1
|
Wang Y, Nan X, Duan Y, Wang Q, Liang Z, Yin H. FDA-approved small molecule kinase inhibitors for cancer treatment (2001-2015): Medical indication, structural optimization, and binding mode Part I. Bioorg Med Chem 2024; 111:117870. [PMID: 39128361 DOI: 10.1016/j.bmc.2024.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
The dysregulation of kinases has emerged as a major class of targets for anticancer drug discovery given its node roles in the etiology of tumorigenesis, progression, invasion, and metastasis of malignancies, which is validated by the FDA approval of 28 small molecule kinase inhibitor (SMKI) drugs for cancer treatment at the end of 2015. While the preclinical and clinical data of these drugs are widely presented, it is highly essential to give an updated review on the medical indications, design principles and binding modes of these anti-tumor SMKIs approved by the FDA to offer insights for the future development of SMKIs with specific efficacy and safety.
Collapse
Affiliation(s)
- Ying Wang
- Department of Electrophysiological Diagnosis, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong 723000, China
| | - Xiang Nan
- College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China; Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yanping Duan
- College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Qiuxu Wang
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Zhigang Liang
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Hanrong Yin
- Department of Electrophysiological Diagnosis, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong 723000, China.
| |
Collapse
|
2
|
Zhang VY, O'Connor SL, Welsh WJ, James MH. Machine learning models to predict ligand binding affinity for the orexin 1 receptor. ARTIFICIAL INTELLIGENCE CHEMISTRY 2024; 2:100040. [PMID: 38476266 PMCID: PMC10927255 DOI: 10.1016/j.aichem.2023.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The orexin 1 receptor (OX1R) is a G-protein coupled receptor that regulates a variety of physiological processes through interactions with the neuropeptides orexin A and B. Selective OX1R antagonists exhibit therapeutic effects in preclinical models of several behavioral disorders, including drug seeking and overeating. However, currently there are no selective OX1R antagonists approved for clinical use, fueling demand for novel compounds that act at this target. In this study, we meticulously curated a dataset comprising over 1300 OX1R ligands using a stringent filter and criteria cascade. Subsequently, we developed highly predictive quantitative structure-activity relationship (QSAR) models employing the optimized hyper-parameters for the random forest machine learning algorithm and twelve 2D molecular descriptors selected by recursive feature elimination with a 5-fold cross-validation process. The predictive capacity of the QSAR model was further assessed using an external test set and enrichment study, confirming its high predictivity. The practical applicability of our final QSAR model was demonstrated through virtual screening of the DrugBank database. This revealed two FDA-approved drugs (isavuconazole and cabozantinib) as potential OX1R ligands, confirmed by radiolabeled OX1R binding assays. To our best knowledge, this study represents the first report of highly predictive QSAR models on a large comprehensive dataset of diverse OX1R ligands, which should prove useful for the discovery and design of new compounds targeting this receptor.
Collapse
Affiliation(s)
- Vanessa Y Zhang
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
- West Windsor-Plainsboro High School South, West Windsor, NJ, USA
| | - Shayna L O'Connor
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - William J Welsh
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University and Rutgers Biomedical Health Sciences, Piscataway, NJ, USA
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| |
Collapse
|
3
|
Vano YA, Phan L, Gravis G, Korakis I, Schlürmann F, Maillet D, Bennamoun M, Houede N, Topart D, Borchiellini D, Barthelemy P, Ratta R, Ryckewaert T, Hasbini A, Hans S, Emambux S, Cournier S, Braychenko E, Elaidi RT, Oudard S. Cabozantinib-nivolumab sequence in metastatic renal cell carcinoma: the CABIR study. Int J Cancer 2022; 151:1335-1344. [PMID: 35603906 PMCID: PMC9541795 DOI: 10.1002/ijc.34126] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 11/25/2022]
Abstract
Nivolumab and cabozantinib are approved agents in mRCC patients after sunitinib/pazopanib (TKI) failure. However, the optimal sequence, cabozantinib then nivolumab (CN) or nivolumab then cabozantinib (NC), is still unknown. The CABIR study aimed to identify the optimal sequence between CN and NC after frontline VEGFR‐TKI. In this multicenter retrospective study, we collected data from mRCC pts receiving CN or NC, after frontline VEGFR‐TKI. A propensity score (PrS) was calculated to manage bias selection, and sequence comparisons were carried out with a cox model on a matched sample 1:1. The primary endpoint was progression‐free survival (PFS) from the start of second line to progression in third line (PFS2‐3). Key secondary endpoints included overall survival from second line (OS2). Out of 139 included mRCC patients, 38 (27%) and 101 (73%) received CN and NC, respectively. Overlap in PrS allowed 1:1 matching for each CN pts, with characteristics well balanced. For both PFS2‐3 and OS2, NC sequence was superior to CN (PFS2‐3: HR = 0.58 [0.34‐0.98], P = .043; OS2: 0.66 [0.42‐1.05], P = .080). Superior PFS2‐3 was in patients treated between 6 and 18 months with prior VEGFR‐TKI (P = .019) and was driven by a higher PFSL3 with cabozantinib when given after nivolumab (P < .001). The CABIR study shows a prolonged PFS of the NC sequence compared to CN in mRCC after first line VEGFR‐TKI failure. The data suggest that cabozantinib may be more effective than nivolumab in the third‐line setting, possibly related to an ability of cabozantinib to overcome resistance to PD‐1 blockade.
