] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE The aim of this study was to characterize adipose-derived stromal cells (ADSCs) from patients diagnosed with multiple symmetric lipomatosis (MSL) in order to obtain potentially new insights into the pathophysiology, pathogenesis and treatment of this disease. METHODS Cells from the stromal vascular fraction were analysed by the colony-forming efficiency assay and flow cytometry using standard markers. Moreover, the power of adipogenic plasticity was evaluated. Finally, a literature review was performed from 1982 to 2015 using the US National Institutes of Health's PubMed database. RESULTS Three European-descent patients diagnosed with either MSL type I or II could be identified for analysis. The resulting mean colony-forming efficiency assay was 14.3 ± 5%. Flow-cytometric analysis of the ADSCs revealed high levels of CD34 (70 ± 9%), CD45 (37 ± 13%) and CD73 (55.8 ± 14%), whereas low levels of CD31 (16.8 ± 14%) and CD105 (5.8 ± 0.7%) were detected. Furthermore, ADSCs showed a strong adipogenic potential, which is in line with the literature review. The stem cell pool in lipoma shows several alterations in biological activities, such as proliferation, apoptosis and stemness. CONCLUSIONS ADSCs from lipoma may be interesting in the application of regenerative medicine. We discuss possible molecular treatment options to regulate their activities at the source of the MSL.
Collapse
Affiliation(s)
- Mathias Tremp
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
5
|
Zapata-Bustos R, Alonso-Castro AJ, Gómez-Sánchez M, Salazar-Olivo LA. Ibervillea sonorae (Cucurbitaceae) induces the glucose uptake in human adipocytes by activating a PI3K-independent pathway. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:546-552. [PMID: 24534528 DOI: 10.1016/j.jep.2014.01.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/31/2014] [Accepted: 01/31/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ibervillea sonorae (S. Watson) Greene (Cucurbitaceae), a plant used for the empirical treatment of type 2 diabetes in México, exerts antidiabetic effects on animal models but its mechanism of action remains unknown. The aim of this study is to investigate the antidiabetic mechanism of an Ibervillea sonorae aqueous extract (ISE). MATERIALS AND METHODS Non-toxic ISE concentrations were assayed on the glucose uptake by insulin-sensitive and insulin-resistant murine and human cultured adipocytes, both in the absence or the presence of insulin signaling pathway inhibitors, and on murine and human adipogenesis. Chemical composition of ISE was examined by spectrophotometric and HPLC techniques. RESULTS ISE stimulated the 2-NBDGlucose uptake by mature adipocytes in a concentration-dependent manner. ISE 50 µg/ml induced the 2-NBDG uptake in insulin-sensitive 3T3-F442A, 3T3-L1 and human adipocytes by 100%, 63% and 33%, compared to insulin control. Inhibitors for the insulin receptor, PI3K, AKT and GLUT4 blocked the 2-NBDG uptake in murine cells, but human adipocytes were insensitive to the PI3K inhibitor Wortmannin. ISE 50 µg/ml also stimulated the 2-NBDG uptake in insulin-resistant adipocytes by 117% (3T3-F442A), 83% (3T3-L1) and 48% (human). ISE induced 3T3-F442A adipogenesis but lacked proadipogenic effects on 3T3-L1 and human preadipocytes. Chemical analyses showed the presence of phenolics in ISE, mainly an appreciable concentration of gallic acid. CONCLUSION Ibervillea sonorae exerts its antidiabetic properties by means of hydrosoluble compounds stimulating the glucose uptake in human preadipocytes by a PI3K-independent pathway and without proadipogenic effects.
