1
|
Fang Q, Fang Q, Cheng R, Feng T, Xin W. CAPE activates AMPK and Foxo3 signaling to induce growth inhibition and ferroptosis in triple-negative breast cancer. PLoS One 2024; 19:e0315037. [PMID: 39729481 DOI: 10.1371/journal.pone.0315037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/19/2024] [Indexed: 12/29/2024] Open
Abstract
PURPOSE Approximately 20% of all breast cancer cases are classified as triple-negative breast cancer (TNBC), which represents the most challenging subtype due to its poor prognosis and high metastatic rate. Caffeic acid phenethyl ester (CAPE), the main component extracted from propolis, has been reported to exhibit anticancer activity across various tumor cell types. This study aimed to investigate the effects and mechanisms of CAPE on TNBC. METHODS MDA-MB-231 and MDA-MB-468 cells were treated with CAPE. CCK8 and colony formation assays were performed to analyze cell proliferation. Western blot, TUNEL and Annexin V-FITC/PI staining methods were employed to assess cell apoptosis. ROS, MDA, SOD, GSH, C11-bodipy staining, along with measurements of GPX4 and Ferritin levels, were utilized for ferroptosis detection. Western blot and immunofluorescence analysis were used to assess key regulatory molecules. The cells were subjected to treatments involving ferroptosis inhibition, AMPK inhibition, or Foxo3 inhibition, followed by CAPE administration to assess cell proliferation, apoptosis, and ferroptosis. Tumor xenografts were used to evaluate the antitumor efficacy of CAPE. RESULTS CAPE not only suppressed cell proliferation but also promoted apoptosis followed by ferroptosis. Co-incubation with Fer-1 (a ferroptosis inhibitor) diminished CAPE's suppressive effects on proliferation and apoptosis induction. CAPE treatment enhanced the phosphorylation of AMPK and promoted the nuclear translocation of Foxo3. Inhibition of both AMPK and Foxo3 by siRNAs or inhibitors (Compc, TIC10) reversed the growth retardation induced by CAPE as well as its pro-apoptotic effects leading to ferroptosis. Specifically, AMPK inhibition abrogated the CAPE-induced nuclear translocation of Foxo3. CAPE significantly inhibited tumor growth in nude mice bearing TNBC xenografts. CONCLUSION CAPE possesses a resistance effect on TNBC via activation of AMPK and Foxo3 signaling pathways.
Collapse
Affiliation(s)
- Qilu Fang
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Zhejiang, Hangzhou, China
| | - Qichuan Fang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Rui Cheng
- School of Pharmacy, Nanchang University, Jiangxi, Nanchang, China
| | - Tingting Feng
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Zhejiang, Hangzhou, China
| | - Wenxiu Xin
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Zhejiang, Hangzhou, China
| |
Collapse
|
2
|
Ashitha KT, Lakshmi S, Anjali S, Krishna A, Prakash V, Anbumani S, Priya S, Somappa SB. Design and discovery of carboxamide-based pyrazole conjugates with multifaceted potential against Triple-Negative Breast cancer MDA-MB-231 cells. Bioorg Med Chem Lett 2024; 113:129960. [PMID: 39265894 DOI: 10.1016/j.bmcl.2024.129960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
We report the design, synthesis, and validation of carboxamide-based pyrazole and isoxazole conjugates with a multifaceted activity against Breast Cancer Cell Line MDA-MB-231. The study established that amongst the series, N-(3,5-bis(trifluoromethyl)benzyl)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazole-5-carboxamide (5g) exhibits the highest potency in inhibiting Breast Cancer Cell Line MDA-MB-231 with an IC50 value of 15.08 ± 0.04 µM. The MDA-MB-231 cells, upon treatment with compound 5g, exhibited characteristic apoptotic specific activities such as nuclear fragmentation, phosphatidylserine translocation to the outer plasma membrane, release of lactate dehydrogenase (LDH), and upregulation of caspase 3 and caspase 9 activities. Also, the modulation of pro and antiapoptotic proteins in 5g treated MDA-MB-231 cells was revealed by membrane array analysis. More importantly, the combination of paclitaxel and compound 5g has exhibited improved activity by several folds via their synergistic effects.
Collapse
Affiliation(s)
- K T Ashitha
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Lakshmi
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Anjali
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajay Krishna
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ved Prakash
- Ecotoxicology Laboratory, REACT Division, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow 226 008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, REACT Division, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow 226 008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Priya
- Agro-processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sasidhar B Somappa
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Metwali E, Pennington S. Mass Spectrometry-Based Proteomics for Classification and Treatment Optimisation of Triple Negative Breast Cancer. J Pers Med 2024; 14:944. [PMID: 39338198 PMCID: PMC11432759 DOI: 10.3390/jpm14090944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Triple-negative breast cancer (TNBC) presents a significant medical challenge due to its highly invasive nature, high rate of metastasis, and lack of drug-targetable receptors, which together lead to poor prognosis and limited treatment options. The traditional treatment guidelines for early TNBC are based on a multimodal approach integrating chemotherapy, surgery, and radiation and are associated with low overall survival and high relapse rates. Therefore, the approach to treating early TNBC has shifted towards neoadjuvant treatment (NAC), given to the patient before surgery and which aims to reduce tumour size, reduce the risk of recurrence, and improve the pathological complete response (pCR) rate. However, recent studies have shown that NAC is associated with only 30% of patients achieving pCR. Thus, novel predictive biomarkers are essential if treatment decisions are to be optimised and chemotherapy toxicities minimised. Given the heterogeneity of TNBC, mass spectrometry-based proteomics technologies offer valuable tools for the discovery of targetable biomarkers for prognosis and prediction of toxicity. These biomarkers can serve as critical targets for therapeutic intervention. This review aims to provide a comprehensive overview of TNBC diagnosis and treatment, highlighting the need for a new approach. Specifically, it highlights how mass spectrometry-based can address key unmet clinical needs by identifying novel protein biomarkers to distinguish and early prognostication between TNBC patient groups who are being treated with NAC. By integrating proteomic insights, we anticipate enhanced treatment personalisation, improved clinical outcomes, and ultimately, increased survival rates for TNBC patients.
Collapse
Affiliation(s)
- Essraa Metwali
- School of Medicine, UCD Conway Institute for Biomolecular Research, University College Dublin, D04 C1P1 Dublin, Ireland;
- King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard, Jeddah-Makka Expressway, Jeddah 22384, Saudi Arabia
| | - Stephen Pennington
- School of Medicine, UCD Conway Institute for Biomolecular Research, University College Dublin, D04 C1P1 Dublin, Ireland;
| |
Collapse
|
4
|
Won EJ, Lee M, Lee EK, Baek SH, Yoon TJ. Lipid-Based Nanoparticles Fused with Natural Killer Cell Plasma Membrane Proteins for Triple-Negative Breast Cancer Therapy. Pharmaceutics 2024; 16:1142. [PMID: 39339179 PMCID: PMC11434974 DOI: 10.3390/pharmaceutics16091142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Immunotherapy combined with chemicals and genetic engineering tools is emerging as a promising strategy to treat triple-negative breast cancer (TNBC), which is more aggressive with poorer progress than other breast cancer subtypes. In this study, lipid-based nanoparticles (LNPs) possessed an NK cell-like function that could deliver tumor-specific therapeutics and inhibit tumor growth. LNPs fused with an NK cell membrane protein system (NK-LNP) have three main features: (i) hydrophilic plasmid DNA can inhibit TNBC metastasis when encapsulated within LNPs and delivered to cells; (ii) the lipid composition of LNPs, including C18 ceramide, exhibits anticancer effects; (iii) NK cell membrane proteins are immobilized on the LNP surface, enabling targeted delivery to TNBC cells. These particles facilitate the targeted delivery of HIC1 plasmid DNA and the modulation of immune cell functions. Delivered therapeutic genes can inhibit metastasis of TNBC and then induce apoptotic cell death while targeting macrophages to promote cytokine release. The anticancer effect is expected to be applied in treating various difficult-to-treat cancers with LNP fused with NK cell plasma membrane proteins, which can simultaneously deliver therapeutic chemicals and genes.
Collapse
Affiliation(s)
- Eun-Jeong Won
- Research Institute of Pharmaceutical Science and Technology (RIPST), Department of Pharmacy, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Cheongju 28116, Republic of Korea
| | - Myungchul Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 31065, Republic of Korea
| | - Eui-Kyung Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 31065, Republic of Korea
| | - Seung-Hoon Baek
- Research Institute of Pharmaceutical Science and Technology (RIPST), Department of Pharmacy, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Tae-Jong Yoon
- Research Institute of Pharmaceutical Science and Technology (RIPST), Department of Pharmacy, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Department of BioHealth Regulatory Science, Graduate School of Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Moogene Medi Institute, 25, Misagangbyeonjungang-ro 7beonan-gil, Hanam 12939, Republic of Korea
| |
Collapse
|
5
|
Zhang R, Jiang Q, Zhuang Z, Zeng H, Li Y. A bibliometric analysis of drug resistance in immunotherapy for breast cancer: trends, themes, and research focus. Front Immunol 2024; 15:1452303. [PMID: 39188717 PMCID: PMC11345160 DOI: 10.3389/fimmu.2024.1452303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
While breast cancer treatments have advanced significantly nowadays, yet metastatic, especially triple-negative breast cancer (TNBC), remains challenging with low survival. Cancer immunotherapy, a promising approach for HER2-positive and TNBC, still faces resistance hurdles. Recently, numerous studies have set their sights on the resistance of immunotherapy for breast cancer. Our study provides a thorough comprehension of the current research landscape, hotspots, and emerging breakthroughs in this critical area through a meticulous bibliometric analysis. As of March 26, 2024, a total of 1341 articles on immunology resistance in breast cancer have been gathered from Web of Science Core Collection, including 765 articles and 576 reviews. Bibliometrix, CiteSpace and VOSviewer software were utilized to examine publications and citations per year, prolific countries, contributive institutions, high-level journals and scholars, as well as highly cited articles, references and keywords. The research of immunotherapy resistance in breast cancer has witnessed a remarkable surge over the past seven years. The United States and China have made significant contributions, with Harvard Medical School being the most prolific institution and actively engaging in collaborations. The most contributive author is Curigliano, G from the European Institute of Oncology in Italy, while Wucherpfennig, K. W. from the Dana-Farber Cancer Institute in the USA, had the highest citations. Journals highly productive primarily focus on clinical, immunology and oncology research. Common keywords include "resistance", "expression", "tumor microenvironment", "cancer", "T cell", "therapy", "chemotherapy" and "cell". Current research endeavors to unravel the mechanisms of immune resistance in breast cancer through the integration of bioinformatics, basic experiments, and clinical trials. Efforts are underway to develop strategies that improve the effectiveness of immunotherapy, including the exploration of combination therapies and advancements in drug delivery systems. Additionally, there is a strong focus on identifying novel biomarkers that can predict patient response to immunology. This study will provide researchers with an up-to-date overview of the present knowledge in drug resistance of immunology for breast cancer, serving as a valuable resource for informed decision-making and further research on innovative approaches to address immunotherapy resistance.
