1
|
Karavasili C, Young T, Francis J, Blanco J, Mancini N, Chang C, Bernstock JD, Connolly ID, Shankar GM, Traverso G. Local drug delivery challenges and innovations in spinal neurosurgery. J Control Release 2024; 376:1225-1250. [PMID: 39505215 DOI: 10.1016/j.jconrel.2024.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
The development of novel therapeutics in the field of spinal neurosurgery faces a litany of translational challenges. Achieving precise drug targeting within the confined spaces associated with the spinal cord, canal and vertebra requires the development of next generation delivery systems and devices. These must be capable of overcoming inherent barriers related to drug diffusion, whilst concurrently ensuring optimal drug distribution and retention. In this review, we provide an overview of the most recent advances in the therapeutic management of diseases and disorders affecting the spine, including systems and devices capable of releasing small molecules and biopharmaceuticals that help eliminate pain and restore the mechanical function and stability of the spine. We highlight material-based approaches and minimally invasive techniques that can be employed to provide control over drug release kinetics and improve retention. We also seek to explore how the newest advancements in nanotechnology, biomaterials, additive manufacturing technologies and imaging modalities can be employed in this translational pursuit. Finally, we discuss the landscape of clinical trials and recently approved products aimed at overcoming the complexities associated with drug delivery to the spine.
Collapse
Affiliation(s)
- Christina Karavasili
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas Young
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua Francis
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Julianna Blanco
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nicholas Mancini
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Charmaine Chang
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua D Bernstock
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ian D Connolly
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ganesh M Shankar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giovanni Traverso
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States; Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
2
|
Shahed KS, Fainor M, Gullbrand SE, Hast MW, Manogharan G. Hybrid additive manufacturing for Zn-Mg casting for biomedical application. IN VITRO MODELS 2024; 3:157-168. [PMID: 39877644 PMCID: PMC11756471 DOI: 10.1007/s44164-024-00077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 01/31/2025]
Abstract
Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analysis confirmed that Zn-Mg intermetallic phases formed at the grain boundary. Micro indentation testing resulted in hardness value ranging from 83.772 to 99.112 HV and an elastic modulus varying from 92.601 to 94.625 GPa. Results from in vitro cell culture experiments showed that cells robustly survived on both TPMS and solid scaffolds, confirming the suitability of the material and structure as biomedical implants. This work suggests that this novel hybrid manufacturing process may be a viable approach to fabricating next generation biodegradable orthopaedic implants. Graphical Abstract
Collapse
Affiliation(s)
- Kazi Safowan Shahed
- Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA
| | - Matthew Fainor
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA USA
| | - Sarah E. Gullbrand
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA USA
| | - Michael W. Hast
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Mechanical Engineering, University of Delaware, Newark, DE USA
| | - Guha Manogharan
- Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA
- Department of Mechanical Engineering, Pennsylvania State University, State College, University Park, PA USA
| |
Collapse
|
3
|
Cracknell D, Battley M, Fernandez J, Amirpour M. The mechanical response of polymeric gyroid structures in an optimised orthotic insole. Biomech Model Mechanobiol 2024:10.1007/s10237-024-01912-9. [PMID: 39560847 DOI: 10.1007/s10237-024-01912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
This study aims to explore the mechanical behaviour of polymeric gyroid structures under compression within the context of orthotic insoles, focussing on custom optimisation for lower peak plantar pressures. This research evaluates the compressive response of gyroid structures using a combination of experimental testing and numerical modelling. Stereolithography was used to manufacture gyroid samples for experimental tests, and explicit finite element analysis was used to model the gyroid's response numerically. Hyperfoam, first-order polynomial, and second-order polynomial hyperelastic constitutive models were considered to homogenise the mechanical response of the structure. The homogenised properties of the structure were then implemented in an optimisation algorithm to obtain the optimal gyroid structure for a given subject by minimising the standard distribution of plantar pressures. Findings indicate that the compressive response polymeric gyroid structures can be represented with a homogeneous material. The hyperfoam model was chosen due to its accuracy and interpolation quality. The optimisation process successfully identified configurations that maximise the mechanical advantages of gyroid lattices, demonstrating significant improvements in plantar pressure distributions. The optimised insole showed a 30% reduction in the standard deviation of the plantar pressure and a 10% reduction in the peak stress. The optimisation method reduced peak pressures by 12.2 kPa compared to a traditional medium-density Poron orthotic insole, and 94.3 kPa compared barefoot conditions. The mechanical response of gyroid structures has successfully been modelled, analysed and homogenised. The study concludes that custom gyroid-based orthotic insoles offer a promising solution for personalised foot care.
