1
|
Hatami H, Rahiman N, Mohammadi M. Oligonucleotide based nanogels for cancer therapeutics. Int J Biol Macromol 2024; 267:131401. [PMID: 38582467 DOI: 10.1016/j.ijbiomac.2024.131401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Oligonucleotide-based nanogels, as nascent biomaterials, possess several unique functional, structural, and physicochemical features with excellent drug-loading capacity and high potential for cancer gene therapy. Ongoing studies utilizing oligonucleotide-based nanogels hold great promise, as these cutting-edge nanoplatforms can be elegantly developed with predesigned oligonucleotide sequences and complementary strands which are self-assembled or chemically crosslinked leading to the development of nanogels with predictable shape and tunable size with the desired functional properties. Current paper provides a summary of the properties, preparation methods, and applications of oligonucleotide-based nanogels in cancer therapy. The review is focused on both conventional and modified forms of oligonucleotide-based nanogels, including targeted nanogels, smart release nanogels (responsive to stimuli such as pH, temperature, and enzymes), as well as nanogels used for gene delivery. Their application in cancer immunotherapy and vaccination, photodynamic therapy, and diagnostic applications when combined with other nanoparticles is further discussed. Despite emerging designs in the development of oligonucleotide based nanogels, this field of study is still in its infancy, and clinical translation of these versatile nano-vehicles might face challenges. Hence, extensive research must be performed on in vivo behavior of such platforms determining their biodistribution, biological fate, and acute/subacute toxicity.
Collapse
Affiliation(s)
- Hooman Hatami
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of pharmaceutics, School of pharmacy, Mashhad University of Medical sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Shin J, Jo W, Hwang JH, Han J, Lee W, Park S, Kim YS, Kim HT, Kim DG. Regional Control of Multistimuli-Responsive Structural Color-Switching Surfaces by a Micropatterned DNA-Hydrogel Assembly. NANO LETTERS 2022; 22:5069-5076. [PMID: 35648998 DOI: 10.1021/acs.nanolett.2c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Structural colors have advantages compared with chemical pigments or dyes, such as iridescence, tunability, and unfading. Many studies have focused on developing the ability to switch ON/OFF the structural color; however, they often suffer from a simple and single stimulus, remaining structural colors, and target selectivity. Herein, we present regionally controlled multistimuli-responsive structural color switching surfaces. The key part is the utilization of a micropatterned DNA-hydrogel assembly on a single substrate. Each hydrogel network contains a unique type of stimuli-responsive DNA motifs as an additional cross-linker to exhibit swelling/deswelling via stimuli-responsive DNA interactions. The approach enables overcoming the existing limitations and selectively programming the DNA-hydrogel to a decrypted state (ON) and an encrypted state (OFF) in response to multiple stimuli. Furthermore, the transitions are reversible, providing cyclability. We envision the potential of our method for diverse applications, such as sensors or anticounterfeiting, requiring multistimuli-responsive structural color switching surfaces.
Collapse
Affiliation(s)
- Jeehae Shin
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Wonhee Jo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Jae Hyuk Hwang
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jiseok Han
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Department of Polymer Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Woohwa Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Sungmin Park
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Yong Seok Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Hee-Tak Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dong-Gyun Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
- Advanced Materials and Chemical Engineering, KRICT School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|
3
|
Modern Herbal Nanogels: Formulation, Delivery Methods, and Applications. Gels 2022; 8:gels8020097. [PMID: 35200478 PMCID: PMC8872030 DOI: 10.3390/gels8020097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
This study examined the most recent advancements in nanogel production and drug delivery. Phytochemistry is a discipline of chemistry that studies herbal compounds. Herbal substances have aided in the development of innovative remedies for a wide range of illnesses. Several of these compounds are forbidden from being used in medications due to broad medical characteristics and pharmacokinetics. A variety of new technical approaches have been investigated to ameliorate herbal discoveries in the pharmaceutical sector. The article focuses on the historical data for herb-related nanogels that are used to treat a variety of disorders with great patient compliance, delivery rate, and efficacy. Stimulus-responsive nanogels such as temperature responsive and pH-responsive systems are also discussed. Nanogel formulations, which have been hailed as promising targets for drug delivery systems, have the ability to alter the profile of a drug, genotype, protein, peptide, oligosaccharide, or immunogenic substance, as well as its ability to cross biological barriers, biodistribution, and pharmacokinetics, improving efficacy, safety, and patient cooperation.
