1
|
Wang Y, Wang M, Xia G, Yang Y, Si L, Wang H, Wang H. Maximal emission beyond 1200 nm dicyanovinyl-functionalized squaraine for in vivo vascular imaging. Chem Commun (Camb) 2023; 59:3598-3601. [PMID: 36883558 DOI: 10.1039/d3cc00331k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The first maximum emission wavelength beyond 1200 nm acceptor-substituted squaraine fluorophore with ultra-high brightness and photostability has been developed. It can be co-assembled with bovine serum albumin to form an excellent biocompatible dye-protein nanocomplex with significant fluorescence enhancement for high-resolution vascular imaging.
Collapse
Affiliation(s)
- Yigang Wang
- Institute for Advanced Study, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, China.
| | - Mingda Wang
- Institute for Advanced Study, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, China.
| | - Guomin Xia
- Institute for Advanced Study, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, China.
| | - Yang Yang
- Institute for Advanced Study, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, China.
| | - Leilei Si
- Institute for Advanced Study, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, China.
| | - Hua Wang
- The Second Affiliated Hospital of Nanchang University, Nanchang 330031, China
| | - Hongming Wang
- Institute for Advanced Study, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, China.
- School of Chemistry and Chemical Engineering, Nanchang University, No. 999 Xuefu Avenue, Nanchang 330031, China
| |
Collapse
|
2
|
Piwoński H, Nozue S, Habuchi S. The Pursuit of Shortwave Infrared-Emitting Nanoparticles with Bright Fluorescence through Molecular Design and Excited-State Engineering of Molecular Aggregates. ACS NANOSCIENCE AU 2022; 2:253-283. [PMID: 37102065 PMCID: PMC10125152 DOI: 10.1021/acsnanoscienceau.1c00038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Shortwave infrared (SWIR) fluorescence detection gradually becomes a pivotal real-time imaging modality, allowing one to elucidate biological complexity in deep tissues with subcellular resolution. The key challenge for the further growth of this imaging modality is the design of new brighter biocompatible fluorescent probes. This review summarizes the recent progress in the development of organic-based nanomaterials with an emphasis on new strategies that extend the fluorescence wavelength from the near-infrared to the SWIR spectral range and amplify the fluorescence brightness. We first introduce the most representative molecular design strategies to obtain near-infrared-SWIR wavelength fluorescence emission from small organic molecules. We then discuss how the formation of nanoparticles based on small organic molecules contributes to the improvement of fluorescence brightness and the shift of fluorescence to SWIR, with a special emphasis on the excited-state engineering of molecular probes in an aggregate state and spatial packing of the molecules in nanoparticles. We build our discussion based on a historical perspective on the photophysics of molecular aggregates. We extend this discussion to nanoparticles made of conjugated polymers and discuss how fluorescence characteristics could be improved by molecular design and chain conformation of the polymer molecules in nanoparticles. We conclude the article with future directions necessary to expand this imaging modality to wider bioimaging applications including single-particle deep tissue imaging. Issues related to the characterization of SWIR fluorophores, including fluorescence quantum yield unification, are also mentioned.
Collapse
|
3
|
Kim JH, Schembri T, Bialas D, Stolte M, Würthner F. Slip-Stacked J-Aggregate Materials for Organic Solar Cells and Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104678. [PMID: 34668248 DOI: 10.1002/adma.202104678] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Dye-dye interactions affect the optical and electronic properties in organic semiconductor films of light harvesting and detecting optoelectronic applications. This review elaborates how to tailor these properties of organic semiconductors for organic solar cells (OSCs) and organic photodiodes (OPDs). While these devices rely on similar materials, the demands for their optical properties are rather different, the former requiring a broad absorption spectrum spanning from the UV over visible up to the near-infrared region and the latter an ultra-narrow absorption spectrum at a specific, targeted wavelength. In order to design organic semiconductors satisfying these demands, fundamental insights on the relationship of optical properties are provided depending on molecular packing arrangement and the resultant electronic coupling thereof. Based on recent advancements in the theoretical understanding of intermolecular interactions between slip-stacked dyes, distinguishing classical J-aggregates with predominant long-range Coulomb coupling from charge transfer (CT)-mediated or -coupled J-aggregates, whose red-shifts are primarily governed by short-range orbital interactions, is suggested. Within this framework, the relationship between aggregate structure and functional properties of representative classes of dye aggregates is analyzed for the most advanced OSCs and wavelength-selective OPDs, providing important insights into the rational design of thin-film optoelectronic materials.