Collapse
Affiliation(s)
- Rendong Zhang
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Qiongzhi Jiang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zhemin Zhuang
- Engineering College, Shantou University, Shantou, Guangdong, China
| | - Huancheng Zeng
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yaochen Li
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
6
|
Tolg C, Hill KA, Turley EA. CD44 and RHAMM Are Microenvironmental Sensors with Dual Metastasis Promoter and Suppressor Functions. Adv Biol (Weinh) 2024; 8:e2300693. [PMID: 38638002 DOI: 10.1002/adbi.202300693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/18/2024] [Indexed: 04/20/2024]
Abstract
The progression of primary tumors to metastases remains a significant roadblock to the treatment of most cancers. Emerging evidence has identified genes that specifically affect metastasis and are potential therapeutic targets for managing tumor progression. However, these genes can have dual tumor promoter and suppressor functions that are contextual in manifestation, and that complicate their development as targeted therapies. CD44 and RHAMM/HMMR are examples of multifunctional proteins that can either promote or suppress metastases, as demonstrated in experimental models. These two proteins can be viewed as microenvironmental sensors and this minireview addresses the known mechanistic underpinnings that may determine their metastasis suppressor versus promoter functions. Leveraging this mechanistic knowledge for CD44, RHAMM, and other multifunctional proteins is predicted to improve the precision of therapeutic targeting to achieve more effective management of metastasis.
Collapse
Affiliation(s)
- Cornelia Tolg
- Cancer Research Laboratory Program, Lawson Health Research Institute, Victoria Hospital, London, ON, N6A 5W9, Canada
| | | | - Eva Ann Turley
- Cancer Research Laboratory Program, Lawson Health Research Institute, Victoria Hospital, London, ON, N6A 5W9, Canada
- Departments of Oncology, Biochemistry, and Surgery, Western University, London, ON, N6A 5W9, Canada
| |
Collapse
|
7
|
Du J, Zhang E, Huang Z. The predictive value of next generation sequencing for matching advanced hepatocellular carcinoma patients to targeted and immunotherapy. Front Immunol 2024; 15:1358306. [PMID: 38665910 PMCID: PMC11043782 DOI: 10.3389/fimmu.2024.1358306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Background Targeted and Immunotherapy has emerged as a new first-line treatment for advanced hepatocellular carcinoma (aHCC). To identify the appropriate targeted and immunotherapy, we implemented next generation sequencing (NGS) to provide predictive and prognostic values for aHCC patients. Methods Pretreatment samples from 127 HCC patients were examined for genomic changes using 680-gene NGS, and PD-L1 expression was detected by immunohistochemistry. Demographic and treatment data were included for analyses of links among treatment outcomes, drug responses, and genetic profiles. A prognostic index model for predicting benefit from treatment was constructed, taking into account of biomarkers, including TP53, TERT, PD-L1, and tumor mutation burden (TMB) as possible independent prognostic factors. Results The multivariate Cox regression analyses showed that PD-L1≥1% (HR 25.07, 95%CI 1.56 - 403.29, p=0.023), TMB≥5Mb (HR 86.67, 95% CI 4.00 - 1876.48, p=0.004), TERT MU (HR 84.09, 95% CI 5.23 - 1352.70, p=0.002) and TP53 WT (HR 0.01, 95%CI 0.00 - 0.47, p=0.022) were independent risk factors for overall survival (OS), even after adjusting for various confounders. A prognostic nomogram for OS was developed, with an area under the ROC curve of 0.91, 0.85, and 0.98 at 1-, 2-, and 3- year, respectively, and a prognostic index cutoff of 1.2. According to the cutoff value, the patients were divided into the high-risk group (n=29) and low-risk group (n=98). The benefit of targeted and immunotherapy in the low-risk group was not distinguishable according to types of agents. However, treatment of Atezolizumab and Bevacizumab appeared to provide longer OS in the high-risk group (12 months vs 9.2, 9, or 5 months for other treatments, p<0.001). Conclusion The prognostic model constructed by PD-L1, TMB, TERT, and TP53 can identify aHCC patients who would benefit from targeted and immunotherapy, providing insights for the personalized treatment of HCC.
Collapse
Affiliation(s)
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Nicolini A, Ferrari P, Silvestri R, Gemignani F. The breast cancer tumor microenvironment and precision medicine: immunogenicity and conditions favoring response to immunotherapy. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:14-24. [PMID: 39036381 PMCID: PMC11256721 DOI: 10.1016/j.jncc.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 07/23/2024] Open
Abstract
Some main recent researches that have dissected tumor microenvironment (TME) by imaging mass cytometry (IMC) in different subtypes of primary breast cancer samples were considered. The many phenotypic variants, clusters of epithelial tumor and immune cells, their structural features as well as the main genetic aberrations, sub-clonal heterogeneity and their systematic classification also have been examined. Mutational evolution has been assessed in primary and metastatic breast cancer samples. Overall, based on these findings the current concept of precision medicine is questioned and challenged by alternative therapeutic strategies. In the last two decades, immunotherapy as a powerful and harmless tool to fight cancer has received huge attention. Thus, the tumor immune microenvironment (TIME) composition, its prognostic role for clinical course as well as a novel definition of immunogenicity in breast cancer are proposed. Investigational clinical trials carried out by us and other findings suggest that G0-G1 state induced in endocrine-dependent metastatic breast cancer is more suitable for successful immune manipulation. Residual micro-metastatic disease seems to be another specific condition that can significantly favor the immune response in breast and other solid tumors.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Roberto Silvestri
- Department of Biology, Genetic Unit, University of Pisa, Pisa, Italy
| | | |
Collapse
|
9
|
Chang CM, Liang TR, Lam HYP. The Use of Schisandrin B to Combat Triple-Negative Breast Cancers by Inhibiting NLRP3-Induced Interleukin-1β Production. Biomolecules 2024; 14:74. [PMID: 38254674 PMCID: PMC10813220 DOI: 10.3390/biom14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and fatal breast cancer subtype. Nowadays, chemotherapy remains the standard treatment of TNBC, and immunotherapy has emerged as an important alternative. However, the high rate of TNBC recurrence suggests that new treatment is desperately needed. Schisandrin B (Sch B) has recently revealed its anti-tumor effects in cancers such as cholangiocarcinoma, hepatoma, glioma, and multi-drug-resistant breast cancer. However, there is still a need to investigate using Sch B in TNBC treatment. Interleukin (IL)-1β, an inflammatory cytokine that can be expressed and produced by the cancer cell itself, has been suggested to promote BC proliferation and progression. In the current study, we present evidence that Sch B can significantly suppress the growth, migration, and invasion of TNBC cell lines and patient-derived TNBC cells. Through inhibition of inflammasome activation, Sch B inhibits interleukin (IL)-1β production of TNBC cells, hindering its progression. This was confirmed using an NLRP3 inhibitor, OLT1177, which revealed a similar beneficial effect in combating TNBC progression. Sch B treatment also inhibits IL-1β-induced EMT expression of TNBC cells, which may contribute to the anti-tumor response.
Collapse
Affiliation(s)
- Chun-Ming Chang
- Department of General Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Ting-Ruei Liang
- PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien 970374, Taiwan
| | - Ho Yin Pekkle Lam
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| |
Collapse
|
10
|
Ding JH, Xiao Y, Yang F, Song XQ, Xu Y, Ding XH, Ding R, Shao ZM, Di GH, Jiang YZ. Guanosine diphosphate-mannose suppresses homologous recombination repair and potentiates antitumor immunity in triple-negative breast cancer. Sci Transl Med 2024; 16:eadg7740. [PMID: 38170790 DOI: 10.1126/scitranslmed.adg7740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with poor prognosis. TNBCs with high homologous recombination deficiency (HRD) scores benefit from DNA-damaging agents, including platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors, whereas those with low HRD scores still lack therapeutic options. Therefore, we sought to exploit metabolic alterations to induce HRD and sensitize DNA-damaging agents in TNBCs with low HRD scores. We systematically analyzed TNBC metabolomics and identified a metabolite, guanosine diphosphate (GDP)-mannose (GDP-M), that impeded homologous recombination repair (HRR). Mechanistically, the low expression of the upstream enzyme GDP-mannose-pyrophosphorylase-A (GMPPA) led to the endogenous up-regulation of GDP-M in TNBC. The accumulation of GDP-M in tumor cells further reduced the interaction between breast cancer susceptibility gene 2 (BRCA2) and ubiquitin-specific peptidase 21 (USP21), which promoted the ubiquitin-mediated degradation of BRCA2 to inhibit HRR. Therapeutically, we illustrated that the supplementation of GDP-M sensitized DNA-damaging agents to impair tumor growth in both in vitro (cancer cell line and patient-derived organoid) and in vivo (xenograft in immunodeficient mouse) models. Moreover, the combination of GDP-M with DNA-damaging agents activated STING-dependent antitumor immunity in immunocompetent syngeneic mouse models. Therefore, GDP-M supplementation combined with PARP inhibition augmented the efficacy of anti-PD-1 antibodies. Together, these findings suggest that GDP-M is a crucial HRD-related metabolite and propose a promising therapeutic strategy for TNBCs with low HRD scores using the combination of GDP-M, PARP inhibitors, and anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Jia-Han Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201203, P. R. China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Fan Yang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Xiao-Qing Song
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Ying Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Xiao-Hong Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Rui Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Gen-Hong Di
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
11
|
Fang Q, Shen G, Xie Q, Guan Y, Liu X, Ren D, Zhao F, Liu Z, Ma F, Zhao J. Development of Tumor Markers for Breast Cancer Immunotherapy. Curr Mol Med 2024; 24:547-564. [PMID: 37157196 DOI: 10.2174/1566524023666230508152817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 05/10/2023]
Abstract
Although breast cancer treatment has been developed remarkably in recent years, it remains the primary cause of death among women. Immune checkpoint blockade therapy has significantly altered the way breast cancer is treated, although not all patients benefit from the changes. At present, the most effective mechanism of immune checkpoint blockade application in malignant tumors is not clear and efficacy may be influenced by many factors, including host, tumor, and tumor microenvironment dynamics. Therefore, there is a pressing need for tumor immunomarkers that can be used to screen patients and help determine which of them would benefit from breast cancer immunotherapy. At present, no single tumor marker can predict treatment efficacy with sufficient accuracy. Multiple markers may be combined to more accurately pinpoint patients who will respond favorably to immune checkpoint blockade medication. In this review, we have examined the breast cancer treatments, developments in research on the role of tumor markers in maximizing the clinical efficacy of immune checkpoint inhibitors, prospects for the identification of novel therapeutic targets, and the creation of individualized treatment plans. We also discuss how tumor markers can provide guidance for clinical practice.
Collapse
Affiliation(s)
- Qianqian Fang
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Qiqi Xie
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Yumei Guan
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xinlan Liu
- Department of Oncology, General Hospital of Ningxia Medical University, No. 804 Shengli Road, Xingqing District, Yinchuan, 750004, China
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fuxing Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Zhilin Liu
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| |
Collapse
|
12
|
Kathpalia M, Sharma A, Kaur N. Sacituzumab Govitecan as a Second-Line Treatment in Relapsed/Refractory Metastatic Triple-Negative Breast Cancer Patients: A Systematic Review and Meta-analysis. Ann Pharmacother 2024; 58:44-53. [PMID: 37026168 DOI: 10.1177/10600280231164110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Chemotherapy, the only treatment option for metastatic triple-negative breast cancer (mTNBC), showed decreased survival rates. Trophoblast cell surface antigen-2 (Trop-2) could be a possible target for antibody-drug conjugates (ADCs). OBJECTIVE Sacituzumab govitecan (SG), an anti-Trop-2 ADC for pretreating relapsed/refractory mTNBC patients, was studied to know the efficacy and safety profile of the drug in mTNBC. METHODS The present review searched MEDLINE (via PubMed), WHO Clinical Trial Registry, Clinical Trials.gov, and Cochrane Central Register of Controlled Trials until December 25, 2022. The studies searched comprised randomized trials and observational studies (retrospective [case-control, cross-sectional] and prospective [cohort designs]). Efficacy assessment was performed in terms of complete response (CR), partial response (PR), objective response rate (ORR), stable disease (SD), progressive disease (PD), and clinical benefit rate (CBR), and safety in terms of adverse events. RESULTS The overall random-effects pooled prevalence of CR was 4.9 (95% CI: 3.2-7.1), PR was 35.6 (95% CI: 31.5-39.9), ORR was 6.8 (95% CI: 5.9-7.8), SD was 8.0 (95% CI: 6.7-9.4), PD was 5.1 (95% CI: 4.1-6.3), and CBR was 13.4 (95% CI: 11.8-15.1). Adverse events associated with the drug were neutropenia, fatigue, anemia, nausea, and others. CONCLUSION AND RELEVANCE This is the first meta-analysis conducted in relapsed/refractory mTNBC patients and found that SG is efficacious but associated with some adverse effects that are related to exposure to the drug. The application of these results will allow clinicians to use SG in the management of patients with mTNBC.
