1
|
Zhang Y, Su M, Liu G, Wu X, Feng X, Tang D, Jiang H, Zhang X. Chronic sleep deprivation induces erectile dysfunction through increased oxidative stress, apoptosis, endothelial dysfunction, and corporal fibrosis in a rat model. J Sex Med 2024; 21:1098-1110. [PMID: 39297287 DOI: 10.1093/jsxmed/qdae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/16/2024] [Accepted: 08/28/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Sleep is foundational for nocturnal erections, facilitating nutrient exchange and waste removal, which has brought widespread attention to the relationship between sleep and erectile dysfunction (ED). However, there is currently a lack of basic research confirming whether chronic sleep deprivation (CSD) leads to erectile impairment and its underlying pathological mechanisms. AIM The study sought to investigate whether CSD impairs erectile function in rats and the potential tissue damage it may cause in rats. METHODS The modified multiple platform method was employed to induce CSD in 14 rats, randomly divided into a platform control group and a CSD group. After 3 weeks, erectile function was evaluated by measuring intracavernosal pressure following cavernous nerve stimulation. OUTCOMES Arterial blood samples were then analyzed for testosterone levels, and cavernous tissues were processed for advanced molecular biology assays, including Western blotting and immunofluorescence. RESULTS After inducing CSD, rats exhibited a marked reduction in erectile function, yet their serum testosterone levels remained statistically unchanged when compared with the control group. More importantly, rats in the CSD group exhibited a significant increase in oxidative stress levels, accompanied by low expression of HO-1 and high expression of NOX1 and NOX4. Subsequently, elevated oxidative stress induced increased apoptosis in smooth muscle and endothelial cells, as evidenced by significant decreases in CD31 and α-smooth muscle actin expression in the CSD group, demonstrated through Western blotting and immunofluorescence assays. Endothelial cell apoptosis led to a significant decrease in endothelial nitric oxide synthase, resulting in lowered levels of nitric oxide and cyclic guanosine monophosphate, which severely impaired the erectile mechanism. Additionally, activation of the transforming growth factor β1 fibrotic pathway led to increased levels of tissue fibrosis, resulting in irreversible damage to the penile tissue in the CSD group. CLINICAL IMPLICATIONS Our study lacks further exploration of the molecular mechanisms linking CSD and ED, representing a future research focus for potential targeted therapies. STRENGTHS AND LIMITATIONS Our findings demonstrated that CSD significantly impairs erectile function in rats. CONCLUSION CSD severely impairs erectile function in rats. When exposed to CSD, rats exhibit significantly elevated oxidative stress levels, which lead to increased tissue apoptosis, endothelial dysfunction, and ultimately irreversible fibrotic changes in the tissues. Further researches into the potential molecular mechanisms are needed to identify possible therapeutic targets for ED related to CSD.
Collapse
Affiliation(s)
- Yuyang Zhang
- Department of Urology, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, 230000, China
- Institute of Urology, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, 230000, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, 230000, China
| | - Mingqin Su
- Department of Pathology, Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, 246 Heping Road, Yaohai District, Hefei City, Anhui Province, 230011, China
| | - Guodong Liu
- Department of Urology, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, 230000, China
- Institute of Urology, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, 230000, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, 230000, China
| | - Xu Wu
- Department of Urology, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, 230000, China
- Institute of Urology, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, 230000, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, 230000, China
| | - Xingliang Feng
- Department of Urology, Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou City, Jiangsu Province, 213003, China
- Department of Urology, First People's Hospital of Changzhou, 185 Juqian Street, Changzhou City, Jiangsu Province, 213003, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, 120 Wanshui Road, Shushan District, Hefei City, Anhui Province, 230022, China
| | - Hui Jiang
- Department of Urology, Peking University First Hospital Institute of Urology, Peking University Andrology Center, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Xiansheng Zhang
- Department of Urology, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, 230000, China
- Institute of Urology, First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, 230000, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, Anhui Province, 230000, China
| |
Collapse
|
2
|
Kodali NA, Janarthanan R, Sazoglu B, Demir Z, Dirican OF, Kulahci Y, Zor F, Gorantla VS. Experimental Models in Penile Transplantation: Translational Insights and Relevance to Clinical Application. Cureus 2024; 16:e74258. [PMID: 39712689 PMCID: PMC11663459 DOI: 10.7759/cureus.74258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
Animal research is an essential contributor to the medical achievements of the last century. The first step of studying a disease in animals is the development of a model which is relevant to the clinical situation in humans. Thus, a good animal model is the sine qua non of the experimental research. This review aims to assess the contemporary literature on animal models for penile transplantation, examining their applicability and significance in the context of clinical scenarios. We also revisit, evaluate, and emphasize the interesting and important findings of certain animal models to bring the reader up to date from the perspective of allotransplantation. Their current and future clinical applicability and feasibility have been discussed, shedding light on worldwide experience in Vascularized Composite Allotransplantation (VCA).