Collapse
Affiliation(s)
- Rocio Zapata-Bustos
- Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, Camino a la presa San José 2055, Lomas 4a secc., San Luis Potosí 76216, Mexico
| | - Angel Josabad Alonso-Castro
- Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, Camino a la presa San José 2055, Lomas 4a secc., San Luis Potosí 76216, Mexico
| | | | - Luis A Salazar-Olivo
- Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, Camino a la presa San José 2055, Lomas 4a secc., San Luis Potosí 76216, Mexico.
| |
Collapse
|
6
|
Sir3 Polymorphisms in Candida glabrata clinical isolates. Mycopathologia 2013; 175:207-19. [PMID: 23392823 DOI: 10.1007/s11046-013-9627-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/27/2013] [Indexed: 11/27/2022]
Abstract
The opportunistic fungal pathogen Candida glabrata adheres tightly to epithelial cells in culture, mainly through the adhesin Epa1. EPA1 is the founding member of a family of up to 23 putative adhesin-encoding genes present in the C. glabrata genome. The majority of the EPA genes are localized close to the telomeres, where they are repressed by subtelomeric silencing that depends on the Sir, Ku, Rif1, and Rap1 proteins. EPA6 and EPA7 also encode functional adhesins that are repressed in vitro. EPA1 expression in vitro is tightly controlled both positively and negatively, and in addition, presents high cell-to-cell heterogeneity, which depends on Sir-mediated silencing. In this work, we characterized the ability to adhere to HeLa epithelial cells and the expression of several EPA genes in a collection of 79 C. glabrata clinical isolates from several hospitals in Mexico. We found 11 isolates that showed increased adherence to mammalian cells compared with our reference strain under conditions where EPA1 is not expressed. The majority of these isolates displayed over-expression of EPA1 and EPA6 or EPA7, but did not show increased biofilm formation. Sequencing of the SIR3 gene of several hyper-adherent isolates revealed that all of them contain several polymorphisms with respect to the reference strain. Interestingly, two isolates have polymorphisms in positions flanked by clusters of amino acids required for silencing in the Saccharomyces cerevisiae Sir3 protein. Our data show that there is a large variability in adhesin expression and adherence to epithelial cells among different C. glabrata clinical isolates.
Collapse
|
7
|
Ortiz-Andrade R, Cabañas-Wuan A, Arana-Argáez VE, Alonso-Castro AJ, Zapata-Bustos R, Salazar-Olivo LA, Domínguez F, Chávez M, Carranza-Álvarez C, García-Carrancá A. Antidiabetic effects of Justicia spicigera Schltdl (Acanthaceae). JOURNAL OF ETHNOPHARMACOLOGY 2012; 143:455-462. [PMID: 22819688 DOI: 10.1016/j.jep.2012.06.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/19/2012] [Accepted: 06/25/2012] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL IMPORTANCE Justicia spicigera is a plant species used for the Teenak (Huesteca Potosina) and Mayan (Yucatan peninsula) indigenous for the empirical treatment of diabetes, infections and as stimulant. AIM OF THE STUDY To evaluate the cytotoxicity, antioxidant and antidiabetic properties of J. spicigera. MATERIALS AND METHODS The effects of ethanolic extracts of J. spicigera (JSE) on the glucose uptake in insulin-sensitive and insulin-resistant murine 3T3-F442A and human subcutaneous adipocytes was evaluated. The antioxidant activities of the extract of JSE was determined by ABTS and DPPH methods. Additionally, it was evaluated the antidiabetic properties of JSE on T2DM model. RESULTS JSE stimulated 2-NBDG uptake by insulin-sensitive and insulin-resistant human and murine adipocytes in a concentration-dependent manner with higher potency than rosiglitazone 1mM. JSE showed antioxidant effects in vitro and induced glucose lowering effects in normoglycemic and STZ-induced diabetic rats. CONCLUSION The antidiabetic effects of administration of J. spicigera are related to the stimulation of glucose uptake in both insulin-sensitive and insulin-resistant murine and human adipocytes and this evidence justify its empirical use in Traditional Medicine. In addition, J. spicigera exerts glucose lowering effects in normoglycemic and STZ-induced diabetic rats.