Collapse
Affiliation(s)
- Dayna Cracknell
- Department of Engineering Science, The University of Auckland, Khyber Pass Road, Auckland, 1023, New Zealand.
| | - Mark Battley
- Department of Engineering Science, The University of Auckland, Khyber Pass Road, Auckland, 1023, New Zealand
| | - Justin Fernandez
- Department of Engineering Science, The University of Auckland, Khyber Pass Road, Auckland, 1023, New Zealand
| | - Maedeh Amirpour
- Department of Engineering Science, The University of Auckland, Khyber Pass Road, Auckland, 1023, New Zealand
| |
Collapse
|
4
|
Li J, Sun Z, Wei X, Tan Q, He X. Effect of Structure on Osteogenesis of Bone Scaffold: Simulation Analysis Based on Mechanobiology and Animal Experiment Verification. Bioengineering (Basel) 2024; 11:1120. [PMID: 39593780 PMCID: PMC11592375 DOI: 10.3390/bioengineering11111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Porous scaffolds, whose mechanical and biological properties are greatly affected by structure, are new treatments for bone defects. Since bone repair is related to biomechanics, analyzing the osteogenesis in scaffolds based on mechanical stimulation may become a more effective method than traditional biological experiments. A tissue regeneration algorithm based on mechanical regulation theory was implemented in this study to evaluate the osteogenesis of classical scaffolds (Gyroid, I-WP, and Diamond). In vivo experiments were used to verify and supplement the simulation results. Different approaches to describing osteogenesis were discussed. Bone formation was more obvious inside the Gyroid scaffold and outside the I-WP scaffold, while the new bone was more sufficient and evenly distributed in the Diamond scaffold. The osteogenesis pattern of the bone scaffold in the simulation analysis was consistent with the results of animal experiments, and the bone volume calculated by the tissue fraction threshold method and the elastic modulus threshold method was very similar to the in vivo experiment. The mechanical responses mediated by structure affect the osteogenesis of bone scaffolds. This study provided and confirmed a simulation analysis method based on mechanical regulation theory, which is more efficient and economical for analyzing tissue healing in bioengineering.
Collapse
Affiliation(s)
- Jialiang Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Zhongwei Sun
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing 210096, China;
| | - Xinyu Wei
- Department of Health Management, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710014, China;
| | - Qinghua Tan
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710014, China; (Q.T.); (X.H.)
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710014, China; (Q.T.); (X.H.)
| |
Collapse
|
5
|
Nhaichaniya GK, Kumar M, Dayal R. Improvement in Active Cell Proliferation Area at Higher Permeability With Novel TPMS Lattice Structure. J Biomech Eng 2024; 146:111009. [PMID: 39152719 DOI: 10.1115/1.4066218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
The utilization of lattice-based scaffolds emerging as an advance technique over conventional bio-implants in Bone Tissue Engineering. In this study, totally six lattice structures are considered for permeability and wall shear stress (WSS) investigation. Namely triply periodic minimal surfaces (TPMS)-based Gyroid, Schwarz-P, Schwarz-D, and two beam-based structure-Cubic and Fluorite are compared with the proposed new lattice structure at porosity level of 80%, 75%, and 70%. The proposed new lattice has combine characteristic of Gyroid and Schwarz-D TPMS lattice. The permeability is determined through Darcy's law, where the pressure drop across the lattice structure is calculated using a computational fluid dynamics (CFD) tool at flowrate between 0.2 and 10 ml/min. The Cubic and Schwarz-P lattice structures exhibited the highest permeability but at the cost of a lower active surface area for WSS, measuring below 155 mm2, means least cell proliferation occurs while the permeability value in New Lattice structure is in the ideal range with the enhanced active surface area for WSS (514 mm2). The complex internal curvatures of New Lattice promote the cell proliferation while the through-pore holes allow the efficient cell seeding.