Collapse
Affiliation(s)
- Meghavi Kathpalia
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Anurag Sharma
- Department of Statistics, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Navkiran Kaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| |
Collapse
|
13
|
Freitas AJA, Nunes CR, Mano MS, Causin RL, Santana IVV, de Oliveira MA, Calfa S, Silveira HCS, de Pádua Souza C, Marques MMC. Gene expression alterations predict the pathological complete response in triple-negative breast cancer exploratory analysis of the NACATRINE trial. Sci Rep 2023; 13:21411. [PMID: 38049525 PMCID: PMC10695933 DOI: 10.1038/s41598-023-48657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023] Open
Abstract
This exploratory analysis of the Neoadjuvant Carboplatin in Triple Negative Breast Cancer (NACATRINE) study aimed to identify the biomarkers of pathological complete response (pCR) in patients with triple-negative breast cancer (TNBC) treated with neoadjuvant chemotherapy (NAC) within the context of a clinical trial. The NACATRINE trial is a phase II, single-center, randomized, open-label clinical trial that investigated the addition of carboplatin to sequential anthracycline- and taxane-based NAC for TNBC. We evaluated the gene expression in untreated samples to investigate its association with pCR, overall survival (OS), and disease-free survival (DFS). RNA was extracted from the tissue biopsy, and the nCounter Breast Cancer panel was used to analyze gene expression. Of the 66 patients included in the gene expression profiling analysis, 24 (36.4%) achieved pCR and 42 (63.6%) had residual disease. In unsupervised hierarchical clustering analyses, differentially expressed genes between patients with and without pCR were identified irrespective of the treatment (24 genes), carboplatin (37 genes), and non-carboplatin (27 genes) arms. In receiver operating characteristic (ROC) curve analysis, 10 genes in the carboplatin arm (area under the ROC curve [AUC], 0.936) and three genes in the non-carboplatin arm (AUC, 0.939) were considered to be potential pCR-associated biomarkers. We identified genes that were associated with improvements in OS and DFS in addition to being related to pCR. We successfully identified gene expression signatures associated with pCR in pretreatment samples of patients with TNBC treated with NAC. Further investigation of these biomarkers is warranted.
Collapse
Affiliation(s)
- Ana Julia Aguiar Freitas
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos, SP, Brazil.
| | - Caroline Rocha Nunes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos, SP, Brazil
| | | | - Rhafaela Lima Causin
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos, SP, Brazil
| | | | | | - Stéphanie Calfa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Teaching and Research Institute, Barretos, SP, Brazil
| | | | | | | |
Collapse
|
14
|
Meng B, Zhao X, Jiang S, Xu Z, Li S, Wang X, Ma W, Li L, Liu D, Zheng J, Peng H, Shi M. AURKA inhibitor-induced PD-L1 upregulation impairs antitumor immune responses. Front Immunol 2023; 14:1182601. [PMID: 37781397 PMCID: PMC10536236 DOI: 10.3389/fimmu.2023.1182601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Tumor immunotherapy targeting PD-L1 has emerged as one of the powerful tools for tumor therapy. Numerous studies indicate that tumor-targeted drugs critically have an influence on the interaction between the immune system and tumors by changing the expression of PD-L1, which is beneficial for immunotherapy. Our study provided novel evidence for improving the drug regimen in tumor targeted therapy and immunotherapy. Methods The expression of PD-L1 on SKBR3, MDA-MB-231, MCF7, 4T1, MC38 and B16 cells was evaluated by flow cytometry after treatment with six preclinical targeted drugs (ARN-509, AZD3514, Galeterone, Neratinib, MLN8237 and LGK974). AURKA was knockdowned by using the specific siRNA or CRISPR-Cas9 technology. In the 4T1-breast tumor and colorectal cancer xenograft tumor models, we determined the number of infiltrated CD3+ and CD8+ T cells in tumor tissues by IHC. Results We found that AURKA inhibitor MLN8237 promoted the expression of PD-L1 in a time- and concentration-dependent manner while exerted its antitumor effect. Knockdown of AURKA could induce the upregulation of PD-L1 on SKBR3 cells. MLN8237-induced PD-L1 upregulation was mainly associated with the phosphorylation of STAT3. In the 4T1-breast tumor xenograft model, the infiltrated CD3+ and CD8+ T cells decreased after treatment with MLN8237. When treated with MLN8237 in combination with anti-PD-L1 antibody, the volumes of tumor were significantly reduced and accompanied by increasing the infiltration of CD3+ and CD8+ T cells in colorectal cancer xenograft tumor model. Discussion Our data demonstrated that MLN8237 improved the effect of immunology-related therapy on tumor cells by interacting with anti-PD-L1 antibody, which contributed to producing creative sparks for exploring the possible solutions to overcoming drug resistance to tumor targeted therapy.
Collapse
Affiliation(s)
- Bi Meng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuan Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuchang Jiang
- Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China
| | - Zijian Xu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xu Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wen Ma
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liantao Li
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui Peng
- Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
15
|
Yang L, Zhang W, Yan Y. Identification and characterization of a novel molecular classification based on disulfidptosis-related genes to predict prognosis and immunotherapy efficacy in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:6135-6151. [PMID: 37399661 PMCID: PMC10373967 DOI: 10.18632/aging.204809] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/01/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Disulfidptosis has been discovered as a mechanism of cell death mediating by SLC7A11. Nonetheless, little is known about the relationship between disulfidptosis-related genes (DRG) and hepatocellular carcinoma (HCC). METHODS 7 datasets including 1,302 HCC patients and 62,530 cells were downloaded. We adopted consensus clustering algorithm to construct the consensus matrix and cluster the samples' DRG related expression profile data. Then, weighted gene co-expression network analysis (WGCNA) was conducted to identify hub gene modules associated with the identified clusters and determine the correlation between modules. A DRG.score was constructed based on genes through differential analysis and WGCNA of the 2 clusters. RESULTS Univariate and multivariate Cox regression analysis show that SLC7A11 and LRPPRC can be used as an independent factor in HCC. Then, two molecular subgroups with significantly different survival were identified based on 10 DRG. The cluster.A showed a worse prognosis, higher immune infiltration, and higher immune checkpoint expression. Then, by differential analysis and WGCNA of the 2 clusters, we identified 5 hub genes, and constructed a DRG.score. Univariate and multivariate Cox regression analysis show that DRG.score can be used as an independent factor to predict the prognosis in HCC. Furthermore, high DRG.score group had a worse prognosis, and was validated in TCGA-LIHC, LIRI-JP, GSE14520, GSE36376, and GSE76427. Preclinically, patients with higher DRG.score demonstrated significant immunotherapy therapeutic advantages and transcatheter arterial chemoembolization clinical benefits. CONCLUSIONS SLC7A11 and LRPPRC play an essential role in HCC prognosis prediction. The DRG.score might become useful biomarkers for novel therapeutic targets.
Collapse
Affiliation(s)
- Li Yang
- Department of Forensic Pathology, Wannan Medical College, Wuhu, China
| | - Weigang Zhang
- Department of Graduate School, Wannan Medical College, Wuhu, China
| | - Yifeng Yan
- Department of Forensic Pathology, Wannan Medical College, Wuhu, China
| |
Collapse
|
16
|
Tolg C, Milojevic M, Qi FW, Pavanel HA, Locke MEO, Ma J, Price M, Nelson AC, McCarthy JB, Hill KA, Turley EA. RHAMM regulates MMTV-PyMT-induced lung metastasis by connecting STING-dependent DNA damage sensing to interferon/STAT1 pro-apoptosis signaling. Breast Cancer Res 2023; 25:74. [PMID: 37349798 PMCID: PMC10286489 DOI: 10.1186/s13058-023-01652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/28/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND RHAMM is a multifunctional protein that is upregulated in breast tumors, and the presence of strongly RHAMM+ve cancer cell subsets associates with elevated risk of peripheral metastasis. Experimentally, RHAMM impacts cell cycle progression and cell migration. However, the RHAMM functions that contribute to breast cancer metastasis are poorly understood. METHODS We interrogated the metastatic functions of RHAMM using a loss-of-function approach by crossing the MMTV-PyMT mouse model of breast cancer susceptibility with Rhamm-/- mice. In vitro analyses of known RHAMM functions were performed using primary tumor cell cultures and MMTV-PyMT cell lines. Somatic mutations were identified using a mouse genotyping array. RNA-seq was performed to identify transcriptome changes resulting from Rhamm-loss, and SiRNA and CRISPR/Cas9 gene editing was used to establish cause and effect of survival mechanisms in vitro. RESULTS Rhamm-loss does not alter initiation or growth of MMTV-PyMT-induced primary tumors but unexpectedly increases lung metastasis. Increased metastatic propensity with Rhamm-loss is not associated with obvious alterations in proliferation, epithelial plasticity, migration, invasion or genomic stability. SNV analyses identify positive selection of Rhamm-/- primary tumor clones that are enriched in lung metastases. Rhamm-/- tumor clones are characterized by an increased ability to survive with ROS-mediated DNA damage, which associates with blunted expression of interferon pathway and target genes, particularly those implicated in DNA damage-resistance. Mechanistic analyses show that ablating RHAMM expression in breast tumor cells by siRNA knockdown or CRISPR-Cas9 gene editing blunts interferon signaling activation by STING agonists and reduces STING agonist-induced apoptosis. The metastasis-specific effect of RHAMM expression-loss is linked to microenvironmental factors unique to tumor-bearing lung tissue, notably high ROS and TGFB levels. These factors promote STING-induced apoptosis of RHAMM+ve tumor cells to a significantly greater extent than RHAMM-ve comparators. As predicted by these results, colony size of Wildtype lung metastases is inversely related to RHAMM expression. CONCLUSION RHAMM expression-loss blunts STING-IFN signaling, which offers growth advantages under specific microenvironmental conditions of lung tissue. These results provide mechanistic insight into factors controlling clonal survival/expansion of metastatic colonies and has translational potential for RHAMM expression as a marker of sensitivity to interferon therapy.
Collapse
Affiliation(s)
- Cornelia Tolg
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Maja Milojevic
- Departments of Biology, Western University, London, ON, Canada
| | - Freda W Qi
- Departments of Biology, Western University, London, ON, Canada
| | | | - M Elizabeth O Locke
- Departments of Biology, Western University, London, ON, Canada
- Departments of Computer Science, Western University, London, ON, Canada
| | - Jenny Ma
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Mathew Price
- Masonic Cancer Center, Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Andrew C Nelson
- Masonic Cancer Center, Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - James B McCarthy
- Masonic Cancer Center, Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kathleen A Hill
- Departments of Biology, Western University, London, ON, Canada.