Collapse
Affiliation(s)
- Naga Anvesh Kodali
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, USA
| | - Ramu Janarthanan
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, USA
- Department of Plastic and Reconstructive Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, IND
| | - Bedreddin Sazoglu
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, USA
| | - Zeynep Demir
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, USA
| | - Omer Faruk Dirican
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, USA
| | - Yalcin Kulahci
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, USA
| | - Fatih Zor
- Department of Plastic and Reconstructive Surgery, Indiana University School of Medicine, Indianapolis, USA
| | - Vijay S Gorantla
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, USA
| |
Collapse
|
3
|
Margiana R, Pilehvar Y, Amalia FL, Lestari SW, Supardi S, I'tishom R. Mesenchymal stem cell secretome: A promising therapeutic strategy for erectile dysfunction? Asian J Urol 2024; 11:391-405. [PMID: 39139521 PMCID: PMC11318444 DOI: 10.1016/j.ajur.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/06/2023] [Indexed: 08/15/2024] Open
Abstract
Objective The secretome, comprising bioactive chemicals released by mesenchymal stem cells (MSCs), holds therapeutic promise in regenerative medicine. This review aimed to explore the therapeutic potential of the MSC secretome in regenerative urology, particularly for treating erectile dysfunction (ED), and to provide an overview of preclinical and clinical research on MSCs in ED treatment and subsequently to highlight the rationales, mechanisms, preclinical investigations, and therapeutic potential of the MSC secretome in this context. Methods The review incorporated an analysis of preclinical and clinical research involving MSCs in the treatment of ED. Subsequently, it delved into the existing knowledge regarding the MSC secretome, exploring its therapeutic potential. The methods included a comprehensive examination of relevant literature to discern the processes underlying the therapeutic efficacy of the MSC secretome. Results Preclinical research indicated the effectiveness of the MSC secretome in treating various models of ED. However, the precise mechanisms of its therapeutic efficacy remain unknown. The review provided insights into the anti-inflammatory, pro-angiogenic, and trophic properties of the MSC secretome. It also discussed potential advantages, such as avoiding issues related to cellular therapy, including immunogenicity, neoplastic transformation, and cost. Conclusion This review underscores the significant therapeutic potential of the MSC secretome in regenerative urology, particularly for ED treatment. While preclinical studies demonstrate promising outcomes, further research is essential to elucidate the specific mechanisms underlying the therapeutic efficacy before clinical application. The review concludes by discussing future perspectives and highlighting the challenges associated with the clinical translation of the MSC secretome in regenerative urology.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Indonesia General Academic Hospital, Depok, Indonesia
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Science, Urmia, Iran
| | - Fatkhurrohmah L. Amalia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Dr. Kariadi Hospital, Semarang, Indonesia
| | - Silvia W. Lestari
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Indonesia General Academic Hospital, Depok, Indonesia
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Supardi Supardi
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Reny I'tishom
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga Surabaya, Indonesia
| |
Collapse
|
4
|
Hu D, Ge Y, Xi Y, Chen J, Wang H, Zhang C, Cui Y, He L, Su Y, Chen J, Hu C, Xiao H. MicroRNA-145 Gene Modification Enhances the Retention of Bone Marrow-Derived Mesenchymal Stem Cells within Corpus Cavernosum by Targeting Krüppel-Like Factor 4. World J Mens Health 2024; 42:638-649. [PMID: 38164035 PMCID: PMC11216959 DOI: 10.5534/wjmh.230149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 01/03/2024] Open
Abstract
