1
|
Dey B, Kumar A, Patel AB. Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2024; 22:1778-1806. [PMID: 37622689 PMCID: PMC11284732 DOI: 10.2174/1570159x21666230824091601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.
Collapse
Affiliation(s)
- Bedaballi Dey
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Anant Bahadur Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
2
|
Jordan K, Murphy J, Singh A, Mitchell CS. Astrocyte-Mediated Neuromodulatory Regulation in Preclinical ALS: A Metadata Analysis. Front Cell Neurosci 2018; 12:491. [PMID: 30618638 PMCID: PMC6305074 DOI: 10.3389/fncel.2018.00491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive degradation of motoneurons in the central nervous system (CNS). Astrocytes are key regulators for inflammation and neuromodulatory signaling, both of which contribute to ALS. The study goal was to ascertain potential temporal changes in astrocyte-mediated neuromodulatory regulation with transgenic ALS model progression: glutamate, GTL-1, GluR1, GluR2, GABA, ChAT activity, VGF, TNFα, aspartate, and IGF-1. We examine neuromodulatory changes in data aggregates from 42 peer-reviewed studies derived from transgenic ALS mixed cell cultures (neurons + astrocytes). For each corresponding experimental time point, the ratio of transgenic to wild type (WT) was found for each compound. ANOVA and a student's t-test were performed to compare disease stages (early, post-onset, and end stage). Glutamate in transgenic SOD1-G93A mixed cell cultures does not change over time (p > 0.05). GLT-1 levels were found to be decreased 23% over WT but only at end-stage (p < 0.05). Glutamate receptors (GluR1, GluR2) in SOD1-G93A were not substantially different from WT, although SOD1-G93A GluR1 decreased by 21% from post-onset to end-stage (p < 0.05). ChAT activity was insignificantly decreased. VGF is decreased throughout ALS (p < 0.05). Aspartate is elevated by 25% in SOD1-G93A but only during end-stage (p < 0.05). TNFα is increased by a dramatic 362% (p < 0.05). Furthermore, principal component analysis identified TNFα as contributing to 55% of the data variance in the first component. Thus, TNFα, which modulates astrocyte regulation via multiple pathways, could be a strategic treatment target. Overall results suggest changes in neuromodulator levels are subtle in SOD1-G93A ALS mixed cell cultures. If excitotoxicity is present as is often presumed, it could be due to ALS cells being more sensitive to small changes in neuromodulation. Hence, seemingly unsubstantial or oscillatory changes in neuromodulators could wreak havoc in ALS cells, resulting in failed microenvironment homeostasis whereby both hyperexcitability and hypoexcitability can coexist. Future work is needed to examine local, spatiotemporal neuromodulatory homeostasis and assess its functional impact in ALS.
Collapse
Affiliation(s)
- Kathleen Jordan
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph Murphy
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA, United States
| | - Anjanya Singh
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA, United States
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Cassie S. Mitchell
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
Manich G, Recasens M, Valente T, Almolda B, González B, Castellano B. Role of the CD200-CD200R Axis During Homeostasis and Neuroinflammation. Neuroscience 2018; 405:118-136. [PMID: 30367946 DOI: 10.1016/j.neuroscience.2018.10.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/27/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
Microglia are considered to be the resident macrophages of the CNS and main effector of immune brain function. Due to their essential role in the regulation of neuroinflammatory response, microglia constitute an important target for neurological diseases, such as multiple sclerosis, Alzheimer's or Parkinson's disease. The communication between neurons and microglia contributes to a proper maintenance of homeostasis in the CNS. Research developed in the last decade has demonstrated that this interaction is mediated by "Off-signals" - molecules exerting immune inhibition - and "On signals" - molecules triggering immune activation. Among "Off signals", molecular pair CD200 and its CD200R receptor, expressed mainly in the membrane of neurons and microglia, respectively, have centered our attention due to its unexplored and powerful immunoregulatory functions. In this review, we will offer an updated global view of the CD200-CD200R role in the microglia-neuron crosstalk during homeostasis and neuroinflammation. Specifically, the effects of CD200-CD200R in the inhibition of pro-inflammatory microglial activation will be explained, and their involvement in other functions such as homeostasis preservation, tissue repair, and brain aging, among others, will be pointed out. In addition, we will depict the effects of CD200-CD200R uncoupling in the etiopathogenesis of autoimmune and neurodegenerative diseases. Finally, we will explore how to translate the scientific evidence of CD200-CD200R interaction into possible clinical therapeutic strategies to tackle neuroinflammatory CNS diseases.