Collapse
Affiliation(s)
- Yann-Alexandre Vano
- Medical Oncology, Hôpital Européen Georges Pompidou, AP-HP Centre - Université Paris Cité, Paris, France.,INSERM U970, PARCC, Paris, France.,Centre de Recherche des Cordeliers, INSERM, Université Paris Cité, Sorbonne Université, Paris, France
| | - Letuan Phan
- ARTIC -Association pour la Recherche de Thérapeutiques Innovantes en Cancérologie; Hôpital Européen Georges Pompidou, AP-HP Centre, Paris, France
| | - Gwenaelle Gravis
- Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille University, CRCM, Marseille, France
| | - Iphigénie Korakis
- Medical Oncology, Institut Universitaire du Cancer -Toulouse- Oncopole, Toulouse, France
| | | | - Denis Maillet
- Medical Oncology, IMMUCARE, Centre Hospitalier Lyon Sud, Institut de Cancérologie des Hospices de Lyon (IC-HCL), Pierre-Bénite, France
| | | | - Nadine Houede
- Medical Oncology, Institut de cancérologie du Gard, Nimes, Montpellier University, France
| | - Delphine Topart
- Medical Oncology, Hopital Saint-Eloi (CHU de Montpellier), Montpellier, France
| | | | - Philippe Barthelemy
- Medical Oncology, Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| | | | | | - Ali Hasbini
- Medical Oncology, Clinique Pasteur Lanroze, Brest, France
| | - Sophie Hans
- Department of Medical Oncology, Hôpital Henri-Mondor, AP-HP - Université de Paris Est, Créteil, France
| | - Sheik Emambux
- Medical Oncology, Centre Hospitalier Universitaire Poitiers, Poitiers, France
| | - Sandra Cournier
- ARTIC -Association pour la Recherche de Thérapeutiques Innovantes en Cancérologie; Hôpital Européen Georges Pompidou, AP-HP Centre, Paris, France
| | - Elena Braychenko
- ARTIC -Association pour la Recherche de Thérapeutiques Innovantes en Cancérologie; Hôpital Européen Georges Pompidou, AP-HP Centre, Paris, France
| | - Réza-Thierry Elaidi
- ARTIC -Association pour la Recherche de Thérapeutiques Innovantes en Cancérologie; Hôpital Européen Georges Pompidou, AP-HP Centre, Paris, France
| | - Stéphane Oudard
- Medical Oncology, Hôpital Européen Georges Pompidou, AP-HP Centre - Université Paris Cité, Paris, France.,INSERM U970, PARCC, Paris, France
| |
Collapse
|
4
|
Erlmeier F, Bruecher B, Stöhr C, Herrmann E, Polifka I, Agaimy A, Trojan L, Ströbel P, Becker F, Wülfing C, Barth P, Stöckle M, Staehler M, Stief C, Haferkamp A, Hohenfellner M, Macher-Göppinger S, Wullich B, Noldus J, Brenner W, Roos FC, Walter B, Otto W, Burger M, Schrader AJ, Hartmann A, Mondorf Y, Ivanyi P, Mikuteit M, Steffens S. cMET - a prognostic marker in papillary renal cell carcinoma? Hum Pathol 2022; 121:1-10. [PMID: 34998840 DOI: 10.1016/j.humpath.2021.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND The tyrosine-protein kinase c-Met plays a decisive role in numerous cellular processes, as a proto-oncogene that supports aggressive tumor behavior. It is still unknown whether c-Met could be relevant for prognosis of papillary RCC (pRCC). PATIENTS AND METHODS Specimen collection were a collaboration of the PANZAR consortium. Patients' medical history and tumor specimens were collected from n=197 and n=110 patients with type 1 and 2 pRCC, respectively. Expression of cMET was determined by immunohistochemistry (IHC). RESULTS In total, cMET staining was evaluable in of 97/197 type 1 and 63/110 type 2 of pRCC cases. Five-years overall survival reviled no significant difference in dependence of cMET positivity (cMET- vs. cMET+: pRCC type 1: 84.8 % vs. 80.3 %, respectively (p=0.303, log-rank); type 2: 71.4 % vs. 64.4 % respectively (p= 0.239, log-rank)). Interestingly, the subgroup analyses showed a significant difference for cMET expression in T stage and metastases of the pRCC type 2 (p=0.014, p=0.022, chi-square). The cMET positive type 2 collective developed more metastases compared to the cMET negative cohort (pRCC Typ 2 M+: cMET-: 2 (4.3%) vs. cMET+: 12 (19%)). CONCLUSION CMET expression did not qualify as a prognostic marker in pRCC for overall survival.