Collapse
|
4
|
Xiong H, Liu L, Wang Y, Jiang H, Wang X. Engineered Aptamer-Organic Amphiphile Self-Assemblies for Biomedical Applications: Progress and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104341. [PMID: 34622570 DOI: 10.1002/smll.202104341] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Currently, nucleic acid aptamers are exploited as robust targeting ligands in the biomedical field, due to their specific molecular recognition, little immunogenicity, low cost, ect. Thanks to the facile chemical modification and high hydrophilicity, aptamers can be site-specifically linked with hydrophobic moieties to prepare aptamer-organic amphiphiles (AOAs), which spontaneously assemble into aptamer-organic amphiphile self-assemblies (AOASs). These polyvalent self-assemblies feature with enhanced target-binding ability, increased resistance to nuclease, and efficient cargo-loading, making them powerful platforms for bioapplications, including targeted drug delivery, cell-based cancer therapy, biosensing, and bioimaging. Besides, the morphology of AOASs can be elaborately manipulated for smarter biomedical functions, by regulating the hydrophilicity/hydrophobicity ratio of AOAs. Benefiting from the boom in DNA synthesis technology and nanotechnology, various types of AOASs, including aptamer-polymer amphiphile self-assemblies, aptamer-lipid amphiphile self-assemblies, aptamer-cell self-assemblies, ect, have been constructed with great biomedical potential. Particularly, stimuli-responsive AOASs with transformable structure can realize site-specific drug release, enhanced tumor penetration, and specific target molecule detection. Herein, the general synthesis methods of oligonucleotide-organic amphiphiles are firstly summarized. Then recent progress in different types of AOASs for bioapplications and strategies for morphology control are systematically reviewed. The present challenges and future perspectives of this field are also discussed.
Collapse
Affiliation(s)
- Hongjie Xiong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liu Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yihan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
5
|
Zhao L, Li L, Yang G, Wei B, Ma Y, Qu F. Aptamer functionalized DNA hydrogels: Design, applications and kinetics. Biosens Bioelectron 2021; 194:113597. [PMID: 34534951 DOI: 10.1016/j.bios.2021.113597] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023]
Abstract
DNA hydrogels have received considerable attention in various promising applications due to their excellent biocompatibility, controlled biodegradability, adjustable mechanical properties, stability against proteases, self-healing ability, and stimuli responsiveness. To obtain the specific molecular recognition capability, aptamers and many other functional motifs are utilized. Aptamers are short single-stranded DNA or RNA selected through SELEX to bind with specific target with high affinity and specificity. With advantages of broad range of targets, good stability, easy modification, and low cost, aptamer functionalized DNA hydrogels become popular in a wide range of promising applications. In this review, the recent progress on aptamer functionalized DNA hydrogels including general design principles, applications and kinetics has been summarized. Finally, the current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Liping Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Ge Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Bo Wei
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Yao Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
6
|
Mariconti M, Morel M, Baigl D, Rudiuk S. Enzymatically Active DNA-Protein Nanogels with Tunable Cross-Linking Density. Biomacromolecules 2021; 22:3431-3439. [PMID: 34260203 DOI: 10.1021/acs.biomac.1c00501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hybrid DNA-protein nanogels represent potential protein vectors and enzymatic nanoreactors for modern biotechnology. Here, we describe a new, easy, and robust method for preparation of tunable DNA-protein nanogels with controllable size and density. For this purpose, polymerase chain reaction is used to prepare highly biotinylated DNA as a soft biopolymeric backbone, which can be efficiently cross-linked via streptavidin-biotin binding. This approach enables us to control both the density and size of the resulting nanogels not only by adjusting the amount of the cross-linking streptavidin but also by using different rates of DNA biotinylation. This gives DNA-streptavidin nanogels with the size ranging from 80 nm, for the most compact state, to up to 200 nm. Furthermore, using streptavidin-enzyme conjugates allows the straightforward one-pot incorporation of enzymes during the preparation of the nanogels. Monoenzymatic and multienzymatic nanogels have been obtained in this manner, and their catalytic activities have been characterized. All tested enzymes (alkaline phosphatase (AP), horseradish peroxidase (HRP), and β-galactosidase (βGal)), incorporated individually or in a coupled manner (glucose oxidase (GOx)-HRP cascade), were shown to remain functional. The activities of AP and βGal were unchanged while that of HRP was slightly improved inside the nanogels. We demonstrate that, for HRP, it is not the DNA-to-enzyme ratio but the physical density of the functionalized DNA nanogels that is responsible for the improvement of its enzymatic activity.