Collapse
Affiliation(s)
- Gemma Manich
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Mireia Recasens
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Tony Valente
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Beatriz Almolda
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Berta González
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Bernardo Castellano
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
4
|
Setter DO, Runge EM, Schartz ND, Kennedy FM, Brown BL, McMillan KP, Miller WM, Shah KM, Haulcomb MM, Sanders VM, Jones KJ. Impact of peripheral immune status on central molecular responses to facial nerve axotomy. Brain Behav Immun 2018; 68:98-110. [PMID: 29030217 PMCID: PMC5767532 DOI: 10.1016/j.bbi.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022] Open
Abstract
When facial nerve axotomy (FNA) is performed on immunodeficient recombinase activating gene-2 knockout (RAG-2-/-) mice, there is greater facial motoneuron (FMN) death relative to wild type (WT) mice. Reconstituting RAG-2-/- mice with whole splenocytes rescues FMN survival after FNA, and CD4+ T cells specifically drive immune-mediated neuroprotection. Evidence suggests that immunodysregulation may contribute to motoneuron death in amyotrophic lateral sclerosis (ALS). Immunoreconstitution of RAG-2-/- mice with lymphocytes from the mutant superoxide dismutase (mSOD1) mouse model of ALS revealed that the mSOD1 whole splenocyte environment suppresses mSOD1 CD4+ T cell-mediated neuroprotection after FNA. The objective of the current study was to characterize the effect of CD4+ T cells on the central molecular response to FNA and then identify if mSOD1 whole splenocytes blocked these regulatory pathways. Gene expression profiles of the axotomized facial motor nucleus were assessed from RAG-2-/- mice immunoreconstituted with either CD4+ T cells or whole splenocytes from WT or mSOD1 donors. The findings indicate that immunodeficient mice have suppressed glial activation after axotomy, and cell transfer of WT CD4+ T cells rescues microenvironment responses. Additionally, mSOD1 whole splenocyte recipients exhibit an increased astrocyte activation response to FNA. In RAG-2-/- + mSOD1 whole splenocyte mice, an elevation of motoneuron-specific Fas cell death pathways is also observed. Altogether, these findings suggest that mSOD1 whole splenocytes do not suppress mSOD1 CD4+ T cell regulation of the microenvironment, and instead, mSOD1 whole splenocytes may promote motoneuron death by either promoting a neurotoxic astrocyte phenotype or inducing Fas-mediated cell death pathways. This study demonstrates that peripheral immune status significantly affects central responses to nerve injury. Future studies will elucidate the mechanisms by which mSOD1 whole splenocytes promote cell death and if inhibiting this mechanism can preserve motoneuron survival in injury and disease.
Collapse
Affiliation(s)
- Deborah O. Setter
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| | - Elizabeth M. Runge
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| | - Nicole D. Schartz
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Felicia M. Kennedy
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| | - Brandon L. Brown
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Kathryn P. McMillan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| | - Whitney M. Miller
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| | - Kishan M. Shah
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Melissa M. Haulcomb
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| | - Virginia M. Sanders
- Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH
| | - Karthryn J. Jones
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN,Research and Development Service, Richard L. Roudebush VAMC, Indianapolis, IN
| |
Collapse
|
5
|
Tang BL. Could Sirtuin Activities Modify ALS Onset and Progression? Cell Mol Neurobiol 2017; 37:1147-1160. [PMID: 27942908 DOI: 10.1007/s10571-016-0452-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a complex etiology. Sirtuins have been implicated as disease-modifying factors in several neurological disorders, and in the past decade, attempts have been made to check if manipulating Sirtuin activities and levels could confer benefit in terms of neuroprotection and survival in ALS models. The efforts have largely focused on mutant SOD1, and while limited in scope, the results were largely positive. Here, the body of work linking Sirtuins with ALS is reviewed, with discussions on how Sirtuins and their activities may impact on the major etiological mechanisms of ALS. Moving forward, it is important that the potentially beneficial effect of Sirtuins in ALS disease onset and progression are assessed in ALS models with TDP-43, FUS, and C9orf72 mutations.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD7, 8 Medical Drive, Singapore, 117597, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.