PURPOSE The poor retention and ambiguous differentiation of stem cells (SCs) within corpus cavernosum (CC) limit the cell application in erectile dysfunction (ED). Herein, the effects and mechanism of microRNA-145 (miR-145) gene modification on modulating the traits and fate of bone marrow-derived mesenchymal stem cells (BMSCs) were investigated. MATERIALS AND METHODS The effects of miR-145 on cell apoptosis, proliferation, migration, and differentiation were determined by flow cytometry, cell counting kit-8, transwell assays and myogenic induction. Then, the age-related ED rats were recruited to four groups including phosphate buffer saline, BMSC, vector-BMSC, overexpressed-miR-145-BMSC groups. After cell transplantation, the CC were harvested and prepared to demonstrate the retention and differentiation of BMSCs by immunofluorescent staining. Then, the target of miR-145 was verified by quantitative real-time polymerase chain reaction and immunohistochemical. After that, APTO-253, as an inducer of Krüppel-like factor 4 (KLF4), was introduced for rescue experiments in corpus cavernosum smooth muscle cells (CCSMCs) under the co-culture system. RESULTS In vitro, miR-145 inhibited the migration and apoptosis of BMSCs and promoted the differentiation of BMSCs into smooth muscle-like cells with stronger contractility. In vivo, the amount of 5-ethynyl-2'-deoxyuridine (EdU)+cells within CC was significantly enhanced and maintained in the miR-145 gene modified BMSC group. The EdU/CD31 co-staning was detected, however, no co-staining of EdU/α-actin was observed. Furthermore, miR-145, which secreted from the gene modified BMSCs, dampened the expression of KLF4. However, the effects of miR-145 on CCSMCs could be rescued by APTO-253. CONCLUSIONS Overall, miR-145 modification prolongs the retention of the transplanted BMSCs within the CC, and this effect might be attributed to the modulation of the miR-145/KLF4 axis. Consequently, our findings offer a promising and innovative strategy to enhance the local stem cell-based treatments.
Collapse
Affiliation(s)
- Daoyuan Hu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yunlong Ge
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuhang Xi
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jialiang Chen
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hua Wang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chi Zhang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yubin Cui
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lizhao He
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ying Su
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jun Chen
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Cheng Hu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Hengjun Xiao
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
Jie H, Jie W, Yingxue G, Xin Z, Runnan X, Wenjie H, Jianxiong M, Bodong L. Cldn4 overexpression promotes penile cavernous smooth muscle cell fibrotic response via the JNK signaling pathway. J Sex Med 2024; 21:511-521. [PMID: 38477100 DOI: 10.1093/jsxmed/qdae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 01/26/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Erectile dysfunction (ED), defined as the inability to achieve or maintain a penile erection sufficient to satisfy sexual behavior, is prevalent worldwide. AIM Using previous research, bioinformatics, and experimental confirmation, we aimed to discover genes that contribute to ED through regulating hypoxia in corpus cavernosum smooth muscle cells (CCSMCs). METHODS We used the Gene Expression Omnibus to acquire the sequencing data of the corpus cavernosum transcriptome for diabetic ED and nerve injury type ED rats. We intersected the common differentially expressed genes. Further verification was performed using single cell sequencing. Real-time quantitative polymerase chain reaction and immunofluorescence were used to investigate whether the differentially expressed genes are found in the corpus cavernosum. We used induced hypoxia to assess cell viability changes, and we developed a lentivirus overexpressing Cldn4 for in vitro and in vivo experiments to measure changes in JNK signaling, fibrosis, hypoxia, and erectile function. OUTCOMES Our results indicate that targeting the JNK pathway and decreasing local hypoxia may be better options for therapeutic intervention to improve erectile function. RESULTS We identified Cldn4 and found its expression increased in the corpora cavernosa of the 2 datasets. In addition, we found that hypoxia can increase the expression of Cldn4, activate the JNK signaling pathway, and exacerbate fibrosis in CCSMCs. Cldn4 overexpression in CCSMCs activated the JNK signaling pathway and increased fibrotic protein expression. Last, rat corpus cavernosum overexpressing Cldn4 activated the JNK signaling pathway, increased local fibrosis, and impaired erectile function. CLINICAL IMPLICATIONS Through bioinformatics and in vitro and in vivo experiments, we found that Cldn4 has a negative effect on ED, and targeting Cldn4 may provide new ideas for ED treatment. STRENGTHS AND LIMITATIONS Although we have identified Cldn4 as a potential target for ED treatment, we have only conducted preliminary validation on CCMSCs, and we still need to further validate in other cell lines. CONCLUSION CCSMC hypoxia leads to increased Cldn4, in both nerve injury and diabetic ED rat models, and promotes fibrosis by activating the JNK signaling pathway.