Collapse
Affiliation(s)
- Franziska Erlmeier
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
.
| | - Benedict Bruecher
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
| | - Christine Stöhr
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Edwin Herrmann
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
| | - Iris Polifka
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Lutz Trojan
- Department of Urology, University Hospital Göttingen, 37075 Göttingen, Germany
| | - Philipp Ströbel
- Department of Pathology, University Hospital Göttingen, 37075 Göttingen, Germany
| | - Frank Becker
- Department of Urology and Pediatric Urology, University of Saarland (UKS), 66421
Homburg, Germany
| | - Christian Wülfing
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
| | - Peter Barth
- Department of Urology, University of Marburg, 35037 Marburg, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, University of Saarland (UKS), 66421
Homburg, Germany
| | - Michael Staehler
- Department of Urology, University Hospital Munich, 81337 Munich, Germany
| | - Christian Stief
- Department of Urology, University Hospital Munich, 81337 Munich, Germany
| | - Axel Haferkamp
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Markus Hohenfellner
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich
Alexander University (FAU), 91058 Erlangen, Germany
| | - Joachim Noldus
- Department of Urology, Marien Hospital Herne, Ruhr University Bochum, 44625 Herne, Germany
| | | | - Frederik C Roos
- Department of Urology, University Hospital Frankfurt, 60590 Frankfurt/Main, Germany
| | - Bernhard Walter
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich
Alexander University (FAU), 91058 Erlangen, Germany
| | - Wolfgang Otto
- Department of Urology, University of Regensburg, 93053 Regensburg, Germany
| | - Maximilian Burger
- Department of Urology, University of Regensburg, 93053 Regensburg, Germany
| | - Andres Jan Schrader
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), 91054 Erlangen, Germany
| | - Yvonne Mondorf
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Philipp Ivanyi
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| | - Marie Mikuteit
- Hannover Medical School: Medizinische Hochschule Hannover, Hannover, Germany
| | - Sandra Steffens
- Department of Urology, University Hospital Muenster, 48149 Muenster, Germany
| | | |
Collapse
|
5
|
Meza L, Malhotra J, Favorito C, Pal SK. Cabozantinib plus immunotherapy combinations in metastatic renal cell and urothelial carcinoma. Future Oncol 2021; 18:21-33. [PMID: 34766841 DOI: 10.2217/fon-2021-0570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Treatment options for metastatic renal cell carcinoma (mRCC) and metastatic urothelial carcinoma (mUC) have increased dramatically over the past decade. However, even when novel approaches have proven to be effective as monotherapy, many patients still develop progressive disease, and different strategies are needed to increase clinical response and quality of life. Strategies combining targeted therapy (TT) and immunotherapy (IO) have emerged as a way to shorten the gap between responders and nonresponders to monotherapy and have reported promising results. In this review, we discuss the current role of cabozantinib in combination with IO agents in the treatment of metastatic RCC and UC and go over future directions in the field.