| |
Collapse
|
6
|
Casas C, Manzano R, Vaz R, Osta R, Brites D. Synaptic Failure: Focus in an Integrative View of ALS. Brain Plast 2016; 1:159-175. [PMID: 29765840 PMCID: PMC5928542 DOI: 10.3233/bpl-140001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
From early description by Charcot, the classification of the Amyotrophic Lateral Sclerosis (ALS) is evolving from a subtype of Motor Neuron (MN) Disease to be considered rather a multi-systemic, non-cell autonomous and complex neurodegenerative disease. In the last decade, the huge amount of knowledge acquired has shed new insights on the pathological mechanisms underlying ALS from different perspectives. However, a whole vision on the multiple dysfunctional pathways is needed with the inclusion of information often excluded in other published revisions. We propose an integrative view of ALS pathology, although centered on the synaptic failure as a converging and crucial player to the etiology of the disease. Homeostasis of input and output synaptic activity of MNs has been proved to be severely and early disrupted and to definitively contribute to microcircuitry alterations at the spinal cord. Several cells play roles in synaptic communication across the MNs network system such as interneurons, astrocytes, microglia, Schwann and skeletal muscle cells. Microglia are described as highly dynamic surveying cells of the nervous system but also as determinant contributors to the synaptic plasticity linked to neuronal activity. Several signaling axis such as TNFα/TNFR1 and CX3CR1/CX3CL1 that characterize MN-microglia cross talk contribute to synaptic scaling and maintenance, have been found altered in ALS. The presence of dystrophic and atypical microglia in late stages of ALS, with a decline in their dynamic motility and phagocytic ability, together with less synaptic and neuronal contacts disrupts the MN-microglia dialogue, decreases homeostatic regulation of neuronal activity, perturbs “on/off” signals and accelerates disease progression associated to impaired synaptic function and regeneration. Other hotspot in the ALS affected network system is the unstable neuromuscular junction (NMJ) leading to distal axonal degeneration. Reduced neuromuscular spontaneous synaptic activity in ALS mice models was also suggested to account for the selective vulnerability of MNs and decreased regenerative capability. Synaptic destabilization may as well derive from increased release of molecules by muscle cells (e.g. NogoA) and by terminal Schwann cells (e.g. semaphorin 3A) conceivably causing nerve terminal retraction and denervation, as well as inhibition of re-connection to muscle fibers. Indeed, we have overviewed the alterations on the metabolic pathways and self-regenerative capacity presented in skeletal muscle cells that contribute to muscle wasting in ALS. Finally, a detailed footpath of pathologic changes on MNs and associated dysfunctional and synaptic alterations is provided. The oriented motivation in future ALS studies as outlined in the present article will help in fruitful novel achievements on the mechanisms involved and in developing more target-driven therapies that will bring new hope in halting or delaying disease progression in ALS patients.
Collapse
Affiliation(s)
- Caty Casas
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
| | - Raquel Manzano
- Laboratory of Genetic Biochemistry (LAGENBIO-I3A), Aragón Institute of Health Sciences, Universidad de Zaragoza, Zaragoza, Spain
| | - Rita Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| | - Rosario Osta
- Laboratory of Genetic Biochemistry (LAGENBIO-I3A), Aragón Institute of Health Sciences, Universidad de Zaragoza, Zaragoza, Spain
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
7
|
Jeyachandran A, Mertens B, McKissick EA, Mitchell CS. Type I Vs. Type II Cytokine Levels as a Function of SOD1 G93A Mouse Amyotrophic Lateral Sclerosis Disease Progression. Front Cell Neurosci 2015; 9:462. [PMID: 26648846 PMCID: PMC4664727 DOI: 10.3389/fncel.2015.00462] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/13/2015] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal motoneuron disease that is characterized by the degradation of neurons throughout the central nervous system. Inflammation have been cited a key contributor to ALS neurodegeneration, but the timeline of cytokine upregulation remains unresolved. The goal of this study was to temporally examine the correlation between the varying levels of pro-inflammatory type I cytokines (IL-1β, IL-1α, IL-12, TNF-α, and GFAP) and anti-inflammatory type II cytokines (IL-4, IL-6, IL-10) throughout the progression of ALS in the SOD1 G93A mouse model. Cytokine level data from high copy SOD1 G93A transgenic mice was collected from 66 peer-reviewed studies. For each corresponding experimental time point, the ratio of transgenic to wild type (TG/WT) cytokine was calculated. One-way ANOVA and t-tests with Bonferonni correction were used to analyze the data. Meta-analysis was performed for four discrete stages: early, pre-onset, post-onset, and end stage. A significant increase in TG cytokine levels was found when compared to WT cytokine levels across the entire SOD1 G93A lifespan for majority of the cytokines. The rates of change of the individual cytokines, and type I and type II were not significantly different; however, the mean fold change of type I was expressed at significantly higher levels than type II levels across all stages with the difference between the means becoming more pronounced at the end stage. An overexpression of cytokines occurred both before and after the onset of ALS symptoms. The trend between pro-inflammatory type I and type II cytokine mean levels indicate a progressive instability of the dynamic balance between pro- and anti-inflammatory cytokines as anti-inflammatory cytokines fail to mediate the pronounced increase in pro-inflammatory cytokines. Very early immunoregulatory treatment is necessary to successfully interrupt ALS-induced neuroinflammation.