- Departments of Computer Science, Western University, London, ON, Canada.
| | - Eva A Turley
- London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
- Departments of Biochemistry, Oncology and Surgery, Western University, London, ON, Canada.
| |
Collapse
|
17
|
El Hejjioui B, Lamrabet S, Amrani Joutei S, Senhaji N, Bouhafa T, Malhouf MA, Bennis S, Bouguenouch L. New Biomarkers and Treatment Advances in Triple-Negative Breast Cancer. Diagnostics (Basel) 2023; 13:diagnostics13111949. [PMID: 37296801 DOI: 10.3390/diagnostics13111949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer lacking hormone receptor expression and HER2 gene amplification. TNBC represents a heterogeneous subtype of breast cancer, characterized by poor prognosis, high invasiveness, high metastatic potential, and a tendency to relapse. In this review, the specific molecular subtypes and pathological aspects of triple-negative breast cancer are illustrated, with particular attention to the biomarker characteristics of TNBC, namely: regulators of cell proliferation and migration and angiogenesis, apoptosis-regulating proteins, regulators of DNA damage response, immune checkpoints, and epigenetic modifications. This paper also focuses on omics approaches to exploring TNBC, such as genomics to identify cancer-specific mutations, epigenomics to identify altered epigenetic landscapes in cancer cells, and transcriptomics to explore differential mRNA and protein expression. Moreover, updated neoadjuvant treatments for TNBC are also mentioned, underlining the role of immunotherapy and novel and targeted agents in the treatment of TNBC.
Collapse
Affiliation(s)
- Brahim El Hejjioui
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| | - Salma Lamrabet
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Sarah Amrani Joutei
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | - Nadia Senhaji
- Faculty of Sciences, Moulay Ismail University, Meknès 50000, Morocco
| | - Touria Bouhafa
- Department of Radiotherapy, HASSAN II University Hospital, Fez 30050, Morocco
| | | | - Sanae Bennis
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Laila Bouguenouch
- Department of Medical Genetics and Oncogenetics, HASSAN II University Hospital, Fez 30050, Morocco
| |
Collapse
|
18
|
Jogerst K, Zhang C, Chang YH, Abujbarah S, Ali-Mucheru M, Pockaj B, Stucky CC, Cronin P, Wasif N. Socioeconomic and racial disparities in survival for patients with stage IV cancer. Am J Surg 2023:S0002-9610(23)00099-5. [PMID: 36922322 DOI: 10.1016/j.amjsurg.2023.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Disparities in cancer outcomes for minoritized people and groups experiencing disadvantages with Stage IV cancer is largely unknown. METHODS Patients with Stage IV pancreatic, colorectal, lung, breast, and prostate cancer were identified from 2004 to 2015 in the National Cancer Database. Cox proportional hazard models were used to quantify how demographics and treatments received were associated with overall survival. RESULTS 903,151 patients were included. Patients who were younger, non-Hispanic White, had private insurance, higher income, or received care at an academic center were more likely to receive surgery, chemotherapy, and/or radiation therapy (p < 0.001). Black patients, those with Medicare, Medicaid, no insurance, and lower income had lower survival rates across all five cancer types (p < 0.001). On multivariable analysis, receipt of surgery, radiation, and chemotherapy attenuated but did not eliminate this worse survival (p < 0.001). CONCLUSIONS Survival for patients with Stage IV cancer differs by socioeconomic and self-reported racial classifications.
Collapse
Affiliation(s)
- Kristen Jogerst
- Department of Surgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd., Phoenix, AZ, 85054, USA
| | - Chi Zhang
- Department of Surgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd., Phoenix, AZ, 85054, USA; Mayo Clinic Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, 200 First St. SW, Harwick Building, 2nd Floor, Rochester, MN, 55905, USA
| | - Yu-Hui Chang
- Mayo Foundation for Medical Education and Research, 5777 E. Mayo Blvd., Phoenix, AZ, 85054, USA
| | - Sami Abujbarah
- Mayo Clinic Alix School of Medicine, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Mariam Ali-Mucheru
- Department of Surgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd., Phoenix, AZ, 85054, USA
| | - Barbara Pockaj
- Department of Surgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd., Phoenix, AZ, 85054, USA
| | - Chee-Chee Stucky
- Department of Surgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd., Phoenix, AZ, 85054, USA
| | - Patricia Cronin
- Department of Surgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd., Phoenix, AZ, 85054, USA
| | - Nabil Wasif
- Department of Surgery, Mayo Clinic Arizona, 5777 E. Mayo Blvd., Phoenix, AZ, 85054, USA.
| |
Collapse
|
19
|
The Combination of Immune Checkpoint Blockade with Tumor Vessel Normalization as a Promising Therapeutic Strategy for Breast Cancer: An Overview of Preclinical and Clinical Studies. Int J Mol Sci 2023; 24:ijms24043226. [PMID: 36834641 PMCID: PMC9964596 DOI: 10.3390/ijms24043226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have a modest clinical activity when administered as monotherapy against breast cancer (BC), the most common malignancy in women. Novel combinatorial strategies are currently being investigated to overcome resistance to ICIs and promote antitumor immune responses in a greater proportion of BC patients. Recent studies have shown that the BC abnormal vasculature is associated with immune suppression in patients, and hampers both drug delivery and immune effector cell trafficking to tumor nests. Thus, strategies directed at normalizing (i.e., at remodeling and stabilizing) the immature, abnormal tumor vessels are receiving much attention. In particular, the combination of ICIs with tumor vessel normalizing agents is thought to hold great promise for the treatment of BC patients. Indeed, a compelling body of evidence indicates that the addition of low doses of antiangiogenic drugs to ICIs substantially improves antitumor immunity. In this review, we outline the impact that the reciprocal interactions occurring between tumor angiogenesis and immune cells have on the immune evasion and clinical progression of BC. In addition, we overview preclinical and clinical studies that are presently evaluating the therapeutic effectiveness of combining ICIs with antiangiogenic drugs in BC patients.
Collapse
|
20
|
Mechanisms and Strategies to Overcome PD-1/PD-L1 Blockade Resistance in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 15:cancers15010104. [PMID: 36612100 PMCID: PMC9817764 DOI: 10.3390/cancers15010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by a high rate of systemic metastasis, insensitivity to conventional treatment and susceptibility to drug resistance, resulting in a poor patient prognosis. The immune checkpoint inhibitors (ICIs) represented by antibodies of programmed death receptor 1 (PD-1) and programmed death receptor ligand 1 (PD-L1) have provided new therapeutic options for TNBC. However, the efficacy of PD-1/PD-L1 blockade monotherapy is suboptimal immune response, which may be caused by reduced antigen presentation, immunosuppressive tumor microenvironment, interplay with other immune checkpoints and aberrant activation of oncological signaling in tumor cells. Therefore, to improve the sensitivity of TNBC to ICIs, suitable patients are selected based on reliable predictive markers and treated with a combination of ICIs with other therapies such as chemotherapy, radiotherapy, targeted therapy, oncologic virus and neoantigen-based therapies. This review discusses the current mechanisms underlying the resistance of TNBC to PD-1/PD-L1 inhibitors, the potential biomarkers for predicting the efficacy of anti-PD-1/PD-L1 immunotherapy and recent advances in the combination therapies to increase response rates, the depth of remission and the durability of the benefit of TNBC to ICIs.
Collapse
|
21
|
Zhang L, Guan S, Meng F, Teng L, Zhong D. Next-generation sequencing of homologous recombination genes could predict efficacy of platinum-based chemotherapy in non-small cell lung cancer. Front Oncol 2022; 12:1035808. [PMID: 36591485 PMCID: PMC9794762 DOI: 10.3389/fonc.2022.1035808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022] Open
Abstract
Background With the widespread use of next-generation sequencing (NGS) in clinical practice, an increasing number of biomarkers that predict a response to anti-tumor therapy in non-small cell lung cancer (NSCLC) has been identified. However, validated biomarkers that can be used to detect a response to platinum-based chemotherapy remain unavailable. Several studies have suggested that homologous recombination deficiency (HRD) may occur in response to platinum-based chemotherapy in ovarian cancer and breast cancer. However, currently there is a lack of proven and reliable HRD markers that can be used to screen for patients who may benefit from platinum-based chemotherapy, especially in NSCLC. Methods NGS was used to screen for gene mutations, including homologous recombination (HR) genes and common driver gene mutations in NSCLC. Cox regression analysis was performed to identify potential clinicopathological or gene mutation factors associated with survival in patients receiving platinum-based chemotherapy, while Kaplan-Meier analysis with the log-rank test was performed to assess the effect of HR gene mutations on progression-free survival (PFS). Results In a retrospective cohort of 129 patients with advanced NSCLC, 54 who received platinum-based chemotherapy with or without anti-angiogenic therapy were included in the analysis. Univariate and multivariate Cox proportional hazard regression analyses showed that HR gene mutations were associated with platinum-based chemotherapy sensitivity. Efficacy results indicated that the objective response rates (ORR) for patients with BRCA1/2 mutations and BRCA1/2 wild type were 75% and 30.4% (p=0.041), while the median PFS was 7.5 and 5.5 months (hazard ratio [HR], 0.52; 95% CI, 0.27-1.00; p=0.084), respectively. The ORRs of patients with HR gene mutations and HR gene wild type were 60% and 23.6% (p=0.01), and the median PFS was 7.5 and 5.2 months (HR, 0.56; 95% CI, 0.32-0.97; p=0.033), respectively. Conclusions HR gene mutations show potential as promising biomarkers that may predict sensitivity to platinum-based chemotherapy in advanced and metastatic NSCLC.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shasha Guan
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanlu Meng
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Teng
- Hangzhou Jichenjunchuang Medical Laboratory Co. Ltd., Hangzhou, China
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China,*Correspondence: Diansheng Zhong,
| |
Collapse
|
22
|
Garufi G, Carbognin L, Schettini F, Seguí E, Di Leone A, Franco A, Paris I, Scambia G, Tortora G, Fabi A. Updated Neoadjuvant Treatment Landscape for Early Triple Negative Breast Cancer: Immunotherapy, Potential Predictive Biomarkers, and Novel Agents. Cancers (Basel) 2022; 14:cancers14174064. [PMID: 36077601 PMCID: PMC9454536 DOI: 10.3390/cancers14174064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary In recent years, several agents have been tested in randomized clinical trials in addition to anthracycline and taxane-based neoadjuvant chemotherapy (NACT) in early-stage triple-negative breast cancer (TNBC) to improve pathological complete response rate and, ultimately, survival outcome. Platinum agents, immune checkpoint inhibitors (ICIs), and PARP-inhibitors are the most extensively studied, while established predictors of their efficacy are lacking. Based on the biological features of TNBC, the purpose of this review is to provide an overview of the role of platinum agents, immunotherapy, and novel target therapies in the neoadjuvant setting. Moreover, based on safety issues and financial costs, we provide an overview of potential biomarkers associated with increased likelihood of benefit from the addition of platinum, ICIs, and novel target therapies to NACT. Abstract Triple-negative breast cancer (TNBC) is characterized by the absence of hormone receptor and HER2 expression, and therefore a lack of therapeutic targets. Anthracyclines and taxane-based neoadjuvant chemotherapy have historically been the cornerstone of treatment of early TNBC. However, genomic and transcriptomic analyses have suggested that TNBCs include various subtypes, characterized by peculiar genomic drivers and potential therapeutic targets. Therefore, several efforts have been made to expand the therapeutic landscape of early TNBC, leading to the introduction of platinum and immunomodulatory agents into the neoadjuvant setting. This review provides a comprehensive overview of the currently available evidence regarding platinum agents and immune-checkpoint-inhibitors for the neoadjuvant treatment of TNBC, as well as the novel target therapies that are currently being evaluated in this setting. Taking into account the economic issues and the side effects of the expanding therapeutic options, we focus on the potential efficacy biomarkers of the emerging therapies, in order to select the best therapeutic strategy for each specific patient.