Collapse
Affiliation(s)
| | - Manish Kumar
- Department of Mechanical Engineering, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Ram Dayal
- Department of Mechanical Engineering, Malaviya National Institute of Technology, Jaipur 302017, India
| |
Collapse
|
6
|
Binobaid A, Guner A, Camilleri J, Jiménez A, Essa K. A 3D printed ultra-short dental implant based on lattice structures and ZIRCONIA/Ca 2SiO 4 combination. J Mech Behav Biomed Mater 2024; 155:106559. [PMID: 38657285 DOI: 10.1016/j.jmbbm.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Additive Manufacturing (AM) enables the generation of complex geometries and controlled internal cavities that are so interesting for the biomedical industry due to the benefits they provide in terms of osseointegration and bone growth. These technologies enable the manufacturing of the so-called lattice structures that are cells with different geometries and internal pores joint together for the formation of scaffold-type structures. In this context, the present paper analyses the feasibility of using diamond-type lattice structures and topology optimisation for the re-design of a dental implant. Concretely, a new ultra-short implant design is proposed in this work. For the manufacturing of the implant, digital light processing additive manufacturing technique technology is considered. The implant was made out of Nano-zirconia and Nano-Calcium Silicate as an alternative material to the more common Ti6Al4V. This material combination was selected due to the properties of the calcium-silicate that enhance bone ingrowth. The influence of different material combination ratios and lattice pore sizes were analysed by means of FEM simulation. For those simulations, a bio-material bone-nanozirconia model was considered that represents the final status after the bone is integrated in the implant. Results shows that the mechanical properties of the biocompatible composite employed were suitable for dental implant applications in dentistry. Based on the obtained results it was seen that those designs with 400 μm and 500 μm pore sizes showed best performance and led to the required factor of safety.
Collapse
Affiliation(s)
- Ahmed Binobaid
- School of Mechanical Engineering, University of Birmingham, Birmingham, UK; Lecturer, Dental Biomaterials, Restorative and Prosthodontic Dental Sciences Department, School of Dentistry, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs Riyadh, P.O. Box 24264, Riyadh, 11486, Kingdom of Saudi Arabia
| | - Ahmet Guner
- School of Mechanical Engineering, University of Birmingham, Birmingham, UK
| | | | - Amaia Jiménez
- Universidad de Navarra, TECNUN Escuela de Ingeniería, Manuel de Lardizábal 15, 20018, San Sebastián, Spain.
| | - Khamis Essa
- School of Mechanical Engineering, University of Birmingham, Birmingham, UK.
| |
Collapse
|
7
|
Sheremetyev V, Konopatsky A, Teplyakova T, Lezin V, Lukashevich K, Derkach M, Kostyleva A, Koudan E, Permyakova E, Iakimova T, Boychenko O, Klyachko N, Shtansky D, Prokoshkin S, Brailovski V. Surface modification of the laser powder bed-fused Ti-Zr-Nb scaffolds by dynamic chemical etching and Ag nanoparticles decoration. BIOMATERIALS ADVANCES 2024; 161:213882. [PMID: 38710121 DOI: 10.1016/j.bioadv.2024.213882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
Metallic lattice scaffolds are designed to mimic the architecture and mechanical properties of bone tissue and their surface compatibility is of primary importance. This study presents a novel surface modification protocol for metallic lattice scaffolds printed from a superelastic Ti-Zr-Nb alloy. This protocol consists of dynamic chemical etching (DCE) followed by silver nanoparticles (AgNP) decoration. DCE, using an 1HF + 3HNO3 + 12H2O23% based solution, was used to remove partially-fused particles from the surfaces of different as-built lattice structures (rhombic dodecahedron, sheet gyroid, and Voronoi polyhedra). Subsequently, an antibacterial coating was synthesized on the surface of the scaffolds by a controlled (20 min at a fixed volume flowrate of 500 mL/min) pumping of the functionalization solutions (NaBH4 (2 mg/mL) and AgNO3 (1 mg/mL)) through the porous structures. Following these treatments, the scaffolds' surfaces were found to be densely populated with Ag nanoparticles and their agglomerates, and manifested an excellent antibacterial effect (Ag ion release rate of 4-8 ppm) suppressing the growth of both E. coli and B. subtilis bacteria up to 99 %. The scaffold extracts showed no cytotoxicity and did not affect cell proliferation, indicating their safety for subsequent use as implants. A cytocompatibility assessment using MG-63 spheroids demonstrated good attachment, spreading, and active migration of cells on the scaffold surface (over 96 % of living cells), confirming their biotolerance. These findings suggest the promise of this surface modification approach for developing superelastic Ti-Zr-Nb scaffolds with superior antibacterial properties and biocompatibility, making them highly suitable for bone implant applications.