Collapse
Affiliation(s)
- Amilia Jeyachandran
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Benjamin Mertens
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Eric A McKissick
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Cassie S Mitchell
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Atlanta, GA, USA
| |
Collapse
|
8
|
Haulcomb MM, Mesnard-Hoaglin NA, Batka RJ, Meadows RM, Miller WM, Mcmillan KP, Brown TJ, Sanders VM, Jones KJ. Identification of B6SJL mSOD1(G93A) mouse subgroups with different disease progression rates. J Comp Neurol 2015; 523:2752-68. [PMID: 26010802 DOI: 10.1002/cne.23814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/16/2022]
Abstract
Disease progression rates among patients with amyotrophic lateral sclerosis (ALS) vary greatly. Although the majority of affected individuals survive 3-5 years following diagnosis, some subgroups experience a more rapidly progressing form, surviving less than 1 year, and other subgroups experience slowly progressing forms, surviving nearly 50 years. Genetic heterogeneity and environmental factors pose significant barriers in investigating patient progression rates. Similar to the case for humans, variation in survival within the mSOD1 mouse has been well documented, but different progression rates have not been investigated. The present study identifies two subgroups of B6SJL mSOD1(G93A) mice with different disease progression rates, a fast progression group (FPG) and slow progression group, as evidenced by differences in the rate of motor function decline. In addition, increased disease-associated gene expression within the FPG facial motor nucleus confirmed the presence of a more severe phenotype. We hypothesize that a more severe disease phenotype could be the result of 1) an earlier onset of axonal disconnection with a consistent degeneration rate or 2) a more severe or accelerated degenerative process. We performed a facial nerve transection axotomy in both mSOD1 subgroups prior to disease onset as a method to standardize the axonal disconnection. Instead of leading to comparable gene expression in both subgroups, this standardization did not eliminate the severe phenotype in the FPG facial nucleus, suggesting that the FPG phenotype is the result of a more severe or accelerated degenerative process. We theorize that these mSOD1 subgroups are representative of the rapid and slow disease phenotypes often experienced in ALS.
Collapse
Affiliation(s)
- Melissa M Haulcomb
- Neuroscience Program, Loyola University Medical Center, Maywood, Illinois, 60153.,Research and Development Service, Hines Veterans Administration Hospital, Hines, Illinois, 60141.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202.,Research and Development Service, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, 46202
| | - Nichole A Mesnard-Hoaglin
- Neuroscience Program, Loyola University Medical Center, Maywood, Illinois, 60153.,Research and Development Service, Hines Veterans Administration Hospital, Hines, Illinois, 60141
| | - Richard J Batka
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202.,Research and Development Service, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, 46202
| | - Rena M Meadows
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202.,Research and Development Service, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, 46202.,Program in Medical Neurosciences, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Whitney M Miller
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202.,Research and Development Service, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, 46202
| | - Kathryn P Mcmillan
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202.,Research and Development Service, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, 46202
| | - Todd J Brown
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202.,Research and Development Service, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, 46202
| | - Virginia M Sanders
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio, 43210
| | - Kathryn J Jones
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202.,Research and Development Service, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, 46202
| |
Collapse
|
9
|
Haulcomb MM, Mesnard NA, Batka RJ, Alexander TD, Sanders VM, Jones KJ. Axotomy-induced target disconnection promotes an additional death mechanism involved in motoneuron degeneration in amyotrophic lateral sclerosis transgenic mice. J Comp Neurol 2014; 522:2349-76. [PMID: 24424947 DOI: 10.1002/cne.23538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/18/2022]
Abstract
The target disconnection theory of amyotrophic lateral sclerosis (ALS) pathogenesis suggests that disease onset is initiated by a peripheral pathological event resulting in neuromuscular junction loss and motoneuron (MN) degeneration. Presymptomatic mSOD1(G93A) mouse facial MN (FMN) are more susceptible to axotomy-induced cell death than wild-type (WT) FMN, which suggests additional CNS pathology. We have previously determined that the mSOD1 molecular response to facial nerve axotomy is phenotypically regenerative and indistinguishable from WT, whereas the surrounding microenvironment shows significant dysregulation in the mSOD1 facial nucleus. To elucidate the mechanisms underlying the enhanced mSOD1 FMN loss after axotomy, we superimposed the facial nerve axotomy model on presymptomatic mSOD1 mice and investigated gene expression for death receptor pathways after target disconnection by axotomy vs. disease progression. We determined that the TNFR1 death receptor pathway is involved in axotomy-induced FMN death in WT and is partially responsible for the mSOD1 FMN death. In contrast, an inherent mSOD1 CNS pathology resulted in a suppressed glial reaction and an upregulation in the Fas death pathway after target disconnection. We propose that the dysregulated mSOD1 glia fail to provide support the injured MN, leading to Fas-induced FMN death. Finally, we demonstrate that, during disease progression, the mSOD1 facial nucleus displays target disconnection-induced gene expression changes that mirror those induced by axotomy. This validates the use of axotomy as an investigative tool in understanding the role of peripheral target disconnection in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Melissa M Haulcomb
- Neuroscience Program, Loyola University Medical Center, Maywood, Illinois, 60153; Research and Development Service, Hines Veterans Administration Hospital, Hines, Illinois, 60141
| | | | | | | | | | | |
Collapse
|
10
|
Brites D, Vaz AR. Microglia centered pathogenesis in ALS: insights in cell interconnectivity. Front Cell Neurosci 2014; 8:117. [PMID: 24904276 PMCID: PMC4033073 DOI: 10.3389/fncel.2014.00117] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/10/2014] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common and most aggressive form of adult motor neuron (MN) degeneration. The cause of the disease is still unknown, but some protein mutations have been linked to the pathological process. Loss of upper and lower MNs results in progressive muscle paralysis and ultimately death due to respiratory failure. Although initially thought to derive from the selective loss of MNs, the pathogenic concept of non-cell-autonomous disease has come to the forefront for the contribution of glial cells in ALS, in particular microglia. Recent studies suggest that microglia may have a protective effect on MN in an early stage. Conversely, activated microglia contribute and enhance MN death by secreting neurotoxic factors, and impaired microglial function at the end-stage may instead accelerate disease progression. However, the nature of microglial–neuronal interactions that lead to MN degeneration remains elusive. We review the contribution of the neurodegenerative network in ALS pathology, with a special focus on each glial cell type from data obtained in the transgenic SOD1G93A rodents, the most widely used model. We further discuss the diverse roles of neuroinflammation and microglia phenotypes in the modulation of ALS pathology. We provide information on the processes associated with dysfunctional cell–cell communication and summarize findings on pathological cross-talk between neurons and astroglia, and neurons and microglia, as well as on the spread of pathogenic factors. We also highlight the relevance of neurovascular disruption and exosome trafficking to ALS pathology. The harmful and beneficial influences of NG2 cells, oligodendrocytes and Schwann cells will be discussed as well. Insights into the complex intercellular perturbations underlying ALS, including target identification, will enhance our efforts to develop effective therapeutic approaches for preventing or reversing symptomatic progression of this devastating disease.