Collapse
Affiliation(s)
- Luis Meza
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Jasnoor Malhotra
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Sumanta K Pal
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
6
|
Ayala-Aguilera CC, Valero T, Lorente-Macías Á, Baillache DJ, Croke S, Unciti-Broceta A. Small Molecule Kinase Inhibitor Drugs (1995-2021): Medical Indication, Pharmacology, and Synthesis. J Med Chem 2021; 65:1047-1131. [PMID: 34624192 DOI: 10.1021/acs.jmedchem.1c00963] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The central role of dysregulated kinase activity in the etiology of progressive disorders, including cancer, has fostered incremental efforts on drug discovery programs over the past 40 years. As a result, kinase inhibitors are today one of the most important classes of drugs. The FDA approved 73 small molecule kinase inhibitor drugs until September 2021, and additional inhibitors were approved by other regulatory agencies during that time. To complement the published literature on clinical kinase inhibitors, we have prepared a review that recaps this large data set into an accessible format for the medicinal chemistry community. Along with the therapeutic and pharmacological properties of each kinase inhibitor approved across the world until 2020, we provide the synthesis routes originally used during the discovery phase, many of which were only available in patent applications. In the last section, we also provide an update on kinase inhibitor drugs approved in 2021.
Collapse
Affiliation(s)
- Cecilia C Ayala-Aguilera
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Teresa Valero
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Álvaro Lorente-Macías
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Daniel J Baillache
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Stephen Croke
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| |
Collapse
|
7
|
Vitale MG, Nasso C, Oltrecolli M, Baldessari C, Fanelli M, Dominici M, Sabbatini R. Cabozantinib and nivolumab as first-line treatment in advanced renal cell carcinoma. Expert Rev Anticancer Ther 2021; 21:1183-1192. [PMID: 34424125 DOI: 10.1080/14737140.2021.1971519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION In the last decade, there have been substantial changes in the management of metastatic renal cell carcinoma (mRCC) with combined regimens with immune checkpoint inhibitors (ICI) replacing targeted therapies. These combined regimens include the combination of cabozantinib plus nivolumab. AREAS COVERED Here, we provide an overview of clinical trials evaluating the combination of cabozantinib and nivolumab and the current clinical data on mechanism of action, pharmacokinetics, efficacy, and safety profile. EXPERT OPINION Dual immune checkpoint inhibition with nivolumab and ipilimumab as well as the combination of a vascular endothelial growth factor (VEGF) inhibitor and an immune checkpoint inhibitor have shown to improve outcomes in phase III trials in comparison to sunitinib (axitinib plus pembrolizumab, axitinib plus avelumab, bevacizumab plus atezolizumab, cabozantinib plus nivolumab, lenvatinib plus pembrolizumab). However, to date, there are no head-to-head trials comparing these new combination therapies and no biomarkers are available to guide the optimal choice of first line therapy.
Collapse
Affiliation(s)
| | - Cecilia Nasso
- Department of Oncology and Haematology, Modena University Hospital, Modena, Italy
| | - Marco Oltrecolli
- Department of Oncology and Haematology, Modena University Hospital, Modena, Italy
| | - Cinzia Baldessari
- Department of Oncology and Haematology, Modena University Hospital, Modena, Italy
| | - Martina Fanelli
- Department of Oncology and Haematology, Modena University Hospital, Modena, Italy
| | - Massimo Dominici
- Department of Oncology and Haematology, Modena University Hospital, Modena, Italy
| | - Roberto Sabbatini
- Department of Oncology and Haematology, Modena University Hospital, Modena, Italy
| |
Collapse
|
8
|
Marchetti A, Rosellini M, Rizzo A, Mollica V, Battelli N, Massari F, Santoni M. An up-to-date evaluation of cabozantinib for the treatment of renal cell carcinoma. Expert Opin Pharmacother 2021; 22:2323-2336. [PMID: 34405738 DOI: 10.1080/14656566.2021.1959548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: In the evolving treatment scenario of metastatic renal cell carcinoma, cabozantinib is gaining increasing attention, presenting as a cornerstone therapy, both as a monotherapy and in combination with immune-checkpoint inhibitors.Areas covered: In this review, the authors explore the role of cabozantinib in the treatment of metastatic clear cell and non-clear cell renal cell carcinoma, presenting data from the most recent clinical trials and investigating ongoing studies. They, furthermore, evaluate the pharmacokinetic, pharmacodynamic, and immunomodulatory effect of cabozantinib, as well as underlining the tolerability profile and patients' quality of life.Expert opinion: Cabozantinib's administration as a single agent is restricted to intermediate- and poor-risk patients (according to IMDC criteria). The further advent of anti-VEGF-receptor tyrosine kinase inhibitors combined with immune checkpoint inhibitor regimens (such as pembrolizumab + axitinib) has allowed to expand the use of cabozantinib, leading to its combination with nivolumab. In the next few years, more information is required to look for the application of cabozantinib-based combinations as a later-line approach in metastatic RCC patients, beside their use in the first-line setting.