Collapse
Affiliation(s)
- Jin Hong Kim
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Tim Schembri
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - David Bialas
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Stolte
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry (CNC) and Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
4
|
Zhang Y, He Z, Du X, Han J, Lin H, Zheng C, Wang J, Yang G, Tao S. High-performance organic upconversion device with 12% photon to photon conversion efficiency at 980 nm and bio-imaging application in near-infrared region. OPTICS EXPRESS 2022; 30:16644-16654. [PMID: 36221502 DOI: 10.1364/oe.454655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/12/2022] [Indexed: 06/16/2023]
Abstract
We demonstrated an organic upconversion device (UCD) successfully converted input NIR light (850-1310 nm) into 524 nm green emission. The UCD under 980 nm light irradiation exhibits a high photon to photon conversion efficiency of 12%. In addition, the linear dynamic range reaches 72.1 dB and the maximum on/off ratio of luminance reaches 4.4×104, which guarantee the clarity of imaging from 850 to 1310 nm. The UCD in this work has the characteristics of high efficiency and long wavelengths detection, and it makes some senses for long wavelengths NIR bio-imaging in further researches.
Collapse
|
5
|
Freytag E, Holzapfel M, Swain A, Bringmann G, Stolte M, Würthner F, Lambert C. Axially chiral indolenine derived chromophore dimers and their chiroptical absorption and emission properties. Chem Sci 2022; 13:12229-12238. [PMID: 36349102 PMCID: PMC9601394 DOI: 10.1039/d2sc04600h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
Yamamoto homocoupling of two chiral oxindoles led to the atropo-diastereoselective formation of an axially chiral oxindole dimer. This building block served as the starting material for the syntheses of axially chiral squaraine and merocyanine chromophore dimers. These dimers show pronounced chiroptical properties, this is, outstandingly high ECD signals (Δε up to ca. 1500 M−1 cm−1) as a couplet with positive Cotton effect for the P-configuration around the biaryl axis and a negative Cotton effect for the M-configuration. All investigated dimers also exhibit pronounced circularly polarised emission with anisotropy values of ca. 10−3 cgs. Time-dependent density functional calculations were used to analyse the three contributions (local one electron, electric–magnetic coupling, and exciton coupling) to the rotational strength applying the Rosenfeld equation to excitonically coupled chromophores. While the exciton coupling term proves to be the dominant one, the electric–magnetic coupling possesses the same sign and adds significantly to the total rotational strength owing to a favourable geometric arrangement of the two chromophores within the dimer. From an axially chiral oxindole, squaraine and merocyanine chromophore dimers with pronounced chiroptical properties were prepared.![]()
Collapse
Affiliation(s)
- Emely Freytag
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Marco Holzapfel
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Asim Swain
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Gerhard Bringmann
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Matthias Stolte
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| |
Collapse
|
6
|
Balzer F, Schumacher MF, Mattiello S, Schulz M, Zablocki J, Schmidtmann M, Meerholz K, Serdar Sariciftci N, Beverina L, Lützen A, Schiek M. The Impact of Chiral Citronellyl‐Functionalization on Indolenine and Anilino Squaraine Thin Films. Isr J Chem 2021. [DOI: 10.1002/ijch.202100079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Frank Balzer
- SDU Centre for Photonics Engineering Mads Clausen Institute University of Southern Denmark Alsion 2 DK-6400 Sønderborg Denmark
| | - Marvin F. Schumacher
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Str. 1 D-53121 Bonn Germany
| | - Sara Mattiello
- Department of Materials Chemistry and INSTM University of Milano-Bicocca Via R. Cozzi 53 I-20125 Milano Italy
| | - Matthias Schulz
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Str. 1 D-53121 Bonn Germany
| | - Jennifer Zablocki
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Str. 1 D-53121 Bonn Germany
| | - Marc Schmidtmann
- Department of Chemistry University of Oldenburg Carl-von-Ossietzky-Str. 9–11 D-26129 Oldenburg Germany
| | - Klaus Meerholz
- Physical Chemistry University of Cologne Greinstr. 4–6 D-50939 Cologne Germany
| | - N. Serdar Sariciftci
- Linz Institute for Solar Cells Johannes Kepler University Altenberger Str. 69 A-4040 Linz Austria
| | - Luca Beverina
- Department of Materials Chemistry and INSTM University of Milano-Bicocca Via R. Cozzi 53 I-20125 Milano Italy
| | - Arne Lützen
- Kekulé-Institute for Organic Chemistry and Biochemistry University of Bonn Gerhard-Domagk-Str. 1 D-53121 Bonn Germany
| | - Manuela Schiek
- Linz Institute for Solar Cells Johannes Kepler University Altenberger Str. 69 A-4040 Linz Austria
- Center for Surface- and Nanoanalytics and Linz Institute for Solar Cells Johannes Kepler University Altenberger Str. 69 A-4040 Linz Austria
- Institute of Physics University of Oldenburg Carl-von-Ossietzky-Str. 9–11 D-26129 Oldenburg Germany
| |
Collapse
|