Collapse
Affiliation(s)
- Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| | - Ana R Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisbon, Portugal
| |
Collapse
|
11
|
Chan-Il C, Young-Don L, Heejaung K, Kim SH, Suh-Kim H, Kim SS. Neural induction with neurogenin 1 enhances the therapeutic potential of mesenchymal stem cells in an amyotrophic lateral sclerosis mouse model. Cell Transplant 2013; 22:855-70. [PMID: 22472631 DOI: 10.3727/096368912x637019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by progressive dysfunction and degeneration of motor neurons in the central nervous system (CNS). In the absence of effective drug treatments for ALS, stem cell treatment has emerged as a candidate therapy for this disease. To date, however, there is no consensus protocol that stipulates stem cell types, transplantation timing, or frequency. Using an ALS mouse model carrying a high copy number of a mutant human superoxide dismutase-1 (SOD1)(G93A) transgene, we investigated the effect of neural induction on the innate therapeutic potential of mesenchymal stem cells (MSCs) in relation to preclinical transplantation parameters. In our study, the expression of monocyte chemoattractant protein-1 (MCP-1) was elevated in the ALS mouse spinal cord. Neural induction of MSCs with neurogenin 1 (Ngn1) upregulated the expression level of the MCP-1 receptor, CCR2, and enhanced the migration activity toward MCP-1 in vitro. Ngn1-expressing MSCs (MSCs-Ngn1) showed a corresponding increase in tropism to the CNS after systemic transplantation in ALS mice. Notably, MSCs-Ngn1 delayed disease onset if transplanted during preonset ages,whereas unprocessed MSCs failed to do so. If transplanted near the onset ages, a single treatment with MSCs-Ngn1 was sufficient to enhance motor functions during the symptomatic period (15–17 weeks), whereas unprocessed MSCs required repeated transplantation to achieve similar levels of motor function improvement. Our data indicate that systemically transplanted MSCs-Ngn1 can migrate to the CNS and exert beneficial effects on host neural cells for an extended period of time through paracrine functions, suggesting a potential benefit of neural induction of transplanted MSCs in long-term treatment of ALS.
Collapse
Affiliation(s)
- Choi Chan-Il
- Department of Anatomy, Ajou University School of Medicine, Suwon, South Korea
| | | | | | | | | | | |
Collapse
|
12
|
The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson's disease: focus on astrocytes. Mol Neurobiol 2013; 49:28-38. [PMID: 23783559 DOI: 10.1007/s12035-013-8483-x] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/04/2013] [Indexed: 01/08/2023]
Abstract
Neuroinflammation plays a key role in the pathogenesis of Parkinson's disease (PD). Epidemiologic, animal, human, and therapeutic studies support the role of oxidative stress and inflammatory cascade in initiation and progression of PD. In Parkinson's disease pathophysiology, activated glia affects neuronal injury and death through production of neurotoxic factors like glutamate, S100B, tumor necrosis factor alpha (TNF-α), prostaglandins, and reactive oxygen and nitrogen species. As disease progresses, inflammatory secretions engage neighboring cells, including astrocytes and endothelial cells, resulting in a vicious cycle of autocrine and paracrine amplification of inflammation leading to neurodegeneration. The exact mechanism of these inflammatory mediators in the disease progression is still poorly understood. In this review, we highlight and discuss the mechanisms of oxidative stress and inflammatory mediators by which they contribute to the disease progression. Particularly, we focus on the altered role of astroglial cells that presumably initiate and execute dopaminergic neurodegeneration in PD. In conclusion, we focus on the molecular mechanism of neurodegeneration, which contributes to the basic understanding of the role of neuroinflammation in PD pathophysiology.
