1
|
Liao Y, Meng Q. Protection against cancer therapy-induced cardiovascular injury by planed-derived polyphenols and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 238:116896. [PMID: 37586453 DOI: 10.1016/j.envres.2023.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Cancer therapy-induced heart injury is a significant concern for cancer patients undergoing chemotherapy, radiotherapy, immunotherapy, and also targeted molecular therapy. The use of these treatments can lead to oxidative stress and cardiomyocyte damage in the heart, which can result in heart failure and other cardiac complications. Experimental studies have revealed that chemotherapy drugs such as doxorubicin and cyclophosphamide can cause severe side effects such as cardiac fibrosis, electrophysiological remodeling, chronic oxidative stress and inflammation, etc., which may increase risk of cardiac disorders and attacks for patients that underwent chemotherapy. Similar consequences may also be observed for patients that undergo radiotherapy for left breast or lung malignancies. Polyphenols, a group of natural compounds with antioxidant and anti-inflammatory properties, have shown the potential in protecting against cancer therapy-induced heart injury. These compounds have been found to reduce oxidative stress, necrosis and apoptosis in the heart, thereby preserving cardiac function. In recent years, nanoparticles loaded with polyphenols have also provided for the delivery of these compounds and increasing their efficacy in different organs. These nanoparticles can improve the bioavailability and efficacy of polyphenols while minimizing their toxicity. This review article summarizes the current understanding of the protective effects of polyphenols and nanoparticles loaded with polyphenols against cancer therapy-induced heart injury. The article discusses the mechanisms by which polyphenols protect the heart, including antioxidant and anti-inflammation abilities. The article also highlights the potential benefits of using nanoparticles for the delivery of polyphenols.
Collapse
Affiliation(s)
- Yunshu Liao
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China
| | - Qinghua Meng
- Department of Cardiac Surgery, The First Hospital Affiliated to the Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
2
|
Peix A, Perez A, Barreda AM. Cancer and Postradiotherapy Cardiotoxicity: How to Face Damage in Women’s Hearts? Eur Cardiol 2023. [DOI: 10.15420/ecr.2022.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Cancer and cardiovascular disease are the two main causes of death worldwide in both men and women. In the past decades, survival rate in cancer patients has substantially improved due to new treatments and developments in radiation therapy (RT). In women, breast cancer (BC) is the leading cause of cancer death and thoracic RT is a main component of the treatment in many cases. Nevertheless, despite new techniques that limit the area receiving RT, cardiac damage is still an important concern in BC patients. In this review, the following aspects will be addressed: pathophysiology of postradiotherapy heart damage in women with BC; mechanisms, diagnosis and prevention/management of heart damage; and future areas of potential research for radiotherapy injury in women.
Collapse
|
3
|
Siaravas KC, Katsouras CS, Sioka C. Radiation Treatment Mechanisms of Cardiotoxicity: A Systematic Review. Int J Mol Sci 2023; 24:ijms24076272. [PMID: 37047245 PMCID: PMC10094086 DOI: 10.3390/ijms24076272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Radiotherapy may be used alone or in combination with chemotherapy for cancer treatment. There are many mechanisms of radiation treatment exposure to toxicities. Our aim was to summarize the literature about known mechanisms of radiation-induced cardiac toxicities. We performed a systematic review of the literature on the PubMed database until October 2022 about cardiovascular toxicities and radiation therapy exposure. Only systematic reviews, meta-analyses, and reviews were selected. Out of 1429 publications screened, 43 papers met inclusion criteria and were selected for the umbrella review process. Microvascular and macrovascular complications could lead to adverse cardiac effects. Many radiotherapy-associated risk factors were responsible, such as the site of radiation treatment, beam proximity to heart tissues, total dosage, the number of radiotherapy sessions, adjuvant chemotherapeutic agents used, and patient traditional cardiovascular risk factors, patient age, and gender. Moreover, important dosage cutoff values could increase the incidence of cardiac toxicities. Finally, the time from radiation exposure to cardiac side effects was assessed. Our report highlighted mechanisms, radiation dosage values, and the timeline of cardiovascular toxicities after radiation therapy. All of the above may be used for the assessment of cardiovascular risk factors and the development of screening programs for cancer patients.