Collapse
Affiliation(s)
- Andrea Marchetti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| | - Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| | | | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italia
| | | |
Collapse
|
9
|
Gkolfinopoulos S, Psyrri A, Bamias A. Clear-cell renal cell carcinoma - A comprehensive review of agents used in the contemporary management of advanced/metastatic disease. Oncol Rev 2021; 15:530. [PMID: 33747368 PMCID: PMC7967495 DOI: 10.4081/oncol.2021.530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 01/05/2023] Open
Abstract
Renal cell carcinoma represents the most common malignancy of the kidney and the majority of cases are categorized as clear cell carcinomas. The elucidation of the specific alterations in key molecular and metabolic pathways responsible for cancer development and progression have prompted the rationalization of our classification of this disease and have provided specific targetable molecules implicated in carcinogenesis. Although immunotherapy has been an established option in the treatment of metastatic renal cell cancer for many years, its role has been renewed and upgraded with the implementation of anti-angiogenic agents and immune checkpoint inhibitors in our treatment armamentarium. The future holds promise, as newer agents become available and combination regimens of immunotherapy with anti-angiogenic agents have become the standard of care in the management of metastatic disease and are currently being evaluated in earlier settings. Proper patient selection and individualization of our treatment strategies are of utmost importance in order to provide optimal care to patients suffering from renal cell carcinoma.
Collapse
Affiliation(s)
- Stavros Gkolfinopoulos
- 2 Propaedeutic Dept. of Internal Medicine, National & Kapodistrian University of Athens, ATTIKON University Hospital, Athens, Greece
| | - Amanda Psyrri
- 2 Propaedeutic Dept. of Internal Medicine, National & Kapodistrian University of Athens, ATTIKON University Hospital, Athens, Greece
| | - Aristotelis Bamias
- 2 Propaedeutic Dept. of Internal Medicine, National & Kapodistrian University of Athens, ATTIKON University Hospital, Athens, Greece
| |
Collapse
|
10
|
Shaik F, Cuthbert GA, Homer-Vanniasinkam S, Muench SP, Ponnambalam S, Harrison MA. Structural Basis for Vascular Endothelial Growth Factor Receptor Activation and Implications for Disease Therapy. Biomolecules 2020; 10:biom10121673. [PMID: 33333800 PMCID: PMC7765180 DOI: 10.3390/biom10121673] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/15/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) bind to membrane receptors on a wide variety of cells to regulate diverse biological responses. The VEGF-A family member promotes vasculogenesis and angiogenesis, processes which are essential for vascular development and physiology. As angiogenesis can be subverted in many disease states, including tumour development and progression, there is much interest in understanding the mechanistic basis for how VEGF-A regulates cell and tissue function. VEGF-A binds with high affinity to two VEGF receptor tyrosine kinases (VEGFR1, VEGFR2) and with lower affinity to co-receptors called neuropilin-1 and neuropilin-2 (NRP1, NRP2). Here, we use a structural viewpoint to summarise our current knowledge of VEGF-VEGFR activation and signal transduction. As targeting VEGF-VEGFR activation holds much therapeutic promise, we examine the structural basis for anti-angiogenic therapy using small-molecule compounds such as tyrosine kinase inhibitors that block VEGFR activation and downstream signalling. This review provides a rational basis towards reconciling VEGF and VEGFR structure and function in developing new therapeutics for a diverse range of ailments.