Collapse
|
13
|
Dibaj P, Steffens H, Zschüntzsch J, Nadrigny F, Schomburg ED, Kirchhoff F, Neusch C. In Vivo imaging reveals distinct inflammatory activity of CNS microglia versus PNS macrophages in a mouse model for ALS. PLoS One 2011; 6:e17910. [PMID: 21437247 PMCID: PMC3060882 DOI: 10.1371/journal.pone.0017910] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 02/14/2011] [Indexed: 11/18/2022] Open
Abstract
Mutations in the enzyme superoxide dismutase-1 (SOD1) cause hereditary variants
of the fatal motor neuronal disease Amyotrophic lateral sclerosis (ALS).
Pathophysiology of the disease is non-cell-autonomous: neurotoxicity is derived
not only from mutant motor neurons but also from mutant neighbouring
non-neuronal cells. In vivo imaging by two-photon
laser-scanning microscopy was used to compare the role of
microglia/macrophage-related neuroinflammation in the CNS and PNS using
ALS-linked transgenic SOD1G93A mice. These mice contained labeled
projection neurons and labeled microglia/macrophages. In the affected lateral
spinal cord (in contrast to non-affected dorsal columns), different phases of
microglia-mediated inflammation were observed: highly reactive microglial cells
in preclinical stages (in 60-day-old mice the reaction to axonal transection was
∼180% of control) and morphologically transformed microglia that have
lost their function of tissue surveillance and injury-directed response in
clinical stages (reaction to axonal transection was lower than 50% of
control). Furthermore, unlike CNS microglia, macrophages of the PNS lack any
substantial morphological reaction while preclinical degeneration of peripheral
motor axons and neuromuscular junctions was observed. We present in
vivo evidence for a different inflammatory activity of microglia
and macrophages: an aberrant neuroinflammatory response of microglia in the CNS
and an apparently mainly neurodegenerative process in the PNS.
Collapse
Affiliation(s)
- Payam Dibaj
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Sargsyan SA, Blackburn DJ, Barber SC, Monk PN, Shaw PJ. Mutant SOD1 G93A microglia have an inflammatory phenotype and elevated production of MCP-1. Neuroreport 2009; 20:1450-5. [PMID: 19752764 PMCID: PMC2889291 DOI: 10.1097/wnr.0b013e328331e8fa] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The inflammatory response in amyotrophic lateral sclerosis (ALS) is well documented but the underlying cellular mechanisms have not been fully elucidated. We report that microglia isolated from the mutant human superoxide dismutase 1 (SOD1) G93A transgenic mouse model of ALS have an increased response to the inflammatory stimulus, lipopolysaccharide. Cell surface area and F4/80 surface marker, both indicators of cell activation, are increased relative to transgenic wild-type human SOD1 microglia. Monocyte chemoattractant protein-1, known to be increased in ALS, is produced at three-fold higher levels by SOD1 G93A than by wild-type human SOD1 microglia, under activating conditions. This novel finding implicates ALS microglia as a source of the increased monocyte chemoattractant protein-1 levels detected in ALS patients and in the ALS mouse model.
Collapse
Affiliation(s)
- Siranush A Sargsyan
- Department of Neuroscience, School of Medicine and Biomedical Sciences, The University of Sheffield, UK
| | | | | | | | | |
Collapse
|
15
|
Trends in the molecular pathogenesis and clinical therapeutics of common neurodegenerative disorders. Int J Mol Sci 2009; 10:2510-2557. [PMID: 19582217 PMCID: PMC2705504 DOI: 10.3390/ijms10062510] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 04/28/2009] [Accepted: 05/05/2009] [Indexed: 12/11/2022] Open
Abstract
The term neurodegenerative disorders, encompasses a variety of underlying conditions, sporadic and/or familial and are characterized by the persistent loss of neuronal subtypes. These disorders can disrupt molecular pathways, synapses, neuronal subpopulations and local circuits in specific brain regions, as well as higher-order neural networks. Abnormal network activities may result in a vicious cycle, further impairing the integrity and functions of neurons and synapses, for example, through aberrant excitation or inhibition. The most common neurodegenerative disorders are Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis and Huntington’s disease. The molecular features of these disorders have been extensively researched and various unique neurotherapeutic interventions have been developed. However, there is an enormous coercion to integrate the existing knowledge in order to intensify the reliability with which neurodegenerative disorders can be diagnosed and treated. The objective of this review article is therefore to assimilate these disorders’ in terms of their neuropathology, neurogenetics, etiology, trends in pharmacological treatment, clinical management, and the use of innovative neurotherapeutic interventions.