Collapse
|
8
|
Alonso-Castro AJ, Zapata-Bustos R, Domínguez F, García-Carrancá A, Salazar-Olivo LA. Magnolia dealbata Zucc and its active principles honokiol and magnolol stimulate glucose uptake in murine and human adipocytes using the insulin-signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:926-933. [PMID: 21511450 DOI: 10.1016/j.phymed.2011.02.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 01/07/2011] [Accepted: 02/27/2011] [Indexed: 05/30/2023]
Abstract
Some Magnolia (Magnoliaceae) species are used for the empirical treatment of diabetes mellitus, but the antidiabetic properties of Magnolia dealbata have not yet been experimentally validated. Here we report that an ethanolic extract of Magnolia dealbata seeds (MDE) and its active principles honokiol (HK) and magnolol (MG) induced the concentration-dependent 2-NBDG uptake in murine 3T3-F442A and human subcutaneous adipocytes. In insulin-sensitive adipocytes, MDE 50 μg/ml induced the 2-NBDG uptake by 30% respect to insulin, while HK and MG, 30 μM each, did it by 50% (murine) and 40% (human). The simultaneous application of HK and MG stimulated 2-NBDG uptake by 70% in hormone-sensitive cells, on which Magnolia preparations exerted synergic effects with insulin. In insulin-resistant adipocytes, MDE, HK and MG induced 2-NBDG uptake by 57%, 80% and 96% respect to Rosiglitazone (RGZ), whereas HK and MG simultaneously applied stimulated 2-NBDG uptake more efficiently than RGZ (120%) in both murine and human adipocytes. Inhibitors of the insulin-signaling pathway abolished the glucose uptake induced by Magnolia dealbata preparations, suggesting that their antidiabetic effects are mediated by this signaling pathway. In addition, MDE, HK and MG exerted only mild to moderate proadipogenic effects on 3T3-F442A and human preadipocytes, although the combined application of HK and MG markedly increased the lipid accumulation in both cell types. In summary, Magnolia dealbata and its active principles HK and MG stimulate glucose uptake in insulin-sensitive and insulin-resistant murine and human adipocytes using the insulin signaling pathway.
Collapse
Affiliation(s)
- Angel Josabad Alonso-Castro
- Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, San Luis Potosí, SLP, Mexico
| | | | | | | | | |
Collapse
|
9
|
Dystrophins and DAPs are expressed in adipose tissue and are regulated by adipogenesis and extracellular matrix. Biochem Biophys Res Commun 2010; 404:717-22. [PMID: 21147070 DOI: 10.1016/j.bbrc.2010.12.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 12/08/2010] [Indexed: 11/20/2022]
Abstract
The dystrophin-associated protein complex (DAPC), consisting of dystrophin, dystroglycans, sarcoglycans, dystrobrevins and syntrophins, provides a linkage between the cytoskeleton and the extracellular matrix. The disruption of DAPC leads to Duchenne/Becker muscular dystrophy and other neuromuscular diseases. Although adipose-derived stem cells had been used for the experimental treatment of Duchenne/Becker disease with promising results, little is known on the expression and function of DAPC in adipose tissue. Here we show that visceral and subcutaneous rat adipose depots express mRNAs for all known dystrophin isoforms, utrophin, α- and β-dystrobrevins, and α-, βI-, βII-, and γII-syntrophins. Visceral and subcutaneous rat preadipocytes express Dp116 and Dp71 mRNAs and proteins, and this expression is differentially regulated during adipogenesis. Rat preadipocytes also express β-dystrobrevin, α-, βI-, βII- and γII-syntrophins, β-dystroglycan and β-, δ-, and ε-sarcoglycans with no changes during adipogenesis. We also show that α-dystrobrevin increases their expression during adipose differentiation and extracellular matrix differentially regulates the expression of dystrophin isoforms mRNAs during adipogenesis. Our results show that DAPC components are expressed in adipose tissues and suggest that this complex has a role on the adipose biology.
Collapse
|