Collapse
Affiliation(s)
- V Sheremetyev
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, Moscow 119049, Russian Federation.
| | - A Konopatsky
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, Moscow 119049, Russian Federation; CRISMAT, CNRS, Normandie Univ, ENSICAEN, UNICAEN, Caen 14000, France
| | - T Teplyakova
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, Moscow 119049, Russian Federation; A.V. Shubnikov Institute of Crystallography, FSRC "Crystallography and Photonics" RAS, Moscow 119333, Russian Federation
| | - V Lezin
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, Moscow 119049, Russian Federation
| | - K Lukashevich
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, Moscow 119049, Russian Federation
| | - M Derkach
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, Moscow 119049, Russian Federation
| | - A Kostyleva
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, Moscow 119049, Russian Federation
| | - E Koudan
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, Moscow 119049, Russian Federation
| | - E Permyakova
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, Moscow 119049, Russian Federation
| | - T Iakimova
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - O Boychenko
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - N Klyachko
- School of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - D Shtansky
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, Moscow 119049, Russian Federation
| | - S Prokoshkin
- National University of Science and Technology "MISIS", Leninsky Prospect 4s1, Moscow 119049, Russian Federation
| | - V Brailovski
- École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada
| |
Collapse
|
8
|
Wahbeh JM, Hookasian E, Lama J, Alam L, Park S, Sangiorgio SN, Ebramzadeh E. An additively manufactured model for preclinical testing of cervical devices. JOR Spine 2024; 7:e1285. [PMID: 38222806 PMCID: PMC10782067 DOI: 10.1002/jsp2.1285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 01/16/2024] Open
Abstract
Purpose Composite models have become commonplace for the assessment of fixation and stability of total joint replacements; however, there are no comparable models for the cervical spine to evaluate fixation. The goal of this study was to create the framework for a tunable non-homogeneous model of cervical vertebral body by identifying the relationships between strength, in-fill density, and lattice structure and creating a final architectural framework for specific strengths to be applied to the model. Methods The range of material properties for cervical spine were identified from literature. Using additive manufacturing software, rectangular prints with three lattice structures, gyroid, triangle, zig-zag, and a range of in-fill densities were 3D-printed. The compressive and shear strengths for all combinations were calculated in the axial and coronal planes. Eleven unique vertebral regions were selected to represent the distribution of density. Each bone density was converted to strength and subsequently correlated to the lattice structure and in-fill density with the desired material properties. Finally, a complete cervical vertebra model was 3D-printed to ensure sufficient print quality. Results Materials testing identified a relationship between in-fill densities and strength for all lattice structures. The axial compressive strength of the gyroid specimens ranged from 1.5 MPa at 10% infill to 31.3 MPa at 100% infill and the triangle structure ranged from 2.7 MPa at 10% infill to 58.4 MPa at 100% infill. Based on these results, a cervical vertebra model was created utilizing cervical cancellous strength values and the corresponding in-fill density and lattice structure combination. This model was then printed with 11 different in-fill densities ranging from 33% gyroid to 84% triangle to ensure successful integration of the non-homogeneous in-fill densities and lattice structures. Conclusions The findings from this study introduced a framework for using additive manufacturing to create a tunable, customizable biomimetic model of a cervical vertebra.