Collapse
|
4
|
Ait-Aissa K, Koval OM, Lindsey NR, Grumbach IM. Mitochondrial Ca 2+ Uptake Drives Endothelial Injury By Radiation Therapy. Arterioscler Thromb Vasc Biol 2022; 42:1121-1136. [PMID: 35899616 PMCID: PMC9394506 DOI: 10.1161/atvbaha.122.317869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 06/20/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Radiation therapy strongly increases the risk of atherosclerotic vascular disease, such as carotid stenosis. Radiation induces DNA damage, in particular in mitochondria, but the upstream and downstream signaling events are poorly understood. The objective of this study was to define such mechanisms. METHODS Endothelial-specific MCU (mitochondrial Ca2+ uniporter) knockout and C57Bl6/J mice with or without a preinfusion of a mitoTEMPO (mitochondrial reactive oxygen species [ROS] scavenger) were exposed to a single dose of cranial irradiation. 24, and 240 hours postirradiation, vascular reactivity, endothelial function, and mitochondrial integrity were assessed ex vivo and in vitro. RESULTS In cultured human endothelial cells, irradiation with 4 Gy increased cytosolic Ca2+ transients and the mitochondrial Ca2+ concentration ([Ca2+]mt) and activated MCU. These outcomes correlated with increases in mitochondrial ROS (mtROS), loss of NO production, and sustained damage to mitochondrial but not nuclear DNA. Moreover, irradiation impaired activity of the ETC (electron transport chain) and the transcription of ETC subunits encoded by mitochondrial DNA (mtDNA). Knockdown or pharmacological inhibition of MCU blocked irradiation-induced mtROS production, mtDNA damage, loss of NO production, and impairment of ETC activity. Similarly, the pretreatment with mitoTEMPO, a scavenger of mtROS, reduced irradiation-induced Ca2+ entry, and preserved both the integrity of the mtDNA and the production of NO, suggesting a feed-forward loop involving [Ca2+]m and mtROS. Enhancement of DNA repair in mitochondria, but not in the nucleus, was sufficient to block prolonged mtROS elevations and maintain NO production. Consistent with the findings from cultured cells, in C57BL/6J mice, head and neck irradiation decreased endothelium-dependent vasodilation, and mtDNA integrity in the carotid artery after irradiation. These effects were prevented by endothelial knockout of MCU or infusion with mitoTEMPO. CONCLUSIONS Irradiation-induced damage to mtDNA is driven by MCU-dependent Ca2+ influx and the generation of mtROS. Such damage leads to reduced transcription of mitochondrial genes and activity of the ETC, promoting sustained mtROS production that induces endothelial dysfunction. Our findings suggest that targeting MCU and mtROS might be sufficient to mitigate irradiation-induced vascular disease.
Collapse
Affiliation(s)
- Karima Ait-Aissa
- Abboud Cardiovascular Research Center, Department of Internal Medicine (K.A.A., O.M.K., N.R.L., I.M.G.), Carver College of Medicine, University of Iowa
| | - Olha M. Koval
- Abboud Cardiovascular Research Center, Department of Internal Medicine (K.A.A., O.M.K., N.R.L., I.M.G.), Carver College of Medicine, University of Iowa
| | - Nathanial R. Lindsey
- Abboud Cardiovascular Research Center, Department of Internal Medicine (K.A.A., O.M.K., N.R.L., I.M.G.), Carver College of Medicine, University of Iowa
| | - Isabella M. Grumbach
- Abboud Cardiovascular Research Center, Department of Internal Medicine (K.A.A., O.M.K., N.R.L., I.M.G.), Carver College of Medicine, University of Iowa
- Free Radical and Radiation Biology Program, Department of Radiation Oncology (I.M.G.), Carver College of Medicine, University of Iowa
- Iowa City VA Healthcare System, Iowa City (I.M.G.)