Collapse
|
16
|
Abstract
Amyotrophic lateral sclerosis (ALS) was initially known as Charcot's sclerosis, named after the French neurobiologist and physician Jean-Martin Charcot who first described this type of muscular atrophy in the early nineteenth century. In the United States, ALS became widely known as Lou Gehrig's disease after the famous baseball player who succumbed to the disease in the late 1930s. Currently, ALS is the most common motor neuron disease, with a worldwide incidence of 8 cases per 100,000 population per year. Familial forms constitute approximately 5% to 10% of all cases. Onset increases with age, with a peak in the seventh decade and a slight preponderance (relative risk, 1.3-1.5) among men compared with women. Rapid progression of motor neuron loss leads to death an average of 3 to 5 years after symptom onset. The cause of ALS remains unknown and there is still no curative therapy.
Collapse
Affiliation(s)
- Elsa Raibon
- Department of Neurology, University of Washington, Box 356465, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | | | | |
Collapse
|
17
|
Zhao P, Ignacio S, Beattie EC, Abood ME. Altered presymptomatic AMPA and cannabinoid receptor trafficking in motor neurons of ALS model mice: implications for excitotoxicity. Eur J Neurosci 2008; 27:572-9. [PMID: 18279310 DOI: 10.1111/j.1460-9568.2008.06041.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder involving the selective loss of spinal cord motor neurons. Excitotoxicity mediated by glutamate has been implicated as a cause of this progressive degeneration. In this study we examined two types of receptors, the excitatory alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) and inhibitory cannabinoid receptor (CB1) with respect to their localization and total expression in spinal cord motor neurons. AMPAR and CB1 represent major excitatory and inhibitory transmission input, respectively, and their expression levels on the plasma membrane have direct relevance to the vulnerability of the motor neurons to glutamatergic excitotoxicity. We used quantitative immunofluorescence microscopy to comparatively measure the total cellular expression and the synaptic localization of specific subclasses of AMPARs [as determined by the presence of the subunits glutamate receptor 1 (GluR1) or glutamate receptor 2 (GluR2)] and CB1 in spinal cord motor neurons during disease progression in a G93ASOD1 mouse model of ALS. We found an increase in synaptic GluR1 and a decrease of synaptic and total GluR2 at early ages (6 weeks, prior to disease onset). Total CB1 receptor levels were decreased at 6 weeks old. We determined the gene expression of CB1, GluR1 and GluR2 using quantitative real-time reverse transcriptase-polymerase chain reaction. The decreased synaptic and total GluR2 and increased synaptic GluR1 levels may result in increased numbers of Ca2+-permeable AMPARs, thus contributing to neuronal death. Early alterations in CB1 expression may also predispose motor neurons to excitotoxicity. To our knowledge, this is the first demonstration of presymptomatic changes in trafficking of receptors that are in direct control of excitotoxicity and death in a mouse model of ALS.
Collapse
Affiliation(s)
- Pingwei Zhao
- Forbes Norris ALS/MDA Research Center, California Pacific Medical Center Research Institute, 475 Brannan St, Suite 220, San Francisco, CA 94107, USA
| | | | | | | |
Collapse
|
18
|
Qian L, Xu Z, Zhang W, Wilson B, Hong JS, Flood PM. Sinomenine, a natural dextrorotatory morphinan analog, is anti-inflammatory and neuroprotective through inhibition of microglial NADPH oxidase. J Neuroinflammation 2007; 4:23. [PMID: 17880684 PMCID: PMC2064906 DOI: 10.1186/1742-2094-4-23] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 09/19/2007] [Indexed: 12/18/2022] Open
Abstract
Background The mechanisms involved in the induction and regulation of inflammation resulting in dopaminergic (DA) neurotoxicity in Parkinson's disease (PD) are complex and incompletely understood. Microglia-mediated inflammation has recently been implicated as a critical mechanism responsible for progressive neurodegeneration. Methods Mesencephalic neuron-glia cultures and reconstituted cultures were used to investigate the molecular mechanisms of sinomenine (SN)-mediated anti-inflammatory and neuroprotective effects in both the lipopolysaccharide (LPS)- and the 1-methyl-4-phenylpyridinium (MPP+)-mediated models of PD. Results SN showed equivalent efficacy in protecting against DA neuron death in rat midbrain neuron-glial cultures at both micro- and sub-picomolar concentrations, but no protection was seen at nanomolar concentrations. The neuroprotective effect of SN was attributed to inhibition of microglial activation, since SN significantly decreased tumor necrosis factor-α (TNF-α, prostaglandin E2 (PGE2) and reactive oxygen species (ROS) production by microglia. In addition, from the therapeutic point of view, we focused on sub-picomolar concentration of SN for further mechanistic studies. We found that 10-14 M of SN failed to protect DA neurons against MPP+-induced toxicity in the absence of microglia. More importantly, SN failed to show a protective effect in neuron-glia cultures from mice lacking functional NADPH oxidase (PHOX), a key enzyme for extracellular superoxide production in immune cells. Furthermore, we demonstrated that SN reduced LPS-induced extracellular ROS production through the inhibition of the PHOX cytosolic subunit p47phoxtranslocation to the cell membrane. Conclusion Our findings strongly suggest that the protective effects of SN are most likely mediated through the inhibition of microglial PHOX activity. These findings suggest a novel therapy to treat inflammation-mediated neurodegenerative diseases.