Collapse
Affiliation(s)
- Jenna M. Wahbeh
- The J. Vernon Luck, Sr., M.D. Orthopaedic Research CenterLuskin Orthopaedic Institute for ChildrenLos AngelesCaliforniaUSA
- Department of BioengineeringUCLALos AngelesCaliforniaUSA
| | - Erika Hookasian
- The J. Vernon Luck, Sr., M.D. Orthopaedic Research CenterLuskin Orthopaedic Institute for ChildrenLos AngelesCaliforniaUSA
- Department of BioengineeringUCLALos AngelesCaliforniaUSA
| | - John Lama
- The J. Vernon Luck, Sr., M.D. Orthopaedic Research CenterLuskin Orthopaedic Institute for ChildrenLos AngelesCaliforniaUSA
- Department of BioengineeringUCLALos AngelesCaliforniaUSA
| | - Labiba Alam
- The J. Vernon Luck, Sr., M.D. Orthopaedic Research CenterLuskin Orthopaedic Institute for ChildrenLos AngelesCaliforniaUSA
- Department of BioengineeringUCLALos AngelesCaliforniaUSA
| | - Sang‐Hyun Park
- The J. Vernon Luck, Sr., M.D. Orthopaedic Research CenterLuskin Orthopaedic Institute for ChildrenLos AngelesCaliforniaUSA
- Department of Orthopaedic SurgeryUCLALos AngelesCaliforniaUSA
| | - Sophia N. Sangiorgio
- The J. Vernon Luck, Sr., M.D. Orthopaedic Research CenterLuskin Orthopaedic Institute for ChildrenLos AngelesCaliforniaUSA
- Department of BioengineeringUCLALos AngelesCaliforniaUSA
- Department of Orthopaedic SurgeryUCLALos AngelesCaliforniaUSA
| | - Edward Ebramzadeh
- The J. Vernon Luck, Sr., M.D. Orthopaedic Research CenterLuskin Orthopaedic Institute for ChildrenLos AngelesCaliforniaUSA
- Department of Orthopaedic SurgeryUCLALos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Eivazzadeh-Keihan R, Sadat Z, Lalebeigi F, Naderi N, Panahi L, Ganjali F, Mahdian S, Saadatidizaji Z, Mahdavi M, Chidar E, Soleimani E, Ghaee A, Maleki A, Zare I. Effects of mechanical properties of carbon-based nanocomposites on scaffolds for tissue engineering applications: a comprehensive review. NANOSCALE ADVANCES 2024; 6:337-366. [PMID: 38235087 PMCID: PMC10790973 DOI: 10.1039/d3na00554b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/03/2023] [Indexed: 01/19/2024]
Abstract
Mechanical properties, such as elasticity modulus, tensile strength, elongation, hardness, density, creep, toughness, brittleness, durability, stiffness, creep rupture, corrosion and wear, a low coefficient of thermal expansion, and fatigue limit, are some of the most important features of a biomaterial in tissue engineering applications. Furthermore, the scaffolds used in tissue engineering must exhibit mechanical and biological behaviour close to the target tissue. Thus, a variety of materials has been studied for enhancing the mechanical performance of composites. Carbon-based nanostructures, such as graphene oxide (GO), reduced graphene oxide (rGO), carbon nanotubes (CNTs), fibrous carbon nanostructures, and nanodiamonds (NDs), have shown great potential for this purpose. This is owing to their biocompatibility, high chemical and physical stability, ease of functionalization, and numerous surface functional groups with the capability to form covalent bonds and electrostatic interactions with other components in the composite, thus significantly enhancing their mechanical properties. Considering the outstanding capabilities of carbon nanostructures in enhancing the mechanical properties of biocomposites and increasing their applicability in tissue engineering and the lack of comprehensive studies on their biosafety and role in increasing the mechanical behaviour of scaffolds, a comprehensive review on carbon nanostructures is provided in this study.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Zahra Sadat
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Farnaz Lalebeigi
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Nooshin Naderi
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Leila Panahi
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Fatemeh Ganjali
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Sakineh Mahdian
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Zahra Saadatidizaji
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Elham Chidar
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Erfan Soleimani
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran P.O. Box 14395-1561 Tehran Iran
| | - Ali Maleki
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd Shiraz 7178795844 Iran
| |
Collapse
|
10
|
Kiselevskiy MV, Anisimova NY, Kapustin AV, Ryzhkin AA, Kuznetsova DN, Polyakova VV, Enikeev NA. Development of Bioactive Scaffolds for Orthopedic Applications by Designing Additively Manufactured Titanium Porous Structures: A Critical Review. Biomimetics (Basel) 2023; 8:546. [PMID: 37999187 PMCID: PMC10669447 DOI: 10.3390/biomimetics8070546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
We overview recent findings achieved in the field of model-driven development of additively manufactured porous materials for the development of a new generation of bioactive implants for orthopedic applications. Porous structures produced from biocompatible titanium alloys using selective laser melting can present a promising material to design scaffolds with regulated mechanical properties and with the capacity to be loaded with pharmaceutical products. Adjusting pore geometry, one could control elastic modulus and strength/fatigue properties of the engineered structures to be compatible with bone tissues, thus preventing the stress shield effect when replacing a diseased bone fragment. Adsorption of medicals by internal spaces would make it possible to emit the antibiotic and anti-tumor agents into surrounding tissues. The developed internal porosity and surface roughness can provide the desired vascularization and osteointegration. We critically analyze the recent advances in the field featuring model design approaches, virtual testing of the designed structures, capabilities of additive printing of porous structures, biomedical issues of the engineered scaffolds, and so on. Special attention is paid to highlighting the actual problems in the field and the ways of their solutions.