Collapse
Affiliation(s)
- Giovanna Garufi
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
- Oncologia Medica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
- Correspondence: (G.G.); (A.F.)
| | - Luisa Carbognin
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Francesco Schettini
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain
- Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Elia Seguí
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain
| | - Alba Di Leone
- Breast Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Antonio Franco
- Breast Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Ida Paris
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Giovanni Scambia
- Oncologia Medica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
- Department of Woman and Child Health and Public Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
| | - Giampaolo Tortora
- Oncologia Medica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy
- Oncologia Medica, Università Cattolica Del Sacro Cuore, 00168 Roma, Italy
| | - Alessandra Fabi
- Unit of Precision Medicine in Senology, Department of Woman and Child Health and Public Health, Scientific Directorate, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Roma, Italy
- Correspondence: (G.G.); (A.F.)
| |
Collapse
|
23
|
Liu JY, Zou T, Yin JY, Wang Z, Liu C, Huang HX, Ding FX, Lei MR, Wang Y, Liu M, Liu ZQ, Tan LM, Chen J. Genetic Variants in Double-Strand Break Repair Pathway Genes to Predict Platinum-Based Chemotherapy Prognosis in Patients With Lung Cancer. Front Pharmacol 2022; 13:915822. [PMID: 35899106 PMCID: PMC9309806 DOI: 10.3389/fphar.2022.915822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
Objective: The purpose of this study was to investigate the associations of genetic variants in double-strand break (DSB) repair pathway genes with prognosis in patients with lung cancer treated with platinum-based chemotherapy. Methods: Three hundred ninety-nine patients with lung cancer who received platinum-based chemotherapy for at least two cycles were included in this study. A total of 35 single nucleotide polymorphisms (SNPs) in DSB repair, base excision repair (BER), and nucleotide excision repair (NER) repair pathway genes were genotyped, and were used to evaluate the overall survival (OS) and the progression-free survival (PFS) of patients who received platinum-based chemotherapy using Cox proportional hazard models. Results: The PFS of patients who carried the MAD2L2 rs746218 GG genotype was shorter than that in patients with the AG or AA genotypes (recessive model: p = 0.039, OR = 5.31, 95% CI = 1.09–25.93). Patients with the TT or GT genotypes of TNFRSF1A rs4149570 had shorter OS times than those with the GG genotype (dominant model: p = 0.030, OR = 0.57, 95% CI = 0.34–0.95). We also investigated the influence of age, gender, histology, smoking, stage, and metastasis in association between SNPs and OS or PFS in patients with lung cancer. DNA repair gene SNPs were significantly associated with PFS and OS in the subgroup analyses. Conclusion: Our study showed that variants in MAD2L2 rs746218 and TNFRSF1A rs4149570 were associated with shorter PFS or OS in patients with lung cancer who received platinum-based chemotherapy. These variants may be novel biomarkers for the prediction of prognosis of patients with lung cancer who receive platinum-based chemotherapy.
Collapse
Affiliation(s)
- Jun-Yan Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Zou
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Ye Yin
- Departments of Clinical Pharmacology, Xinagya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology and Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Zhan Wang
- Lung Cancer and Gastrointestinal Unit, Department of Medical Oncology, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Chong Liu
- Institute of Clinical Pharmacology and Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Han-Xue Huang
- Institute of Clinical Pharmacology and Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Fei-Xiang Ding
- Institute of Clinical Pharmacology and Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Meng-Rong Lei
- Institute of Clinical Pharmacology and Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Ying Wang
- Hunan Clinical Research Center in Gynecologic Cancer, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhao-Qian Liu
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, China
- Departments of Clinical Pharmacology, Xinagya Hospital, Central South University, Changsha, China
| | - Li-Ming Tan
- Department of Pharmacy, The Second People's Hospital of Huaihua City, Huaihua, China
| | - Juan Chen
- Department of Pharmacy, Xinagya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Xiao Y, Gao W. Therapeutic pattern and progress of neoadjuvant treatment for triple-negative breast cancer. Oncol Lett 2022; 24:219. [PMID: 35720488 PMCID: PMC9178680 DOI: 10.3892/ol.2022.13340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/03/2022] [Indexed: 11/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease, accounting for about 15.0-20.0% of all breast cancer cases. TNBC is associated with early recurrence and metastasis, strong invasiveness and a poor prognosis. Chemotherapy is currently the mainstay of treatment for TNBC, and achievement of a pathological complete response is closely associated with a long-term good prognosis. Improving the long-term prognosis in patients with TNBC is a challenge in breast cancer treatment, and more clinical evidence is needed to guide the choice of treatment strategies. The current study reviews the conventional treatment modality for TNBC and the selection of neoadjuvant chemotherapy (NACT) regimens available. The research progress on optimizing NACT regimens is also reviewed, and the uniqueness of the treatment of this breast cancer subtype is emphasized, in order to provide reference for the clinical practice and research with regard to TNBC treatment.
Collapse
Affiliation(s)
- Yan Xiao
- Department of Oncology, Dongguan Tungwah Hospital, Dongguan, Guangdong 523000, P.R. China
| | - Wencheng Gao
- Department of General Surgery, Dongguan Houjie Town People's Hospital, Dongguan, Guangdong 523962, P.R. China
| |
Collapse
|
25
|
Howard FM, Villamar D, He G, Pearson AT, Nanda R. The emerging role of immune checkpoint inhibitors for the treatment of breast cancer. Expert Opin Investig Drugs 2022; 31:531-548. [PMID: 34569400 PMCID: PMC8995399 DOI: 10.1080/13543784.2022.1986002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Breast cancer has traditionally been viewed as immunogenically 'cold,' but two immune checkpoint inhibitors have been approved in combination with chemotherapy for PD-L1 positive advanced triple-negative breast cancer (TNBC), and pembrolizumab was also recently approved for early stage TNBC. As the landscape is rapidly evolving, a comprehensive review of checkpoint inhibitors in breast cancer is needed to aid clinicians in selecting appropriate candidates for therapy, and to highlight ongoing promising studies in this area and topics in need of further investigation. AREA COVERED This review summarizes the latest evidence from completed and ongoing trials of immune checkpoint inhibitors. Ongoing studies were identified using a search of ClinicalTrials.gov with the term 'breast cancer' along with specific checkpoint inhibitor agents. EXPERT OPINION A number of novel combination strategies are under investigation to enhance response and overcome resistance to immunotherapy, with promising preliminary data from checkpoint inhibitors targeting TIGIT, combinations with small molecule inhibitors such as lenvatinib, and injectable agents directly influencing the immune microenvironment. As immunotherapy enters into the curative setting, biomarkers predictive of immunotherapy benefit are needed, as PD-L1 status has not been a helpful discriminator in completed trials in early-stage breast cancer.
Collapse
Affiliation(s)
| | - Dario Villamar
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Gong He
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Rita Nanda
- Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Neoadjuvant Chemotherapy Combined with Breast-Conserving Surgery in the Treatment of Triple-Negative Breast Cancer. JOURNAL OF ONCOLOGY 2022; 2022:7847889. [PMID: 35664559 PMCID: PMC9162830 DOI: 10.1155/2022/7847889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022]
Abstract
Objective To study the clinical efficacy and quality of life of neoadjuvant chemotherapy combined with breast-conserving surgery in the treatment of triple-negative breast cancer. Methods A retrospective analysis of 100 patients with triple-negative breast cancer was performed from May 2012 to April 2017. The patients were divided into an observation group and a control group according to different treatment methods, with 50 cases in each group. The control group received AC-T sequential chemotherapy after breast-conserving surgery, and the observation group received AC-T sequential chemotherapy before breast-conserving surgery (neoadjuvant). The operation time, postoperative immune function, postoperative tumor markers, postoperative efficacy, and postoperative complications of the two groups of patients were statistically analyzed, and the quality of life of the two groups of patients 1 year after the operation was compared. Results Compared with the control group, the operation time and blood loss of the observation group were significantly reduced, and the difference was statistically significant (P < 0.05). The observation group produced significantly higher total effective rate after treatment (82.00% vs. 56.00%) (P < 0.05). The observation group exhibited superior immune function indexes CD3, CD4, and CD8 after operation when compared with the control group (P < 0.05). There was no significant difference in serum tumor marker levels between the two groups before surgery and after surgery (both P > 0.05). Three days after operation, the levels of procalcitonin (PCT) and TNF-α in the observation group were lower than those in the control group (P < 0.05). There was no significant difference in the local recurrence rate, distant metastasis rate, and 3-year survival rate between the two groups (P > 0.05); however, the postoperative complication rate of the observation group was 6.00%, which was significantly lower than that of the control group (30%) (P < 0.05). The overall health, physiological function, physiological function, and body pain of the observation group were significantly higher than those of the control group (P < 0.05). Conclusion Neoadjuvant chemotherapy combined with breast-conserving surgery for triple-negative breast cancer can not only improve the therapeutic effect of patients and reduce the incidence of postoperative adverse reactions but also significantly improve the quality of life of patients after surgery.
Collapse
|
27
|
Bagegni NA, Davis AA, Clifton KK, Ademuyiwa FO. Targeted Treatment for High-Risk Early-Stage Triple-Negative Breast Cancer: Spotlight on Pembrolizumab. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:113-123. [PMID: 35515356 PMCID: PMC9064451 DOI: 10.2147/bctt.s293597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/15/2022] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancer (TNBC) is a biologically aggressive yet heterogeneous disease that disproportionately affects younger women and women of color compared to other breast cancer subtypes. The paucity of effective targeted therapies and the prevalence of chemotherapeutic resistance in high-risk, early-stage TNBC pose significant clinical challenges. Deeper insights into the genomic and immune landscape have revealed key features of TNBC, including intrinsic genomic instability, DNA repair deficiency, and potentially an immunogenic tumor microenvironment. These advances led to landmark trials with immune checkpoint inhibitors in the advanced-stage setting, which subsequently translated into immunotherapy-based clinical trials in the early-stage setting and recent promising results. Pembrolizumab, an anti-programmed death 1 (PD-1) monoclonal antibody, was investigated in combination with platinum-, taxane- and anthracycline-based neoadjuvant chemotherapy followed by adjuvant pembrolizumab monotherapy for patients with high-risk, early-stage TNBC in the randomized, double-blind, placebo-controlled phase 3 KEYNOTE-522 trial. In July 2021, the US Food and Drug Administration (FDA) granted approval for pembrolizumab based on marked improvement in pathologic complete response rate and 3-year event-free survival compared to neoadjuvant chemotherapy alone. This advance immediately altered the longstanding treatment paradigm. Here, we review the impact of pembrolizumab plus chemotherapy for the treatment of patients with high-risk, early-stage TNBC, and discuss immunotherapy-related toxicity considerations, key immunomodulatory biomarkers under active investigation, and remaining clinical questions for future research directions.
Collapse
Affiliation(s)
- Nusayba A Bagegni
- Division of Oncology, Department of Medicine, Washington University in St Louis School of Medicine, St Louis, MO, 63110, USA
| | - Andrew A Davis
- Division of Oncology, Department of Medicine, Washington University in St Louis School of Medicine, St Louis, MO, 63110, USA
| | - Katherine K Clifton
- Division of Oncology, Department of Medicine, Washington University in St Louis School of Medicine, St Louis, MO, 63110, USA
| | - Foluso O Ademuyiwa
- Division of Oncology, Department of Medicine, Washington University in St Louis School of Medicine, St Louis, MO, 63110, USA
| |
Collapse
|
28
|
Yang F, Deng K, Zheng H, Liu Z, Zheng Y. Progress of targeted and immunotherapy for hepatocellular carcinoma and the application of next-generation sequencing. Ann Hepatol 2022; 27:100677. [PMID: 35093601 DOI: 10.1016/j.aohep.2022.100677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023]
Abstract
Hepatocellular carcinoma (HCC), leading cancer worldwide, has a high degree of genetic heterogeneity; next-generation sequencing (NGS) technology has contributed significantly to the discovery of driving genes as well as high-frequency mutations in HCC. The detection of gene alterations may allow us to predict prognosis and adverse drug reactions for individuals, paving the way for personalized medicine in HCC patients. In this review, we summarized the common systemic therapy regimens for HCC and the predictive efficacy of genetic biomarkers on the prognosis of patients under these treatments. Finally, we put forward a future perspective on the potential of NGS technology for the guidance of targeted therapy and immunotherapy in HCC.