Collapse
Affiliation(s)
- Marina Mariconti
- PASTEUR, Department of Chemistry, PSL University, Sorbonne Université, CNRS, Ecole Normale Supérieure, Paris 75005, France
| | - Mathieu Morel
- PASTEUR, Department of Chemistry, PSL University, Sorbonne Université, CNRS, Ecole Normale Supérieure, Paris 75005, France
| | - Damien Baigl
- PASTEUR, Department of Chemistry, PSL University, Sorbonne Université, CNRS, Ecole Normale Supérieure, Paris 75005, France
| | - Sergii Rudiuk
- PASTEUR, Department of Chemistry, PSL University, Sorbonne Université, CNRS, Ecole Normale Supérieure, Paris 75005, France
| |
Collapse
|
7
|
Abune L, Davis B, Wang Y. Aptamer-functionalized hydrogels: An emerging class of biomaterials for protein delivery, cell capture, regenerative medicine, and molecular biosensing. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1731. [PMID: 34132055 DOI: 10.1002/wnan.1731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/27/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Molecular recognition is essential to the development of biomaterials. Aptamers are a unique class of synthetic ligands interacting with not only their target molecules with high affinities and specificities but also their complementary sequences with high fidelity. Thus, aptamers have recently attracted significant attention in the development of an emerging class of biomaterials, that is, aptamer-functionalized hydrogels. In this review, we introduce the methods of incorporating aptamers into hydrogels as pendant motifs or crosslinkers. We further introduce the functions of these hydrogels in recognizing proteins, cells, and analytes through four applications including protein delivery, cell capture, regenerative medicine, and molecular biosensing. Notably, as aptamer-functionalized hydrogels have the characteristics of both aptamers and hydrogels, their potential applications are broad and beyond the scope of this review. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Lidya Abune
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brandon Davis
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
8
|
Zwitterionic polyaspartamides based on L-lysine side-chain moieties: Synthesis, nonfouling properties and direct/indirect nanogel preparation. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Luckanagul JA, Ratnatilaka Na Bhuket P, Muangnoi C, Rojsitthisak P, Wang Q, Rojsitthisak P. Self-Assembled Thermoresponsive Nanogel from Grafted Hyaluronic Acid as a Biocompatible Delivery Platform for Curcumin with Enhanced Drug Loading and Biological Activities. Polymers (Basel) 2021; 13:E194. [PMID: 33430269 PMCID: PMC7825653 DOI: 10.3390/polym13020194] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
A hyaluronic acid-grafted poly(N-isopropylacrylamide) (HA-pNIPAM) was synthesized as a polymeric nanogel platform for encapsulation and delivery of hydrophobic bioactive compounds using curcumin as a model drug. As demonstrated by transmission electron microscopy and dynamic light scattering techniques, the HA-pNIPAM was simply assembled into spherical nano-sized particles with the thermoresponsive behavior. The success of curcumin aqueous solubilization was confirmed by fluorescent spectroscopy. The resulting nanogel formulation enhanced the aqueous solubility and uptake into NIH-3T3 cells of curcumin. This nanogel formulation also demonstrates cytocompatibility against NIH-3T3 cells, which deems it safe as a delivery vehicle. Moreover, the formulation has a slight skin-protection effect using an artificial skin equivalence model. The curcumin-loaded HA-pNIPAM nanogel showed an anti-proliferative activity against MDA-MB-231, Caco-2, HepG2, HT-29, and TNF-α-induced hyperproliferation of keratinocyte (HaCaT) cells. The thermoresponsive HA-pNIPAM nanogel reported here could be further optimized as a platform for controlled-release systems to encapsulate pharmaceuticals for therapeutic applications.