Collapse
Affiliation(s)
- Faheem Shaik
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK;
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Correspondence: ; Tel.: +44-207-8824207
| | - Gary A. Cuthbert
- Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK; (G.A.C.); (S.H.-V.); (M.A.H.)
| | | | - Stephen P. Muench
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | | | - Michael A. Harrison
- Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK; (G.A.C.); (S.H.-V.); (M.A.H.)
| |
Collapse
|
11
|
Bolck HA, Corrò C, Kahraman A, von Teichman A, Toussaint NC, Kuipers J, Chiovaro F, Koelzer VH, Pauli C, Moritz W, Bode PK, Rechsteiner M, Beerenwinkel N, Schraml P, Moch H. Tracing Clonal Dynamics Reveals that Two- and Three-dimensional Patient-derived Cell Models Capture Tumor Heterogeneity of Clear Cell Renal Cell Carcinoma. Eur Urol Focus 2019; 7:152-162. [PMID: 31266731 DOI: 10.1016/j.euf.2019.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/16/2019] [Accepted: 06/13/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Extensive DNA sequencing has led to an unprecedented view of the diversity of individual genomes and their evolution among patients with clear cell renal cell carcinoma (ccRCC). OBJECTIVE To understand subclonal architecture and dynamics of patient-derived two-dimensional (2D) and three-dimensional (3D) ccRCC models in vitro, in order to determine whether they mirror ccRCC inter- and intratumor heterogeneity. DESIGN, SETTING, AND PARTICIPANTS We have established a comprehensive platform of living renal cancer cell models from ccRCC surgical specimens. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS We confirmed the concordance of 2D and 3D patient-derived cell (PDC) models with the original tumor tissue in terms of histology, biomarker expression, cancer driver mutations, and copy number alterations. We addressed inter- and intrapatient heterogeneity by analyzing clonal dynamics during serial passaging. RESULTS AND LIMITATIONS In-depth genetic characterization verified the presence of heterogeneous cell populations, and revealed a high degree of similarity between subclonal compositions of monolayer and organoid cell cultures and the corresponding parental ccRCCs. Clonal dynamics were evident during serial passaging of cells in vitro, suggesting that PDC cultures can offer insights into evolutionary potential and treatment susceptibility of ccRCC subclones in vivo. Proof-of-concept drug profiling using selected ccRCC-targeted therapy agents highlighted patient-specific vulnerabilities in PDC models that could not be anticipated by interrogating commercially available cell lines. CONCLUSIONS We demonstrate that PDC models mirror inter- and intratumor heterogeneity of ccRCC in vitro. Based on our findings, we envision that the use of these models will advance our understanding of the trajectories that cause genetic diversity and their consequences for treatment on an individual level. PATIENT SUMMARY In this study, we developed two- and three-dimensional patient-derived models from clear cell renal cell carcinoma (ccRCC) as "mini-tumors in a dish." We show that these cell models retain important features of the human ccRCCs such as the profound tumor heterogeneity, thus highlighting their importance for cancer research and precision medicine.
Collapse
Affiliation(s)
- Hella A Bolck
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Claudia Corrò
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Abdullah Kahraman
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Adriana von Teichman
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Nora C Toussaint
- NEXUS Personalized Health Technologies, ETH Zurich, Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jack Kuipers
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Chantal Pauli
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | | | - Peter K Bode
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Markus Rechsteiner
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Niko Beerenwinkel
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Peter Schraml
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland.
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Grünwald V, Hornig M. Systemic and Sequential Therapy in Advanced Renal Cell Carcinoma. Urol Oncol 2019. [DOI: 10.1007/978-3-319-42623-5_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Cabozantinib for the Management of Metastatic Clear Cell Renal Cell Carcinoma. J Kidney Cancer VHL 2018; 5:1-5. [PMID: 30319937 PMCID: PMC6175852 DOI: 10.15586/jkcvhl.2018.109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/03/2018] [Indexed: 12/18/2022] Open
Abstract
Cabozantinib is a multi-tyrosine kinase inhibitor used for the treatment of various solid-organ tumours. It was recently approved as a first- and second-line therapeutic for the management of advanced/metastatic renal cell carcinoma based on the results of two randomised controlled trials. The phase III METEOR trial compared cabozantinib against everolimus as a second- or greater line therapy and found benefits in progression-free and overall survival, and the phase II CABOSUN trial compared cabozantinib against sunitinib as a first-line therapeutic and found benefits in terms of progression-free survival. This review briefly summarises how cabozantinib fits into current treatment paradigms for the management of advanced renal cell carcinoma.