Collapse
Affiliation(s)
- Mikhail V. Kiselevskiy
- N.N. Blokhin National Medical Research Center of Oncology (N.N. Blokhin NMRCO), Ministry of Health of the Russian Federation, 115478 Moscow, Russia;
- Department of Casting Technologies and Artistic Processing of Materials, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Natalia Yu. Anisimova
- N.N. Blokhin National Medical Research Center of Oncology (N.N. Blokhin NMRCO), Ministry of Health of the Russian Federation, 115478 Moscow, Russia;
- Department of Casting Technologies and Artistic Processing of Materials, National University of Science and Technology “MISIS”, 119049 Moscow, Russia
| | - Alexei V. Kapustin
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
| | - Alexander A. Ryzhkin
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
| | - Daria N. Kuznetsova
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
| | - Veronika V. Polyakova
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
| | - Nariman A. Enikeev
- Laboratory for Metals and Alloys under Extreme Impacts, Ufa University of Science and Technology, 450076 Ufa, Russia (A.A.R.); (D.N.K.); (V.V.P.); (N.A.E.)
- Laboratory for Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
11
|
Moiduddin K, Mian SH, Elseufy SM, Alkhalefah H, Ramalingam S, Sayeed A. Polyether-Ether-Ketone (PEEK) and Its 3D-Printed Quantitate Assessment in Cranial Reconstruction. J Funct Biomater 2023; 14:429. [PMID: 37623673 PMCID: PMC10455463 DOI: 10.3390/jfb14080429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Three-dimensional (3D) printing, medical imaging, and implant design have all advanced significantly in recent years, and these developments may change how modern craniomaxillofacial surgeons use patient data to create tailored treatments. Polyether-ether-ketone (PEEK) is often seen as an attractive option over metal biomaterials in medical uses, but a solid PEEK implant often leads to poor osseointegration and clinical failure. Therefore, the objective of this study is to demonstrate the quantitative assessment of a custom porous PEEK implant for cranial reconstruction and to evaluate its fitting accuracy. The research proposes an efficient process for designing, fabricating, simulating, and inspecting a customized porous PEEK implant. In this study, a CT scan is utilized in conjunction with a mirrored reconstruction technique to produce a skull implant. In order to foster cell proliferation, the implant is modified into a porous structure. The implant's strength and stability are examined using finite element analysis. Fused filament fabrication (FFF) is utilized to fabricate the porous PEEK implants, and 3D scanning is used to test its fitting accuracy. The results of the biomechanical analysis indicate that the highest stress observed was approximately 61.92 MPa, which is comparatively low when compared with the yield strength and tensile strength of the material. The implant fitting analysis demonstrates that the implant's variance from the normal skull is less than 0.4436 mm, which is rather low given the delicate anatomy of the area. The results of the study demonstrate the implant's endurance while also increasing the patient's cosmetic value.
Collapse
Affiliation(s)
- Khaja Moiduddin
- Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia
| | - Syed Hammad Mian
- Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia
| | | | - Hisham Alkhalefah
- Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia
| | - Sundar Ramalingam
- Department of Oral and Maxillofacial Surgery, College of Dentistry and Dental University Hospital, King Saud University Medical City, Riyadh 11545, Saudi Arabia
| | - Abdul Sayeed
- Department of Mechanical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| |
Collapse
|
12
|
Vafaeefar M, Moerman KM, Kavousi M, Vaughan TJ. A morphological, topological and mechanical investigation of gyroid, spinodoid and dual-lattice algorithms as structural models of trabecular bone. J Mech Behav Biomed Mater 2023; 138:105584. [PMID: 36436405 DOI: 10.1016/j.jmbbm.2022.105584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
In this study, we evaluate the performance of three algorithms as computational models of trabecular bone architecture, through systematic evaluation of morphometric, topological, and mechanical properties. Here, we consider the widely-used gyroid lattice structure, the recently-developed spinodoid structure and a structure similar to Voronoi lattices introduced here as the dual-lattice. While all computational models were calibrated to recreate the trabecular tissue volume (e.g. BV/TV), it was found that both the gyroid- and spinodoid-based structures showed substantial differences in many other morphometric and topological parameters and, in turn, showed lower effective mechanical properties compared to trabecular bone. The newly-developed dual-lattice structures better captured both morphometric parameters and mechanical properties, despite certain differences being evident their topological configuration compared to trabecular bone. Still, these computational algorithms provide useful platforms to investigate trabecular bone mechanics and for designing biomimetic structures, which could be produced through additive manufacturing for applications that include bone substitutes, scaffolds and porous implants. Furthermore, the software for the creation of the structures has been added to the open source toolbox GIBBON and is therefore freely available to the community.