Collapse
Affiliation(s)
- Fan Yang
- Department of liver surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China
| | - Kaige Deng
- Department of liver surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China
| | - Haoran Zheng
- Department of liver surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China
| | - Zhenting Liu
- Department of liver surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China
| | - Yongchang Zheng
- Department of liver surgery, Peking Union Medical College Hospital, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730, China.
| |
Collapse
|
29
|
Valencia GA, Rioja P, Morante Z, Ruiz R, Fuentes H, Castaneda CA, Vidaurre T, Neciosup S, Gomez HL. Immunotherapy in triple-negative breast cancer: A literature review and new advances. World J Clin Oncol 2022; 13:219-236. [PMID: 35433291 PMCID: PMC8966508 DOI: 10.5306/wjco.v13.i3.219] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/23/2021] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly complex, heterogeneous disease and historically has limited treatment options. It has a high probability of disease recurrence and rapid disease progression despite adequate systemic treatment. Immunotherapy has emerged as an important alternative in the management of this malignancy, showing an impact on progression-free survival and overall survival in selected populations. In this review we focused on immunotherapy and its current relevance in the management of TNBC, including various scenarios (metastatic and early -neoadjuvant, adjuvant-), new advances in this subtype and the research of potential predictive biomarkers of response to treatment.
Collapse
Affiliation(s)
| | - Patricia Rioja
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Zaida Morante
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Rossana Ruiz
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Hugo Fuentes
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Carlos A Castaneda
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Tatiana Vidaurre
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Silvia Neciosup
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| | - Henry L Gomez
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas, Lima 15036, Peru
| |
Collapse
|
30
|
Hampton JD, Peterson EJ, Katner SJ, Turner TH, Alzubi MA, Harrell JC, Dozmorov MG, Turner JBM, Gigliotti PJ, Kraskauskiene V, Shende M, Idowu MO, Puchallapalli M, Hu B, Litovchick L, Katsuta E, Takabe K, Farrell NP, Koblinski JE. Exploitation of sulfated glycosaminoglycan status for precision medicine of Triplatin in triple-negative breast cancer. Mol Cancer Ther 2021; 21:271-281. [PMID: 34815360 DOI: 10.1158/1535-7163.mct-20-0969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 10/06/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer lacking targetable biomarkers. TNBC is known to be most aggressive, and when metastatic is often drug resistant and uncurable. Biomarkers predicting response to therapy improve treatment decisions and allow personalized approaches for TNBC patients. This study explores sulfated glycosaminoglycan (sGAG) levels as a predictor of TNBC response to platinum therapy. sGAG levels were quantified in three distinct TNBC tumor models including cell line-derived, patient-derived xenograft (PDX) tumors, and isogenic models deficient in sGAG biosynthesis. The in vivo antitumor efficacy of Triplatin, a sGAG-directed platinum agent, was compared in these models to the clinical platinum agent, carboplatin. We determined that >40% of TNBC PDX tissue microarray samples have high levels of sGAGs. The in vivo accumulation of Triplatin in tumors as well as antitumor efficacy of Triplatin positively correlated with sGAG levels on tumor cells, whereas carboplatin followed the opposite trend. In carboplatin-resistant tumor models expressing high levels of sGAGs, Triplatin decreased primary tumor growth, reduced lung metastases, and inhibited metastatic growth in lungs, liver, and ovaries. sGAG levels served as a predictor of Triplatin sensitivity in TNBC. Triplatin may be particularly beneficial in treating patients with chemotherapy-resistant tumors who have evidence of residual disease after standard neoadjuvant chemotherapy. More effective neoadjuvant and adjuvant treatment will likely improve clinical outcome of TNBC.
Collapse
Affiliation(s)
| | | | - Samantha J Katner
- Biochemistry, Chemistry, and Geology, Minnesota State University, Mankato
| | | | | | | | | | | | | | | | | | - Michael O Idowu
- Pathology, Virginia Commonwealth University Massey Cancer Center
| | | | - Bin Hu
- Department of Pathology, Virginia Commonwealth University
| | | | | | - Kazuaki Takabe
- Surgical Oncology, Roswell Park Comprehensive Cancer Center
| | | | | |
Collapse
|
31
|
Rykov SV, Filippova EA, Loginov VI, Braga EA. Gene Methylation in Circulating Cell-Free DNA from the Blood Plasma as Prognostic and Predictive Factor in Breast Cancer. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421110120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Wei Z, Sijia F, Rui T, Yang L, Jianjun H, Bin W, Jing X. Analysis of differentially expressed proteins between HER2 positive and triple negative breast cancer and their prognostic significance. Ann Diagn Pathol 2021; 55:151834. [PMID: 34610510 DOI: 10.1016/j.anndiagpath.2021.151834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/19/2021] [Indexed: 01/08/2023]
Abstract
Both triple negative breast cancer (TNBA) and HER2-positive breast cancer lack expression of estrogen receptor alpha (ER) and progesterone receptor (PR), while human epidermal growth factor receptor 2 (HER2) in TNBC is also negative. This study aimed to identify the differentially expressed proteins (DEPs) between TNBC and HER2-positive breast cancer and to improve understanding of their role in the prognosis of breast cancer. By analyzing the breast cancer data set in The Cancer Proteome Atlas (TCPA) database, 15 DEPs between TNBC and HER2-positive breast cancer were identified. GO and pathway enrichment analysis were performed on DEPs, and the protein-protein interaction (PPI) network was constructed. The overall survival (OS) analysis of the breast cancer protein dataset in the Kaplan-Meier plotter showed that low expression of ACC1 suggested a higher OS of HER2-positive breast cancer (HR = 5.34, P < 0.05) and TNBC (HR = 2.88, P < 0.05). And TNBC patients with high TBA1B (HR = 0.16, P < 0.01) or low INPP4B (HR = 3.47, P < 0.05) expression have a better prognosis. Our research provides new insights into the prognostic indicators of TNBC and HER2-positive breast cancer, which could be further studied.
Collapse
Affiliation(s)
- Zhang Wei
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Fei Sijia
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tong Rui
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Liu Yang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - He Jianjun
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wan Bin
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xu Jing
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
33
|
Laraqui A, Cavaillé M, Uhrhammer N, ElBiad O, Bidet Y, El Rhaffouli H, El Anaz H, Rahali DM, Kouach J, Guelzim K, Badaoui B, AlBouzidi A, Oukabli M, Tanz R, Sbitti Y, Ichou M, Ennibi K, Sekhsokh Y, Bignon YJ. Identification of a novel pathogenic variant in PALB2 and BARD1 genes by a multigene sequencing panel in triple negative breast cancer in Morocco. J Genomics 2021; 9:43-54. [PMID: 34646395 PMCID: PMC8490085 DOI: 10.7150/jgen.61713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/21/2021] [Indexed: 12/24/2022] Open
Abstract
Pathogenic variants (PVs) in BRCA genes have been mainly associated with an increasing risk of triple negative breast cancer (TNBC). The contribution of PVs in non-BRCA genes to TNBC seems likely since the processing of homologous recombination repair of double-strand DNA breaks involves several genes. Here, we investigate the susceptibility of genetic variation of the BRCA and non-BRCA genes in 30 early-onset Moroccan women with TNBC. Methods: Targeted capture-based next generation sequencing (NGS) method was performed with a multigene panel testing (MGPT) for variant screening. Panel sequencing was performed with genes involved in hereditary predisposition to cancer and candidate genes whose involvement remains unclear using Illumina MiSeq platform. Interpretation was conducted by following the American College of Medical Genetics and Genomics-Association for Molecular Pathology (ACMG-AMP) criteria. Results: PVs were identified in 20% (6/30) of patients with TNBC. Of these, 16.7% (5/30) carried a BRCA PV [10% (3/30) in BRCA1, 6.7% (2/30) in BRCA2] and 6.6% (2/30) carried a non-BRCA PV. The identified PVs in BRCA genes (BRCA1 c.798_799delTT, BRCA1 c.3279delC, BRCA2 c.1310_1313del, and BRCA2 c.1658T>G) have been reported before and were classified as pathogenic. The identified founder PVs BRCA1 c.798_799del and BRCA2 c.1310_1313delAAGA represented 10% (3/30). Our MGPT allowed identification of several sequence variations in most investigated genes, among which we found novel truncating variations in PALB2 and BARD1 genes. The PALB2 c.3290dup and BARD1 c.1333G>T variants are classified as pathogenic. We also identified 42 variants of unknown/uncertain significance (VUS) in 70% (21/30) of patients with TNBC, including 50% (21/42) missense variants. The highest VUS rate was observed in ATM (13%, 4/30). Additionally, 35.7% (15/42) variants initially well-known as benign, likely benign or conflicting interpretations of pathogenicity have been reclassified as VUS according to ACMG-AMP. Conclusions: PALB2 and BARD1 along with BRCA genetic screening could be helpful for a larger proportion of early-onset TNBC in Morocco.