| |
Collapse
|
5
|
Perpinia AS, Kadoglou N, Vardaka M, Gkortzolidis G, Karavidas A, Marinakis T, Papachrysostomou C, Makaronis P, Vlachou C, Mantzourani M, Farmakis D, Konstantopoulos K. Pharmaceutical Prevention and Management of Cardiotoxicity in Hematological Malignancies. Pharmaceuticals (Basel) 2022; 15:ph15081007. [PMID: 36015155 PMCID: PMC9412591 DOI: 10.3390/ph15081007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Modern treatment modalities in hematology have improved clinical outcomes of patients with hematological malignancies. Nevertheless, many new or conventional anticancer drugs affect the cardiovascular system, resulting in various cardiac disorders, including left ventricular dysfunction, heart failure, arterial hypertension, myocardial ischemia, cardiac rhythm disturbances, and QTc prolongation on electrocardiograms. As these complications may jeopardize the significantly improved outcome of modern anticancer therapies, it is crucial to become familiar with all aspects of cardiotoxicity and provide appropriate care promptly to these patients. In addition, established and new drugs contribute to primary and secondary cardiovascular diseases prevention. This review focuses on the clinical manifestations, preventive strategies, and pharmaceutical management of cardiotoxicity in patients with hematologic malignancies undergoing anticancer drug therapy or hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
| | | | - Maria Vardaka
- Department of Hematology, “G. Gennimatas” General Hospital, 11527 Athens, Greece
| | | | - Apostolos Karavidas
- Department of Cardiology, “G. Gennimatas” General Hospital, 11527 Athens, Greece
| | - Theodoros Marinakis
- Department of Hematology, “G. Gennimatas” General Hospital, 11527 Athens, Greece
| | | | - Panagiotis Makaronis
- Department of Cardiology, “G. Gennimatas” General Hospital, 11527 Athens, Greece
| | - Charikleia Vlachou
- Department of Hematology, “G. Gennimatas” General Hospital, 11527 Athens, Greece
| | - Marina Mantzourani
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “Laiko” General Hospital, 11527 Athens, Greece
| | | | - Konstantinos Konstantopoulos
- Department of Hematology, Medical School, National and Kapodistrian University of Athens, “Laiko” General Hospital, 11527 Athens, Greece
| |
Collapse
|
6
|
Donis N, Jiang Z, D'Emal C, Hulin A, Debuisson M, Dulgheru R, Nguyen ML, Postolache A, Lallemand F, Coucke P, Martinive P, Herzog M, Pamart D, Terrell J, Pincemail J, Drion P, Delvenne P, Nchimi A, Lancellotti P, Oury C. Differential Biological Effects of Dietary Lipids and Irradiation on the Aorta, Aortic Valve, and the Mitral Valve. Front Cardiovasc Med 2022; 9:839720. [PMID: 35295264 PMCID: PMC8918952 DOI: 10.3389/fcvm.2022.839720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 01/12/2023] Open
Abstract
Aims Dietary cholesterol and palmitic acid are risk factors for cardiovascular diseases (CVDs) affecting the arteries and the heart valves. The ionizing radiation that is frequently used as an anticancer treatment promotes CVD. The specific pathophysiology of these distinct disease manifestations is poorly understood. We, therefore, studied the biological effects of these dietary lipids and their cardiac irradiation on the arteries and the heart valves in the rabbit models of CVD. Methods and Results Cholesterol-enriched diet led to the thickening of the aortic wall and the aortic valve leaflets, immune cell infiltration in the aorta, mitral and aortic valves, as well as aortic valve calcification. Numerous cells expressing α-smooth muscle actin were detected in both the mitral and aortic valves. Lard-enriched diet induced massive aorta and aortic valve calcification, with no detectable immune cell infiltration. The addition of cardiac irradiation to the cholesterol diet yielded more calcification and more immune cell infiltrates in the atheroma and the aortic valve than cholesterol alone. RNA sequencing (RNAseq) analyses of aorta and heart valves revealed that a cholesterol-enriched diet mainly triggered inflammation-related biological processes in the aorta, aortic and mitral valves, which was further enhanced by cardiac irradiation. Lard-enriched diet rather affected calcification- and muscle-related processes in the aorta and aortic valve, respectively. Neutrophil count and systemic levels of platelet factor 4 and ent-8-iso-15(S)-PGF2α were identified as early biomarkers of cholesterol-induced tissue alterations, while cardiac irradiation resulted in elevated levels of circulating nucleosomes. Conclusion Dietary cholesterol, palmitic acid, and cardiac irradiation combined with a cholesterol-rich diet led to the development of distinct vascular and valvular lesions and changes in the circulating biomarkers. Hence, our study highlights unprecedented specificities related to common risk factors that underlie CVD.