Collapse
Affiliation(s)
- Mahtab Vafaeefar
- Biomechanics Research Centre (BioMEC) and Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Kevin M Moerman
- Mechanical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Majid Kavousi
- Mechanical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC) and Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland.
| |
Collapse
|
13
|
Naghavi SA, Tamaddon M, Garcia-Souto P, Moazen M, Taylor S, Hua J, Liu C. A novel hybrid design and modelling of a customised graded Ti-6Al-4V porous hip implant to reduce stress-shielding: An experimental and numerical analysis. Front Bioeng Biotechnol 2023; 11:1092361. [PMID: 36777247 PMCID: PMC9910359 DOI: 10.3389/fbioe.2023.1092361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Stress shielding secondary to bone resorption is one of the main causes of aseptic loosening, which limits the lifespan of hip prostheses and exacerbates revision surgery rates. In order to minimise post-hip replacement stress variations, this investigation proposes a low-stiffness, porous Ti6Al4V hip prosthesis, developed through selective laser melting (SLM). The stress shielding effect and potential bone resorption properties of the porous hip implant were investigated through both in vitro quasi-physiological experimental assays, together with finite element analysis. A solid hip implant was incorporated in this investigation for contrast, as a control group. The stiffness and fatigue properties of both the solid and the porous hip implants were measured through compression tests. The safety factor of the porous hip stem under both static and dynamic loading patterns was obtained through simulation. The porous hip implant was inserted into Sawbone/PMMA cement and was loaded to 2,300 N (compression). The proposed porous hip implant demonstrated a more natural stress distribution, with reduced stress shielding (by 70%) and loss in bone mass (by 60%), when compared to a fully solid hip implant. Solid and porous hip stems had a stiffness of 2.76 kN/mm and 2.15 kN/mm respectively. Considering all daily activities, the porous hip stem had a factor of safety greater than 2. At the 2,300 N load, maximum von Mises stresses on the hip stem were observed as 112 MPa on the medial neck and 290 MPa on the distal restriction point, whereby such values remained below the endurance limit of 3D printed Ti6Al4V (375 MPa). Overall, through the strut thickness optimisation process for a Ti6Al4V porous hip stem, stress shielding and bone resorption can be reduced, therefore proposing a potential replacement for the generic solid implant.
Collapse
Affiliation(s)
- Seyed Ataollah Naghavi
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, United Kingdom
| | - Maryam Tamaddon
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, United Kingdom
| | - Pilar Garcia-Souto
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Stephen Taylor
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, United Kingdom
| | - Jia Hua
- School of Science and Technology, Middlesex University, London, United Kingdom
| | - Chaozong Liu
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, United Kingdom,*Correspondence: Chaozong Liu,
| |
Collapse
|
14
|
Peng W, Liu Y, Wang C. Definition, measurement, and function of pore structure dimensions of bioengineered porous bone tissue materials based on additive manufacturing: A review. Front Bioeng Biotechnol 2023; 10:1081548. [PMID: 36686223 PMCID: PMC9845791 DOI: 10.3389/fbioe.2022.1081548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
Bioengineered porous bone tissue materials based on additive manufacturing technology have gradually become a research hotspot in bone tissue-related bioengineering. Research on structural design, preparation and processing processes, and performance optimization has been carried out for this material, and further industrial translation and clinical applications have been implemented. However, based on previous studies, there is controversy in the academic community about characterizing the pore structure dimensions of porous materials, with problems in the definition logic and measurement method for specific parameters. In addition, there are significant differences in the specific morphological and functional concepts for the pore structure due to differences in defining the dimensional characterization parameters of the pore structure, leading to some conflicts in perceptions and discussions among researchers. To further clarify the definitions, measurements, and dimensional parameters of porous structures in bioengineered bone materials, this literature review analyzes different dimensional characterization parameters of pore structures of porous materials to provide a theoretical basis for unified definitions and the standardized use of parameters.