Collapse
Affiliation(s)
- Abdelilah Laraqui
- Unité de séquençage, Centre de virologie, des maladies infectieuses et tropicales, Hôpital militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc
- Laboratoire de Recherche et de Biosécurité P3, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Rabat, Maroc
| | - Mathias Cavaillé
- Laboratoire Diagnostic Génétique et Moléculaire, Centre Jean Perrin, 58 rue Montalembert, Clermont-Ferrand, France
- INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Nancy Uhrhammer
- Laboratoire Diagnostic Génétique et Moléculaire, Centre Jean Perrin, 58 rue Montalembert, Clermont-Ferrand, France
- INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Oubaida ElBiad
- Unité de séquençage, Centre de virologie, des maladies infectieuses et tropicales, Hôpital militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc
- Laboratoire de Biodiversité, Ecologie et Génome, Faculté des Sciences, Université Mohammed V, Rabat, Maroc
| | - Yannick Bidet
- Laboratoire Diagnostic Génétique et Moléculaire, Centre Jean Perrin, 58 rue Montalembert, Clermont-Ferrand, France
- INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Hicham El Rhaffouli
- Laboratoire de Recherche et de Biosécurité P3, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Rabat, Maroc
| | - Hicham El Anaz
- Unité de séquençage, Centre de virologie, des maladies infectieuses et tropicales, Hôpital militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc
| | - Driss Moussaoui Rahali
- Service de Gynécologie Obstétrique, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Rabat, Maroc
| | - Jaouad Kouach
- Service de Gynécologie Obstétrique, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Rabat, Maroc
| | - Khaled Guelzim
- Service de Gynécologie Obstétrique, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Rabat, Maroc
| | - Bouabid Badaoui
- Laboratoire de Biodiversité, Ecologie et Génome, Faculté des Sciences, Université Mohammed V, Rabat, Maroc
| | - Abderrahman AlBouzidi
- Laboratoire d'Anatomopathologie, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Rabat 10000, Maroc
| | - Mohammed Oukabli
- Laboratoire d'Anatomopathologie, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Rabat 10000, Maroc
| | - Rachid Tanz
- Service d'Oncologie Médicale, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Rabat, Maroc
| | - Yasser Sbitti
- Service d'Oncologie Médicale, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Rabat, Maroc
| | - Mohammed Ichou
- Service d'Oncologie Médicale, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Rabat, Maroc
| | - Khaled Ennibi
- Unité de séquençage, Centre de virologie, des maladies infectieuses et tropicales, Hôpital militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Université Mohammed V, Rabat, Maroc
| | - Yassine Sekhsokh
- Laboratoire de Recherche et de Biosécurité P3, Hôpital Militaire d'Instruction Mohammed V, Faculté de Médecine et de Pharmacie, Rabat, Maroc
| | - Yves-Jean Bignon
- Laboratoire Diagnostic Génétique et Moléculaire, Centre Jean Perrin, 58 rue Montalembert, Clermont-Ferrand, France
- INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
34
|
Resveratrol attenuates TNBC lung metastasis by down-regulating PD-1 expression on pulmonary T cells and converting macrophages to M1 phenotype in a murine tumor model. Cell Immunol 2021; 368:104423. [PMID: 34399171 DOI: 10.1016/j.cellimm.2021.104423] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 01/12/2023]
Abstract
Triple-negative breast cancer (TNBC) is an invasive breast cancer with the characteristics of easy to develop distant metastasis. Immune escape is one of the main reasons for TNBC growth and metastasis. Enhancement of T cell-mediated anti-tumor activity may benefit to inhibit tumor metastasis and improve the efficacy of cancer therapy. As a natural bioactive substance, resveratrol shows potential capability to prevent or suppress the development of a variety of cancers through direct or indirect effects, including immunoregulatory effect. However, whether resveratrol might affect lung metastasis of TNBC, and whether the effect of resveratrol might be associated with resveratrol-regulated immune responses in tumor microenvironment is still unknown. In this study, by using an experimental metastatic mouse 4 T1 tumor model, we identified that resveratrol may suppress TNBC lung metastasis by elevating local anti-tumor immunity. Indeed, an increase in the cytotoxic activity of CD8+T cells as well as the levels of type 1 cytokine IFN-γ and IL-2 in the lungs of resveratrol-treated tumor bearing mice were observed. The enhanced CD8+T cell activity and Th1 immune responses by resveratrol administration might be related to the down-regulated PD-1 expression on pulmonary CD8+T cells and CD4+T cells. Resveratrol may also convert macrophages to M1 phenotype in the lungs of tumor bearing mice. However, it seems likely resveratrol has no effect on pulmonary myeloid-derived suppressor cell activation. Our results provide an evidence that resveratrol might be a promising candidate agent for adjuvant therapy in the process of TNBC metastasis.
Collapse
|
35
|
Siri SO, Martino J, Gottifredi V. Structural Chromosome Instability: Types, Origins, Consequences, and Therapeutic Opportunities. Cancers (Basel) 2021; 13:3056. [PMID: 34205328 PMCID: PMC8234978 DOI: 10.3390/cancers13123056] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/04/2023] Open
Abstract
Chromosomal instability (CIN) refers to an increased rate of acquisition of numerical and structural changes in chromosomes and is considered an enabling characteristic of tumors. Given its role as a facilitator of genomic changes, CIN is increasingly being considered as a possible therapeutic target, raising the question of which variables may convert CIN into an ally instead of an enemy during cancer treatment. This review discusses the origins of structural chromosome abnormalities and the cellular mechanisms that prevent and resolve them, as well as how different CIN phenotypes relate to each other. We discuss the possible fates of cells containing structural CIN, focusing on how a few cell duplication cycles suffice to induce profound CIN-mediated genome alterations. Because such alterations can promote tumor adaptation to treatment, we discuss currently proposed strategies to either avoid CIN or enhance CIN to a level that is no longer compatible with cell survival.
Collapse
Affiliation(s)
- Sebastián Omar Siri
- Cell Cycle and Genome Stability Laboratory, Fundación Instituto Leloir, C1405 BWE Buenos Aires, Argentina;
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405 BWE Buenos Aires, Argentina
| | - Julieta Martino
- Cell Cycle and Genome Stability Laboratory, Fundación Instituto Leloir, C1405 BWE Buenos Aires, Argentina;
| | - Vanesa Gottifredi
- Cell Cycle and Genome Stability Laboratory, Fundación Instituto Leloir, C1405 BWE Buenos Aires, Argentina;
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1405 BWE Buenos Aires, Argentina
| |
Collapse
|
36
|
Abdel-Razeq H, Tamimi F, Abujamous L, Edaily S, Abunasser M, Bater R, Salama O. Patterns and Prevalence of BRCA1 and BRCA2 Germline Mutations Among Patients with Triple-Negative Breast Cancer: Regional Perspectives. Cancer Manag Res 2021; 13:4597-4604. [PMID: 34135636 PMCID: PMC8200144 DOI: 10.2147/cmar.s316470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Background Among all subtypes, patients with triple-negative (TN) breast cancer is known for their poor outcome and their higher risk of harboring BRCA1 or BRCA2 pathogenic mutations. Identification of such mutations has clinical impact on breast and ovarian cancer prevention and treatment decisions. We here report on patterns and prevalence of BRCA1 and BRCA2 mutations among Arab patients diagnosed with TN subtype. Patients and Methods Patients with TN-breast cancer (n=197) were enrolled regardless of their age or family history. Following a detailed genetic counseling, BRCA1/2 testing was performed at reference labs. BRCA1 and BRCA2 variants were classified as negative, pathogenic/likely pathogenic (positive) and variants of uncertain significance (VUS). Results Median age of enrolled patients was 42 (range, 19–74) years and 27 (13.7%) were non-Jordanian Arabs. Among the study group, 50 (25.4%) were tested positive for BRCA1 (n=36, 18.3%) or BRCA2 (n=14, 7.1%), while 14 (7.1%) others had VUS. Compared to older ones, mutation rates were higher among patients <40 years (32.9%, P= 0.034), those with close relatives with breast, ovarian, pancreatic or prostate cancer (37.8%, P=0.002) and those with two or more breast cancers (41.4%, P=0.032). Among eligible patients, 23 (63.9%) patients underwent prophylactic mastectomy, while 19 (52.8%) patients had risk-reducing salpingo-oophorectomy. None of the patients with VUS underwent any prophylactic surgery. Conclusion Arab patients with TN-breast cancer have relatively high BRCA1 or BRCA2 mutation rates. Young age at diagnosis and personal and family history of breast cancer further increase this risk.
Collapse
Affiliation(s)
- Hikmat Abdel-Razeq
- Department of Internal Medicine, King Hussein Cancer Center, Amman, Jordan.,Department of Internal Medicine, School of Medicine, University of Jordan, Amman, Jordan
| | - Faris Tamimi
- Department of Internal Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Lama Abujamous
- Department of Cell Therapy & Applied Genomic, King Hussein Cancer Center, Amman, Jordan
| | - Sara Edaily
- Department of Internal Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Mahmoud Abunasser
- Department of Internal Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Rayan Bater
- Department of Internal Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Osama Salama
- Department of Internal Medicine, King Hussein Cancer Center, Amman, Jordan
| |
Collapse
|
37
|
Oh SY, Rahman S, Sparano JA. Perspectives on PARP inhibitors as pharmacotherapeutic strategies for breast cancer. Expert Opin Pharmacother 2021; 22:981-1003. [PMID: 33646064 PMCID: PMC9047307 DOI: 10.1080/14656566.2021.1876662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
Introduction Approximately 10% of all breast cancer cases occur in individuals who have germline pathogenic variants of the BRCA 1, BRCA 2, and other genes associated with impaired DNA damage repair that is associated with an increased risk of breast, ovarian, and other cancers. Inhibitors of poly-ADP ribose polymerase (PARP) induce synthetic lethality in cancer cells harboring such pathogenic variants.Area covered In this review, the authors review the mechanisms of action, antitumor activity, and adverse events associated with PARP inhibitors for the treatment of advanced breast cancer. The authors then summarize the area and provide their expert perspectives on the area.Expert opinion Two PARP inhibitors are approved in metastatic breast cancer, including olaparib and talozaparib. Both agents were approved based on phase III trials demonstrating that they were associated with improved progression-free survival compared with treatment of physician's choice in patients receiving second-third line therapy for locally advanced, inoperable, or metastatic breast cancer in patients with germline pathogenic BRCA 1 or BRCA2 variants.
Collapse
Affiliation(s)
- Sun Young Oh
- Department of Hematology and Oncology, Montefiore-Einstein center for cancer care, Albert Einstein College of Medicine, Bronx, NY
| | - Shafia Rahman
- Department of Hematology and Oncology, Montefiore-Einstein center for cancer care, Albert Einstein College of Medicine, Bronx, NY
| | - Joseph A Sparano
- Department of Hematology and Oncology, Montefiore-Einstein center for cancer care, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
38
|
Hyder T, Bhattacharya S, Gade K, Nasrazadani A, Brufsky AM. Approaching Neoadjuvant Therapy in the Management of Early-Stage Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2021; 13:199-211. [PMID: 33833568 PMCID: PMC8019614 DOI: 10.2147/bctt.s273058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
Neoadjuvant therapy is integral to the treatment of early-stage breast cancer. Goals of treatment include surgical downstaging of the tumor, rendering inoperable tumors resectable, and de-escalating axillary surgery in those with clinically positive nodes. Additionally, response to treatment provides important prognostic information regarding risk of recurrence and guides future adjuvant treatment. Although chemotherapy serves as the backbone of neoadjuvant treatment, an increased understanding of the tumor's clinical course as well as its molecular and genetic make-up aids in individualizing treatment and developing novel agents. This review summarizes current clinical approaches and the future direction to the management of breast cancer patients in the neoadjuvant setting.
Collapse
Affiliation(s)
- Tara Hyder
- University of Pittsburgh Physicians, Pittsburgh, PA, USA
| | - Saveri Bhattacharya
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kristine Gade
- UPMC Hillman Cancer Center, Magee Women’s Hospital, Pittsburgh, PA, USA
| | | | - Adam M Brufsky
- UPMC Hillman Cancer Center, Magee Women’s Hospital, Pittsburgh, PA, USA
| |
Collapse
|
39
|
Liu J, Wang S, Wang C, Kong X, Sun P. Prognostic value of using glucosylceramide synthase and cytochrome P450 family 1 subfamily A1 expression levels for patients with triple-negative breast cancer following neoadjuvant chemotherapy. Exp Ther Med 2021; 21:247. [PMID: 33603855 DOI: 10.3892/etm.2021.9678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Neoadjuvant chemotherapy (NACT) has been considered to be the preferred treatment option for early operable triple-negative breast cancer (TNBC). However, resistance to drugs remains to be the barrier to the efficacy of NACT. Glucosylceramide synthase (GCS) and cytochrome P450 family 1 subfamily A1 (CYP1A1) have been previously associated with drug resistance in breast cancer. The present study aimed to explore whether the expression levels of GCS and/or CYP1A1 are associated with the prognosis of TNBC after NACT. Immunohistochemistry was used to detect and measure GCS and CYP1A1 expression. Associations between GCS or CYP1A1 expression and the clinicopathological characteristics, pathological complete response (pCR), clinical complete response (cCR) and disease-free survival (DFS) were analyzed. GCS expression was found to be associated with tumor size (P=0.021) and TNM staging (P=0.042), whilst CYP1A1 expression was associated with lymph node metastasis (P = 0.026) and TNM staging (P=0.034). The expression levels of GCS (P=0.024) and CYP1A1 (P=0.027) were upregulated after NACT. GCS and CYP1A1 expression were positively correlated (P=0.003; r=0.327). No difference was observed between the GCS+ (P=0.188) or CYP1A1+ group (P=0.073) and the GCS- or CYP1A1- group in terms of pCR. However, compared with that in the GCS+CYP1A1+ group, the pCR was markedly increased in the GCS-CYP1A1- group (P=0.031). The cCR was lower in the GCS+ (P=0.021) and CYP1A1+ groups (P=0.016) compared with in the GCS- or CYP1A1- group. The DFS rate (57.9 vs. 65.4%; P=0.049) was lower in the GCS+CYP1A1+ group compared with that in the GCS-CYP1A1- group. However, there was no statistical significance after P-value was adjusted for multiple comparisons using Bonferroni correction. In conclusion, co-expression of GCS and CYP1A1 was associated with pCR and DFS in TNBC, which may serve a role in the prediction of the prognosis of patients with TNBC following treatment with NACT.