Collapse
Affiliation(s)
- Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (P.R.N.B.); (P.R.)
| | - Pahweenvaj Ratnatilaka Na Bhuket
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (P.R.N.B.); (P.R.)
| | - Chawanphat Muangnoi
- Cell and Animal Model Unit, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Pranee Rojsitthisak
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (P.R.N.B.); (P.R.)
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, SC 29208, USA;
| | - Pornchai Rojsitthisak
- Natural Products for Ageing and Chronic Diseases Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (P.R.N.B.); (P.R.)
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Mohammadi M, Arabi L, Alibolandi M. Doxorubicin-loaded composite nanogels for cancer treatment. J Control Release 2020; 328:171-191. [PMID: 32866591 DOI: 10.1016/j.jconrel.2020.08.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023]
Abstract
Nanogels as a versatile vehicle for doxorubicin have attracted great attention during the last decade. Since a nanogel composite device transport encapsulated drugs to the site of action and release them in a desirable time-frame, it could provide higher therapeutic effect. By implementation of different polymers, polymer/inorganic NPs and various crosslinking chemistry, it is possible to fabricate novel composite nanogel systems with favorable characteristics such as smart intelligent systems or multipurpose platforms. Due to high stability, good drug loading capacity for hydrophobic and hydrophilic agents, nanogels introduce great opportunity in pharmaceutical innovations. Composite nanogels show capability in gene, drug and diagnostic agents' delivery while providing an ideal platform for theranostic purposes as multifunctional systems. Doxorubicin as an anticancer agent is widely used against numerous cancers. Due to high systemic toxicity of doxorubicin, there is still need for its safe and specific delivery to the site of action. In this regard, so many efforts have been put in by the researchers for preparation of different nanogel formulations of doxorubicin in order to produce more efficient formulations. This review focuses on design, fabrication, advantages and disadvantages of composite nanogel-based doxorubicin formulations.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Chen J, Zhu Y, Liu H, Wang L. Tailoring DNA Self-assembly to Build Hydrogels. Top Curr Chem (Cham) 2020; 378:32. [PMID: 32146604 DOI: 10.1007/s41061-020-0295-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/23/2020] [Indexed: 01/12/2023]
Abstract
DNA hydrogels are crosslinked polymeric networks in which DNA is used as the backbone or the crosslinker. These hydrogels are novel biofunctional materials that possess the biological character of DNA and the framed structure of hydrogels. Compared with other kinds of hydrogels, DNA hydrogels exhibit not only high mechanical strength and controllable morphologies but also good recognition ability, designable responsiveness, and programmability. The DNA used in this type of hydrogel acts as a building block for self-assembly or as a responsive element due to its sequence recognition ability and switchable structural transitions, respectively. In this review, we describe recent developments in the field of DNA hydrogels and discuss the role played by DNA in these hydrogels. Various synthetic strategies for and a range of applications of DNA hydrogels are detailed.
Collapse
Affiliation(s)
- Jie Chen
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Huajie Liu
- School of Chemical Science and Engineering, Shanghai Research Institute for Intelligent Autonomous Systems, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai, 200092, China.