Collapse
Affiliation(s)
- Wen Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,Foshan Orthopedic Implant (Stable) Engineering Technology Research Center, Foshan, China
| | - Yami Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,Foshan Orthopedic Implant (Stable) Engineering Technology Research Center, Foshan, China
| | - Cheng Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China,*Correspondence: Cheng Wang,
| |
Collapse
|
15
|
Development of an architecture-property model for triply periodic minimal surface structures and validation using material extrusion additive manufacturing with polyetheretherketone (PEEK). J Mech Behav Biomed Mater 2022; 133:105345. [PMID: 35809464 DOI: 10.1016/j.jmbbm.2022.105345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 06/26/2022] [Indexed: 11/23/2022]
Abstract
Additively manufactured structures designed from triply periodic minimal surfaces (TPMSs) have been receiving attention for their potential uses in the medical, aerospace, and automobile industries. Understanding how these complex geometries can be designed to achieve particular architectural and mechanical properties is essential for tuning their function to certain applications. In this study, we created design tools for visualizing the interplay between TPMS design parameters and resulting architecture and aimed to validate a model of the relationship between structure architecture and Young's modulus. A custom MATLAB script was written to analyze structural properties for families of Schoen gyroid and Schwarz diamond structures, and a numerical homogenization scheme was performed to predict the effective Young's moduli of the structures based on their architecture. Our modeling methods were validated experimentally with polyetheretherketone (PEEK) structures created using material extrusion additive manufacturing. The architectural characteristics of the structures were determined using micro-computed tomography, and compression testing was performed to determine yield strength and Young's modulus. Two different initial build orientations were tested to determine the behavior both perpendicular and parallel to the layer deposition direction (referred to as z-direction and xy-direction, respectively). The z-direction Young's modulus ranged from 289.7 to 557.5 MPa and yield strength ranged from 10.12 to 20.3 MPa. For the xy-direction, Young's modulus ranged from 133.8 to 416.4 MPa and yield strength ranged from 3.8 to 12.2 MPa. For each initial build orientation, the mechanical properties were found to decrease with increasing porosity, and failure occurred due to both strut bending and interlayer debonding. The mechanical properties predicted by the modeling agreed with the values found for z-direction samples (difference 2-11%) but less so for xy-direction samples (difference 27-62%) due to weak interlayer bonding and print path irregularities. Ultimately, the findings presented here provide better understanding of the range of properties achievable for additive manufacturing of PEEK and encouraging results for a TPMS architecture-property model.
Collapse
|
16
|
Corrosion Resistance of 3D Printed Ti6Al4V Gyroid Lattices with Varying Porosity. MATERIALS 2022; 15:ma15144805. [PMID: 35888273 PMCID: PMC9316743 DOI: 10.3390/ma15144805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023]
Abstract
Corrosion of medical implants is a possible failure mode via induced local inflammatory effects, systemic deposition and corrosion related mechanical failure. Cyclic potentiodynamic polarisation (CPP) testing was utilized to evaluate the effect of increased porosity (60% and 80%) and decreased wall thickness in gyroid lattice structures on the electrochemical behaviour of LPBF Ti6Al4V structures. The use of CPP allowed for the landmarks of breakdown potential, resting potential and vertex potential to be analysed, as well as facilitating the construction of Tafel plots and qualitative Goldberg analysis. The results indicated that 60% gyroid samples were most susceptible to the onset of pitting corrosion when compared to 80% gyroid and solid samples. This was shown through decreased breakdown and vertex potentials and were found to correlate to increased lattice surface area to void volume ratio. Tafel plots indicated that despite the earlier onset of pitting corrosion, both gyroid test groups displayed lower rates of corrosion per year, indicating a lower severity of corrosion. This study highlighted inherent tradeoffs between lattice optimisation and corrosion behaviour with a potential parabolic link between void volume, surface area and corrosion being identified. This potential link is supported by 60% gyroid samples having the lowest breakdown potentials, but investigation into other porosity ranges is suggested to support the hypothesis. All 3D printed materials studied here showed breakdown potentials higher than ASTM F2129's suggestion of 800 mV for evaluation within the physiological environment, indicating that under static conditions pitting and crevice corrosion should not initiate within the body.
Collapse
|