Collapse
Affiliation(s)
- Jiannan Liu
- Department of Oncology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Shuhua Wang
- Department of Medical Record Information, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Congcong Wang
- Department of Oncology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Xiangshuo Kong
- Department of Oncology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Ping Sun
- Department of Oncology, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
40
|
Abstract
Adenosine diphosphate (ADP)-ribosylation is a unique post-translational modification that regulates many biological processes, such as DNA damage repair. During DNA repair, ADP-ribosylation needs to be reversed by ADP-ribosylhydrolases. A group of ADP-ribosylhydrolases have a catalytic domain, namely the macrodomain, which is conserved in evolution from prokaryotes to humans. Not all macrodomains remove ADP-ribosylation. One set of macrodomains loses enzymatic activity and only binds to ADP-ribose (ADPR). Here, we summarize the biological functions of these macrodomains in DNA damage repair and compare the structure of enzymatically active and inactive macrodomains. Moreover, small molecular inhibitors have been developed that target macrodomains to suppress DNA damage repair and tumor growth. Macrodomain proteins are also expressed in pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, these domains may not be directly involved in DNA damage repair in the hosts or pathogens. Instead, they play key roles in pathogen replication. Thus, by targeting macrodomains it may be possible to treat pathogen-induced diseases, such as coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Lily Yu
- Westridge School, Pasadena, California 91105, USA
| | - Xiuhua Liu
- Institute of Life Science and Green Development, College of Life Science, Hebei University, Baoding 071002, China.
| | - Xiaochun Yu
- School of Life Sciences, Westlake University, Hangzhou 310024, China.
| |
Collapse
|
41
|
Weng ZJ, Wu SX, Luo HS, Du ZS, Li XY, Lin JZ. Neoadjuvant Chemotherapy in Early Triple-Negative Breast Cancer: A Pairwise and Network Meta-Analysis of Pathological Complete Response. INQUIRY : A JOURNAL OF MEDICAL CARE ORGANIZATION, PROVISION AND FINANCING 2021; 58:469580211056213. [PMID: 34806458 PMCID: PMC8606982 DOI: 10.1177/00469580211056213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We performed a pairwise and network meta-analysis to compare pathological complete response (pCR) among neoadjuvant chemotherapy in patients with triple-negative breast cancer. We searched PubMed for randomized clinical trials between January 1, 2000 and December 1, 2020. Abstracts from meetings were also searched. A frequentist random-effect model was applied to compare pCR and toxicities. The P-score was used to rank treatment effects. Nineteen trials with 16 treatments and 7794 patients were included. On the basis of SoC, the addition of carboplatin (OR = 1.82, 95% CI, 1.24 to 2.68, P < .01) and the addition of checkpoint inhibitors (OR = 1.69, 95% CI, 1.23 to 2.32, P < .01) increased pCR in pairwise meta-analysis; compared with paclitaxel, nab-paclitaxel did not improve pCR rates (OR = 1.81, 95% CI, .80 to 4.12, P = .16). The anthracycline-sparing regimen led to similar pCR compared with the anthracycline-containing regimen (OR = 1.50, 95% CI, .82 to 2.76, P = .19). In network meta-analysis, the addition of carboplatin plus a PD-1 inhibitor (pembrolizumab), carboplatin plus bevacizumab, and carboplatin plus veliparib ranked as the top three treatments for achieving pCR, with corresponding P-scores of .91, .84, and .72, respectively. Among patients with homologous recombination deficiency, the addition of carboplatin (OR = 1.31, 95% CI, .69 to 2.50, P = .41) or carboplatin plus PARP inhibitors (OR = 1.19, 95% CI, .58 to 2.47, P = .63) did not increase pCR. For triple-negative breast cancer, combining carboplatin with taxane-anthracycline-containing neoadjuvant chemotherapy could be the standard of care, and the combination containing checkpoint inhibitor is promising. However, their role in long-term oncologic outcome remains to be determined.
Collapse
Affiliation(s)
- Zeng-Jie Weng
- Department of General Practice, Shantou Central Hospital, Shantou, China
| | - Sheng-Xi Wu
- Department of Radiation Oncology, Shantou Central Hospital, Shantou, China
| | - He-San Luo
- Department of Radiation Oncology, Shantou Central Hospital, Shantou, China
| | - Ze-Sen Du
- Department of Surgical Oncology, Shantou Central Hospital, Shantou, China
| | - Xu-Yuan Li
- Department of Medical Oncology, Shantou Central Hospital, Shantou, China
| | - Jia-Zhou Lin
- Department of Clinical Laboratory Medicine, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
42
|
Marinelli D, Mazzotta M, Pizzuti L, Krasniqi E, Gamucci T, Natoli C, Grassadonia A, Tinari N, Tomao S, Sperduti I, Sanguineti G, Botticelli A, Fabbri A, Botti C, Ciliberto G, Barba M, Vici P. Neoadjuvant Immune-Checkpoint Blockade in Triple-Negative Breast Cancer: Current Evidence and Literature-Based Meta-Analysis of Randomized Trials. Cancers (Basel) 2020; 12:cancers12092497. [PMID: 32899209 PMCID: PMC7565914 DOI: 10.3390/cancers12092497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Breast cancer is a heterogeneous disease, which encompasses several subgroups of entities widely varying by clinical-pathological features. Triple negative breast cancer is characterized by a particularly aggressive biological behavior. The administration of chemotherapy has long represented the most efficacious weapon in combating triple negative breast cancer in both its initial and late phase of development. A pivot point has been recently reached throughout the approval of the immunotherapic agent atezolizumab in combination with chemotherapy as first-line treatment for programmed-death ligand 1-positive, unresectable locally advanced, or metastatic triple-negative breast cancer. Results from the registrative trial, IMpassion 130, have increasingly fueled the flourishing of studies of immune-checkpoint inhibitors in the early stage of triple negative breast cancer development. We critically interpret results from the most recent literature in light of relevant issues of methodological nature and also present a quantitative summary of data from the inherent trials. Future directions are also highlighted. Abstract Chemotherapy based on the sequential use of anthracyclines and taxanes has long represented the most efficacious approach in the management of early-stage, triple-negative breast cancer, whose aggressive behavior is widely renowned. This standard chemotherapy backbone was subsequently enriched by the use of carboplatin, based on its association with increased pathologic complete response and efficacy in the metastatic setting. Following the results from the IMpassion130 trial, the recent approval of the immunotherapic agent atezolizumab in combination with chemotherapy as first-line treatment for programmed-death ligand 1-positive, unresectable locally advanced, or metastatic triple-negative breast cancer increasingly fueled the flourishing of trials of immune-checkpoint inhibitors in the early setting. In this work, we review the most recent inherent literature in light of key methodological issues and provide a quantitative summary of the results from phase II–III randomized trials of immunotherapic agents combined with chemotherapy in the setting of interest. Hints regarding future directions are also discussed.
Collapse
Affiliation(s)
- Daniele Marinelli
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant’Andrea Hospital, Sapienza University, 00189 Rome, Italy;
| | - Marco Mazzotta
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.M.); (E.K.); (P.V.)
| | - Laura Pizzuti
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.M.); (E.K.); (P.V.)
- Correspondence: (L.P.); (M.B.); Tel.: +39-06-52665698 (L.P.); +39-06-52665419 (M.B.)
| | - Eriseld Krasniqi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.M.); (E.K.); (P.V.)
| | - Teresa Gamucci
- Medical Oncology, Sandro Pertini Hospital, 00157 Rome, Italy;
| | - Clara Natoli
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, G. D’Annunzio University, 66100 Chieti, Italy; (C.N.); (A.G.); (N.T.)
| | - Antonino Grassadonia
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, G. D’Annunzio University, 66100 Chieti, Italy; (C.N.); (A.G.); (N.T.)
| | - Nicola Tinari
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, G. D’Annunzio University, 66100 Chieti, Italy; (C.N.); (A.G.); (N.T.)
| | - Silverio Tomao
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Policlinico Umberto I, ‘Sapienza’ University of Rome, 00161 Rome, Italy;
| | - Isabella Sperduti
- Biostatistics Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Giuseppe Sanguineti
- Department of Radiation Oncology, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | | | - Agnese Fabbri
- Medical Oncology Unit, Belcolle Hospital, 01100 Viterbo, Italy;
| | - Claudio Botti
- Department of Surgery, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Maddalena Barba
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.M.); (E.K.); (P.V.)
- Correspondence: (L.P.); (M.B.); Tel.: +39-06-52665698 (L.P.); +39-06-52665419 (M.B.)
| | - Patrizia Vici
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.M.); (E.K.); (P.V.)
| |
Collapse
|
43
|
Zhu H, Du C, Yuan M, Fu P, He Q, Yang B, Cao J. PD-1/PD-L1 counterattack alliance: multiple strategies for treating triple-negative breast cancer. Drug Discov Today 2020; 25:1762-1771. [PMID: 32663441 DOI: 10.1016/j.drudis.2020.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 01/01/2023]
Abstract
Despite extensive research into adjuvant and neoadjuvant chemotherapy, triple-negative breast cancer (TNBC) remains a common breast cancer (BC) subtype with poor prognosis. Given that it has higher immune cell infiltration, theoretically, it should be a protagonist of potential BC immunotherapies. However, only mild responses have been observed in monotherapy with anti-programmed death receptor-1/programmed death ligand-1 (PD-1/PD-L1) antibodies. In this review, we reappraise PD-1/PD-L1 inhibitor combination immunotherapy and effective experimental compounds, focusing the level of PD-L1 expression, neoantigens, abnormal signaling pathways, and tumor microenvironment signatures, to provide guidance for future clinical trials based on the molecular mechanisms involved.
Collapse
Affiliation(s)
- Haiying Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chengyong Du
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Yuan
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
44
|
Lucke-Wold B, Scott K. A Brief Overview of Neurosurgical Management for Breast Cancer Metastasis. SF JOURNAL OF MEDICAL ONCOLOGY AND CANCER 2020; 1:1001. [PMID: 32613208 PMCID: PMC7328909 DOI: pmid/32613208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite advances in chemotherapy and radiation, stage IV breast cancer presents a serious challenge to clinicians in light of the continued poor outcomes for patients. Stage IV breast cancer frequently metastasizes to the brain often necessitating neurosurgical intervention. The goals of the neurosurgeon are to adequately address metastatic disease to the central nervous system, limit morbidity for the patients, while preserving as much neurologic function as possible, and to help guide next steps regarding need for radiation and immunotherapy. In this review, we provide a background overview of the role of neurosurgery in managing stage IV metastatic breast cancer involving the brain, discuss what is known about brain metastasis, and highlight avenues for future study and investigation.
Collapse
Affiliation(s)
- Brandon Lucke-Wold
- Correspondence: Brandon Lucke-Wold, Department of Neurosurgery, University of Florida, USA.
| | | |
Collapse
|