Collapse
Affiliation(s)
- Nathalie Donis
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, CHU Sart Tilman, Liège, Belgium
| | - Zheshen Jiang
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, CHU Sart Tilman, Liège, Belgium
| | - Céline D'Emal
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, CHU Sart Tilman, Liège, Belgium
| | - Alexia Hulin
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, CHU Sart Tilman, Liège, Belgium
| | - Margaux Debuisson
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, CHU Sart Tilman, Liège, Belgium
| | - Raluca Dulgheru
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, CHU Sart Tilman, Liège, Belgium
| | - Mai-Linh Nguyen
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, CHU Sart Tilman, Liège, Belgium
| | - Adriana Postolache
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, CHU Sart Tilman, Liège, Belgium
| | | | | | - Philippe Martinive
- Department Radiation Oncology, Institut Jules Bordet, Université Libre Bruxelles, Brussels, Belgium
| | - Marielle Herzog
- Belgian Volition Société à Responsabilité Limitée, Gembloux, Belgium
| | - Dorian Pamart
- Belgian Volition Société à Responsabilité Limitée, Gembloux, Belgium
| | - Jason Terrell
- Department of Oncology and Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, United States
- Volition America, Austin, TX, United States
| | | | - Pierre Drion
- Experimental Surgery Unit, Centre de Recherche du Département de Chrirurgie, Groupe Interdisciplinaire de Géno-Protéomique Appliquée Institute, University of Liège, Liège, Belgium
| | - Philippe Delvenne
- Department of Pathology, Centre Hospitalier Universitaire of Liège, Liège, Belgium
- Laboratory of Experimental Pathology, GIGA Institute, University of Liège, Liège, Belgium
| | - Alain Nchimi
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, CHU Sart Tilman, Liège, Belgium
| | - Patrizio Lancellotti
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, CHU Sart Tilman, Liège, Belgium
- Gruppo Villa Maria Care and Research, Maria Cecilia Hospital, Cotignola, Italy
- Anthea Hospital, Bari, Italy
| | - Cécile Oury
- Laboratory of Cardiology, Department of Cardiology, GIGA Institute, University of Liège Hospital, CHU Sart Tilman, Liège, Belgium
| |
Collapse
|
7
|
Hypothyroidism and risks of cerebrovascular complications among patients with head and neck cancer after radiotherapy. BMC Neurol 2021; 21:30. [PMID: 33468088 PMCID: PMC7814701 DOI: 10.1186/s12883-021-02047-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/04/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Hypothyroidism (HT) and carotid artery stenosis (CAS) are complications of radiotherapy (RT) in patients with head and neck cancer (HNC). The impact of post-RT HT on CAS progression remains unclear. METHODS Between 2013 and 2014, HNC patients who had ever received RT and were under regular follow-up in our hospital were initially screened. Patients were categorized into euthyroid (EU) and HT groups. Details of RT and HNC were recorded. Total plaque scores and degrees of CAS were measured during annual extracranial duplex follow-up. Patients were monitored for CAS progression to > 50 % stenosis or ischemic stroke (IS). Cumulative time to CAS progression and IS between the 2 groups were compared. Data were further analyzed based on the use or nonuse of thyroxine of the HT group. RESULTS 333 HNC patients with RT history were screened. Finally, 216 patients were recruited (94 and 122 patients in the EU and HT groups). Patients of the HT group received higher mean RT doses (HT vs. EU; 7021.55 ± 401.67 vs. 6869.69 ± 425.32 centi-grays, p = 0.02). Multivariate Cox models showed comparable CAS progression (p = 0.24) and IS occurrence (p = 0.51) between the 2 groups. Moreover, no significant difference was observed in time to CAS progression (p = 0.49) or IS (p = 0.31) among patients with EU and HT using and not using thyroxine supplement. CONCLUSIONS Our results did not demonstrate significant effects of HT and thyroxine supplementation on CAS progression and IS incidence in patients with HNC after RT.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Radiation-associated valvular disease (RAVD) is characterized by late valvular manifestations following radiation exposure to the mediastinum. Review of current guidelines was performed to examine best practices to reduce risk and optimize outcomes in this patient population. RECENT FINDINGS Early and consistent screening and comprehensive and careful planning are critical in managing RAVD. Due to long latency periods, serial screening and targeted evaluation of risk factors are essential to early detection. Varying and complex presentations of RAVD require an integrated team of experienced specialists equipped with multimodality imaging-based screening protocols to stratify risk, plan intervention, and evaluate treatment response. Patients with valvular manifestations associated with radiation therapy call for an individualized plan of care involving longitudinal multimodality imaging-based screening and experienced decision-making regarding timing and strategy of intervention to improve patient outcomes.