Collapse
|
14
|
Lai Y, Zhao Z, Zeng T, Liang X, Chen D, Duan X, Zeng G, Wu W. Crosstalk between VEGFR and other receptor tyrosine kinases for TKI therapy of metastatic renal cell carcinoma. Cancer Cell Int 2018. [PMID: 29527128 PMCID: PMC5838927 DOI: 10.1186/s12935-018-0530-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC), and is frequently accompanied by the genetic features of von Hippel–Lindau (VHL) loss. VHL loss increases the expression of hypoxia-inducible factors (HIFs) and their targets, including epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF). The primary treatment for metastatic RCC (mRCC) is molecular-targeted therapy, especially anti-angiogenic therapy. VEGF monoclonal antibodies and VEGF receptor (VEGFR) tyrosine kinase inhibitors (TKIs) are the main drugs used in anti-angiogenic therapy. However, crosstalk between VEGFR and other tyrosine kinase or downstream pathways produce resistance to TKI treatment, and the multi-target inhibitors, HIF inhibitors or combination strategies are promising strategies for mRCC. HIFs are upstream of the crosstalk between the growth factors, and these factors may regulate the expression of VEGR, EGF, PDGF and other growth factors. The frequent VHL loss in ccRCC increases HIF expression, and HIFs may be an ideal candidate to overcome the TKI resistance. The combination of HIF inhibitors and immune checkpoint inhibitors is also anticipated. Various clinical trials of programmed cell death protein 1 inhibitors are planned. The present study reviews the effects of current and potential TKIs on mRCC, with a focus on VEGF/VEGFR and other targets for mRCC therapy.
Collapse
Affiliation(s)
- Yongchang Lai
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Zhijian Zhao
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Tao Zeng
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Xiongfa Liang
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Dong Chen
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Xiaolu Duan
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Wenqi Wu
- Department of Urology, Minimally Invasive Surgery Center, Guangzhou Urology Research Institute, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| |
Collapse
|
15
|
Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan C, Wu Y, Li X, Li X, Li G, Zeng Z, Xiong W. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer 2018; 17:45. [PMID: 29455668 PMCID: PMC5817860 DOI: 10.1186/s12943-018-0796-y] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
c-Met is a receptor tyrosine kinase belonging to the MET (MNNG HOS transforming gene) family, and is expressed on the surfaces of various cells. Hepatocyte growth factor (HGF) is the ligand for this receptor. The binding of HGF to c-Met initiates a series of intracellular signals that mediate embryogenesis and wound healing in normal cells. However, in cancer cells, aberrant HGF/c-Met axis activation, which is closely related to c-Met gene mutations, overexpression, and amplification, promotes tumor development and progression by stimulating the PI3K/AKT, Ras/MAPK, JAK/STAT, SRC, Wnt/β-catenin, and other signaling pathways. Thus, c-Met and its associated signaling pathways are clinically important therapeutic targets. In this review, we elaborate on the molecular structure of c-Met and HGF and the mechanism through which their interaction activates the PI3K/AKT, Ras/MAPK, and Wnt signaling pathways. We also summarize the connection between c-Met and RON and EGFR, which are also receptor tyrosine kinases. Finally, we introduce the current therapeutic drugs that target c-Met in primary tumors, and their use in clinical research.
Collapse
Affiliation(s)
- Yazhuo Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengfang Xia
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ke Jin
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shufei Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Hang Wei
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yingfen Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Stanisic S, Cicchetti A, Porta C, Procopio G, Berto P. Costo-Efficacia di cabozantinib nel trattamento di seconda linea del tumore a cellule renali metastatico (mRCC) in Italia. GLOBAL & REGIONAL HEALTH TECHNOLOGY ASSESSMENT 2018. [DOI: 10.1177/2284240318790734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Americo Cicchetti
- Facoltà di Economia dell’Università Cattolica del Sacro Cuore, Roma, Italia
| | - Camillo Porta
- Università degli Studi di Pavia e IRCCS Policlinico San Matteo di Pavia, Pavia, Italia
| | - Giuseppe Procopio
- Oncologia medica genitourinaria, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italia
| | | |
Collapse
|
17
|
Grünwald V, Hornig M. Systemic and Sequential Therapy in Advanced Renal Cell Carcinoma. Urol Oncol 2017. [DOI: 10.1007/978-3-319-42603-7_64-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|