Collapse
Affiliation(s)
- Li Qian
- Comprehensive Center for Inflammatory Disorders, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Neuropharmacology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Zongli Xu
- Epidemiology branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Wei Zhang
- Neuropharmacology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Belinda Wilson
- Neuropharmacology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Jau-Shyong Hong
- Neuropharmacology Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Patrick M Flood
- Comprehensive Center for Inflammatory Disorders, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
19
|
Byram SC, Serpe CJ, DeBoy CA, Sanders VM, Jones KJ. Motoneurons and CD4+ effector T cell subsets: Neuroprotection and repair. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.cnr.2006.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Wen W, Sanelli T, Ge W, Strong W, Strong MJ. Activated microglial supernatant induced motor neuron cytotoxicity is associated with upregulation of the TNFR1 receptor. Neurosci Res 2006; 55:87-95. [PMID: 16529832 DOI: 10.1016/j.neures.2006.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 02/06/2006] [Accepted: 02/06/2006] [Indexed: 11/22/2022]
Abstract
We have previously reported that supernatant derived from LPS-activated BV-2 cells, an immortalized microglial cell line, induces death of NSC-34 cells (a motor neuron hybridoma) through a TNFalpha and nitric oxide synthase (NOS) dependant mechanism. In this study, we have observed that LPS-activated BV-2 supernatant induces NSC-34 cell death in association with an upregulation of the TNF receptor 1 (TNFR1) expression on NSC-34 cells, both at the transcription level and at the cell surface protein level. The upregulation of TNFR1 receptor was independent of TNFalpha, and could be partly inhibited by the inhibition of iNOS activation in the BV-2 cells. The TNFR2 receptor was not involved. These observations have important implications in understanding the mechanism by which microglial activation contributes to the motor neuron degeneration.
Collapse
Affiliation(s)
- Weiyan Wen
- Cell Biology Research Group, Robarts Research Institute, London, Ont., Canada
| | | | | | | | | |
Collapse
|
21
|
Hensley K, Abdel-Moaty H, Hunter J, Mhatre M, Mou S, Nguyen K, Potapova T, Pye QN, Qi M, Rice H, Stewart C, Stroukoff K, West M. Primary glia expressing the G93A-SOD1 mutation present a neuroinflammatory phenotype and provide a cellular system for studies of glial inflammation. J Neuroinflammation 2006; 3:2. [PMID: 16436205 PMCID: PMC1360663 DOI: 10.1186/1742-2094-3-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 01/25/2006] [Indexed: 11/30/2022] Open
Abstract
Detailed study of glial inflammation has been hindered by lack of cell culture systems that spontaneously demonstrate the "neuroinflammatory phenotype". Mice expressing a glycine → alanine substitution in cytosolic Cu, Zn-superoxide dismutase (G93A-SOD1) associated with familial amyotrophic lateral sclerosis (ALS) demonstrate age-dependent neuroinflammation associated with broad-spectrum cytokine, eicosanoid and oxidant production. In order to more precisely study the cellular mechanisms underlying glial activation in the G93A-SOD1 mouse, primary astrocytes were cultured from 7 day mouse neonates. At this age, G93A-SOD1 mice demonstrated no in vivo hallmarks of neuroinflammation. Nonetheless astrocytes cultured from G93A-SOD1 (but not wild-type human SOD1-expressing) transgenic mouse pups demonstrated a significant elevation in either the basal or the tumor necrosis alpha (TNFα)-stimulated levels of proinflammatory eicosanoids prostaglandin E2 (PGE2) and leukotriene B4 (LTB4); inducible nitric oxide synthase (iNOS) and •NO (indexed by nitrite release into the culture medium); and protein carbonyl products. Specific cytokine- and TNFα death-receptor-associated components were similarly upregulated in cultured G93A-SOD1 cells as assessed by multiprobe ribonuclease protection assays (RPAs) for their mRNA transcripts. Thus, endogenous glial expression of G93A-SOD1 produces a metastable condition in which glia are more prone to enter an activated neuroinflammatory state associated with broad-spectrum increased production of paracrine-acting substances. These findings support a role for active glial involvement in ALS and may provide a useful cell culture tool for the study of glial inflammation.
Collapse
Affiliation(s)
- Kenneth Hensley
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
- Department of Cell Biology, University of Oklahoma Health Science Center (OUHSC), Oklahoma City, OK, 73104, USA
| | - Haitham Abdel-Moaty
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
- University of Oklahoma College of Engineering, Bioengineering Program, Norman, OK, USA
| | - Jerrod Hunter
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Molina Mhatre
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Shenyun Mou
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Kim Nguyen
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Tamara Potapova
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Quentin N Pye
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Min Qi
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Heather Rice
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Charles Stewart
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Katharine Stroukoff
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| | - Melinda West
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation (OMRF), 825 NE 13Street, Oklahoma City, OK, 73104, USA
| |
Collapse
|