Collapse
Affiliation(s)
- Samantha Xu
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Eoin Donnellan
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Milind Y Desai
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA. .,Department of Cardiovascular Imaging, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
9
|
Incidence and Onset of Severe Cardiac Events After Radiotherapy for Esophageal Cancer. J Thorac Oncol 2020; 15:1682-1690. [DOI: 10.1016/j.jtho.2020.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 01/15/2023]
|
10
|
Abstract
Remarkable progress has been made in the development of new therapies for cancer, dramatically changing the landscape of treatment approaches for several malignancies and continuing to increase patient survival. Accordingly, adverse effects of cancer therapies that interfere with the continuation of best-possible care, induce life-threatening risks or lead to long-term morbidity are gaining increasing importance. Cardiovascular toxic effects of cancer therapeutics and radiation therapy are the epitome of such concerns, and proper knowledge, interpretation and management are needed and have to be placed within the context of the overall care of individual patients with cancer. Furthermore, the cardiotoxicity spectrum has broadened to include myocarditis with immune checkpoint inhibitors and cardiac dysfunction in the setting of cytokine release syndrome with chimeric antigen receptor T cell therapy. An increase in the incidence of arrhythmias related to inflammation such as atrial fibrillation can also be expected, in addition to the broadening set of cancer therapeutics that can induce prolongation of the corrected QT interval. Therefore, cardiologists of today have to be familiar not only with the cardiotoxicity associated with traditional cancer therapies, such as anthracycline, trastuzumab or radiation therapy, but even more so with an ever-increasing repertoire of therapeutics. This Review provides this information, summarizing the latest developments at the juncture of cardiology, oncology and haematology.
Collapse
Affiliation(s)
- Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Camara Planek MI, Silver AJ, Volgman AS, Okwuosa TM. Exploratory Review of the Role of Statins, Colchicine, and Aspirin for the Prevention of Radiation-Associated Cardiovascular Disease and Mortality. J Am Heart Assoc 2020; 9:e014668. [PMID: 31960749 PMCID: PMC7033839 DOI: 10.1161/jaha.119.014668] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Adam J. Silver
- Rush Heart Center for WomenRush University Medical CenterChicagoIL
| | | | | |
Collapse
|
12
|
Truong JL, Liu M, Tolg C, Barr M, Dai C, Raissi TC, Wong E, DeLyzer T, Yazdani A, Turley EA. Creating a Favorable Microenvironment for Fat Grafting in a Novel Model of Radiation-Induced Mammary Fat Pad Fibrosis. Plast Reconstr Surg 2019; 145:116-126. [PMID: 31881612 DOI: 10.1097/prs.0000000000006344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Radiofibrosis of breast tissue compromises breast reconstruction by interfering with tissue viability and healing. Autologous fat transfer may reduce radiotherapy-related tissue injury, but graft survival is compromised by the fibrotic microenvironment. Elevated expression of receptor for hyaluronan-mediated motility (RHAMM; also known as hyaluronan-mediated motility receptor, or HMMR) in wounds decreases adipogenesis and increases fibrosis. The authors therefore developed RHAMM peptide mimetics to block RHAMM profibrotic signaling following radiation. They propose that this blocking peptide will decrease radiofibrosis and establish a microenvironment favoring adipose-derived stem cell survival using a rat mammary fat pad model. METHODS Rat mammary fat pads underwent a one-time radiation dose of 26 Gy. Irradiated (n = 10) and nonirradiated (n = 10) fat pads received a single intramammary injection of a sham injection or peptide NPI-110. Skin changes were examined clinically. Mammary fat pad tissue was processed for fibrotic and adipogenic markers using quantitative polymerase chain reaction and immunohistochemical analysis. RESULTS Clinical assessments and molecular analysis confirmed radiation-induced acute skin changes and radiation-induced fibrosis in rat mammary fat pads. Peptide treatment reduced fibrosis, as detected by polarized microscopy of picrosirius red staining, increased collagen ratio of 3:1, reduced expression of collagen-1 crosslinking enzymes lysyl-oxidase, transglutaminase 2, and transforming growth factor β1 protein, and increased adiponectin, an antifibrotic adipokine. RHAMM was expressed in stromal cell subsets and was downregulated by the RHAMM peptide mimetic. CONCLUSION Results from this study predict that blocking RHAMM function in stromal cell subsets can provide a postradiotherapy microenvironment more suitable for fat grafting and breast reconstruction.
Collapse
Affiliation(s)
- Jessica L Truong
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| | - Muhan Liu
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| | - Cornelia Tolg
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| | - Meredith Barr
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| | - Cecilia Dai
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| | - Thomas C Raissi
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| | - Eugene Wong
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| | - Tanya DeLyzer
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| | - Arjang Yazdani
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| | - Eva A Turley
- From the Division of Plastic and Reconstructive Surgery, the Schulich School of Medicine and Dentistry, and the Department of Physics and Astronomy, Western University; and the London Regional Cancer Program, London Health Sciences Centre, Victoria Hospital
| |
Collapse
|
13
|
Prevention, Diagnosis, and Management of Radiation-Associated Cardiac Disease. J Am Coll Cardiol 2019; 74:905-927. [DOI: 10.1016/j.jacc.2019.07.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/28/2019] [Accepted: 07/07/2019] [Indexed: 12/15/2022]
|