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China. .,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
| |
Collapse
|
12
|
Khajouei S, Ravan H, Ebrahimi A. DNA hydrogel-empowered biosensing. Adv Colloid Interface Sci 2020; 275:102060. [PMID: 31739981 PMCID: PMC7094116 DOI: 10.1016/j.cis.2019.102060] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 01/28/2023]
Abstract
DNA hydrogels as special members in the DNA nanotechnology have provided crucial prerequisites to create innovative gels owing to their sufficient stability, biocompatibility, biodegradability, and tunable multifunctionality. These properties have tailored DNA hydrogels for various applications in drug delivery, tissue engineering, sensors, and cancer therapy. Recently, DNA-based materials have attracted substantial consideration for the exploration of smart hydrogels, in which their properties can change in response to chemical or physical stimuli. In other words, these gels can undergo switchable gel-to-sol or sol-to-gel transitions upon application of different triggers. Moreover, various functional motifs like i-motif structures, antisense DNAs, DNAzymes, and aptamers can be inserted into the polymer network to offer a molecular recognition capability to the complex. In this manuscript, a comprehensive discussion will be endowed with the recognition capability of different kinds of DNA hydrogels and the alternation in physicochemical behaviors upon target introducing. Finally, we offer a vision into the future landscape of DNA based hydrogels in sensing applications.
Collapse
Affiliation(s)
- Sima Khajouei
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hadi Ravan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Ali Ebrahimi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
13
|
Abstract
DNA has played an early and powerful role in the development of bottom-up nanotechnologies, not least because of DNA's precise, predictable, and controllable properties of assembly on the nanometer scale. Watson-Crick complementarity has been used to build complex 2D and 3D architectures and design a number of nanometer-scale systems for molecular computing, transport, motors, and biosensing applications. Most of such devices are built with classical B-DNA helices and involve classical A-T/U and G-C base pairs. However, in addition to the above components underlying the iconic double helix, a number of alternative pairing schemes of nucleobases are known. This review focuses on two of these noncanonical classes of DNA helices: G-quadruplexes and the i-motif. The unique properties of these two classes of DNA helix have been utilized toward some remarkable constructions and applications: G-wires; nanostructures such as DNA origami; reconfigurable structures and nanodevices; the formation and utilization of hemin-utilizing DNAzymes, capable of generating varied outputs from biosensing nanostructures; composite nanostructures made up of DNA as well as inorganic materials; and the construction of nanocarriers that show promise for the therapeutics of diseases.
Collapse
Affiliation(s)
- Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China.,ARNA Laboratory , Université de Bordeaux, Inserm U 1212, CNRS UMR5320, IECB , Pessac 33600 , France.,Institute of Biophysics of the CAS , v.v.i., Královopolská 135 , 612 65 Brno , Czech Republic
| | - Dipankar Sen
- Department of Molecular Biology & Biochemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada.,Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
14
|
Sugimoto S, Iwasaki Y. Surface Modification of Macrophages with Nucleic Acid Aptamers for Enhancing the Immune Response against Tumor Cells. Bioconjug Chem 2018; 29:4160-4167. [PMID: 30395444 DOI: 10.1021/acs.bioconjchem.8b00793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antigen-presenting cells play a dominant role in cancer immunotherapy. Tumor cells, however, can still resort to several mechanisms of immune evasion that ultimately lead to the development of tumor tissues. In the current study, we performed surface modification of live macrophages with nucleic acid aptamers with the aim to enhance their affinity for tumor cells. Intercellular adhesion of tumor cells to surface-modified macrophages and the functions of the macrophages when in contact with tumor cells were investigated. To immobilize thiol-terminated nucleic acid aptamers that showed high affinity for the membrane protein of the tumor cells, methacryloyl groups were delivered into the sialic acids of the macrophages via metabolic glycoengineering (MGE). The proposed surface modification was cytocompatible and did not induce any undesirable activation of macrophages. According to the cell proliferation assay, the density of aptamers immobilized on a macrophage was found to decrease over time. However, the presence of aptamers on the cell surface was observed for more than 24 h after the immobilization. The number of adherent tumor cells on aptamer-immobilized macrophages was significantly larger than that of non-immobilized macrophages. Although the number of adherent tumor cells on aptamer-immobilized macrophages was not influenced by the pretreatment of doxorubicin to induce apoptosis in tumor cells, the apoptosis-induced tumor cells were highly phagocytosed by the aptamer-immobilized macrophages. The secretion amount of proinflammatory cytokines (TNF-α and IL-12) from the macrophages was coincident with the phagocytic index, which increased with the phagocytic uptake of tumor cells by the macrophages. In addition, the expression level of the major histocompatibility complex (MHC) class I and II molecules, required for antigen presentation, increased in nucleic acid aptamer-immobilized macrophages. Overall, the surface modification of macrophages with nucleic acid aptamers improved the tumor cell recognition of macrophages, indicating that the combination of cell surface engineering and anticancer drug treatment could constitute a promising strategy for tumor cell elimination.
Collapse
Affiliation(s)
- Shunsuke Sugimoto
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering , Kansai University , 3-3-35 Yamate-cho , Suita-shi , Osaka 564-8680 , Japan
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering , Kansai University , 3-3-35 Yamate-cho , Suita-shi , Osaka 564-8680 , Japan
| |
Collapse
|
15
|
Petr Š, Jana D, Peter Č, Ewa P, Vladimír P. Poly(amino acid)-based nanogel by horseradish peroxidase catalyzed crosslinking in an inverse miniemulsion. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4318-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Tanaka S, Yukami S, Fukushima K, Wakabayashi K, Ohya Y, Kuzuya A. Bulk pH-Responsive DNA Quadruplex Hydrogels Prepared by Liquid-Phase, Large-Scale DNA Synthesis. ACS Macro Lett 2018; 7:295-299. [PMID: 35632920 DOI: 10.1021/acsmacrolett.8b00063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A new pH-responsive hydrogel biomaterial, that is composed of solely two popular biocompatible materials, oligodeoxynucleotides (ODN) and polyethylene glycol (PEG) have been prepared. Merely five deoxycytidine residues were elongated to the ends of linear or 4-arm PEG in ×1000 larger scale than conventional systems by using liquid-phase DNA synthesis technique, and applied them as a macromonomer for the preparation of hydrogels. The syntheses of the conjugates are simply elongating ODN onto the ends of PEG as a semisolid phase substrate using standard phosphoramidite chemistry. The resulting dC5-PEG conjugates gave quite stable and stiff hydrogels triggered by the formation of a unique DNA quadruplex, i-motif. Introduction of only one chemical linkage between two linear conjugates resulted in unexpectedly high thermal stabilities for the melting temperatures of i-motifs themselves. Nonlinearly improved rheological properties compared to the original linear conjugates were also observed, probably because of topological entanglement between macromonomers of fused circles.
Collapse
|
17
|
Hori SI, Herrera A, Rossi JJ, Zhou J. Current Advances in Aptamers for Cancer Diagnosis and Therapy. Cancers (Basel) 2018; 10:cancers10010009. [PMID: 29301363 PMCID: PMC5789359 DOI: 10.3390/cancers10010009] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/24/2022] Open
Abstract
Nucleic acid aptamers are single-stranded oligonucleotides that interact with target molecules with high affinity and specificity in unique three-dimensional structures. Aptamers are generally isolated by a simple selection process called systematic evolution of ligands by exponential enrichment (SELEX) and then can be chemically synthesized and modified. Because of their high affinity and specificity, aptamers are promising agents for biomarker discovery, as well as cancer diagnosis and therapy. In this review, we present recent progress and challenges in aptamer and SELEX technology and highlight some representative applications of aptamers in cancer therapy.
Collapse
Affiliation(s)
- Shin-Ichiro Hori
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan.
| | - Alberto Herrera
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| |
Collapse
|