Collapse
Affiliation(s)
- Huang Jie
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| | - Wang Jie
- Department of Urology, Zhejiang Hospital, Hangzhou City, Zhejiang Province, China
| | - Guo Yingxue
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| | - Zhang Xin
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| | - Xu Runnan
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| | - Huang Wenjie
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| | - Ma Jianxiong
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, China
| | - Lv Bodong
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
- Zhejiang Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Sexual Dysfunction, Zhejiang Chinese Medical University, Hangzhou Zhejiang, China
| |
Collapse
|
6
|
Hu D, Liu C, Ge Y, Ye L, Guo Q, Xi Y, Zhu W, Wang D, Xu T, Qiu J. Poly-L-lactic acid/gelatin electrospun membrane-loaded bone marrow-derived mesenchymal stem cells attenuate erectile dysfunction caused by cavernous nerve injury. Int J Biol Macromol 2024; 265:131099. [PMID: 38522706 DOI: 10.1016/j.ijbiomac.2024.131099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Radical prostatectomy (RP) can cause neurogenic erectile dysfunction (ED), which negatively affects the quality of life of patients with prostate cancer. Currently, there is a dearth of effective therapeutic strategies. Although stem cell therapy is promising, direct cell transplantation to injured cavernous nerves is constrained by poor cell colonization. In this study, poly-L-lactic acid (PLLA)/gelatin electrospun membranes (PGEM) were fabricated to load bone marrow-derived mesenchymal stem cells (BM-MSCs) as a patch to be placed on injured nerves to alleviate ED. This study aimed to establish a promising and innovative approach to mitigate neurogenic ED post-RP and lay the foundation for modifying surgical procedures. Electrospinning and molecular biotechnology were performed in vitro and in vivo, respectively. It was observed that PGEM enhanced the performance of BM-MSCs and Schwann cells due to their excellent mechanical properties and biocompatibility. The transplanted PGEM and loaded BM-MSCs synergistically improved bilateral cavernous nerve injury-related ED and the corresponding histopathological changes. Nevertheless, transplantation of BM-MSCs alone has been verified to be ineffective. Overall, PGEM can serve as an ideal carrier to supply a more suitable survival environment for BM-MSCs and Schwann cells, thereby promoting the recovery of injured cavernous nerves and erectile function.
Collapse
Affiliation(s)
- Daoyuan Hu
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Chang Liu
- Department of Joint and Trauma Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Yunlong Ge
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Lei Ye
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Qiang Guo
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Yuhang Xi
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Wenliang Zhu
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
| | - Dejuan Wang
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China.
| | - Tao Xu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; Center for Bio-intelligent Manufacturing and Living Matter Bioprinting, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen 518057, China; East China Institute of Digital Medical Engineering, Shangrao 334000, China.
| | - Jianguang Qiu
- Department of Urology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China.
| |
Collapse
|
7
|
Sun T, Liu Y, Yuan P, Jia Z, Yang J. Bibliometric and Visualization Analysis of Stem Cell Therapy for Erectile Dysfunction. Drug Des Devel Ther 2024; 18:731-746. [PMID: 38476204 PMCID: PMC10929656 DOI: 10.2147/dddt.s448483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose As a common male disease, erectile dysfunction (ED) seriously affects the physical and mental health of patients. In recent years, studies have continued to point out the great potential of stem cell therapy (SCT) in the treatment of ED. The purpose of this study is to comprehensively analyze the research of SCT for ED and understand the development trends and research frontiers in this field. Methods Publications regarding SCT and ED were retrieved and collected from the Web of Science Core Collection. CiteSpace and VOSviewer software were then utilized for bibliometric and visualization analysis. Results A total of 524 publications were eventually included in this study. The annual number of publications in this field was increasing year by year. China and the USA were the two most productive countries. Lin GT, Lue TF and Lin CS, and the University of California San Francisco where they worked were the most productive research group and institution, respectively. The journal with the largest number of publications was The Journal of Sexual Medicine, and the following were mostly professional journals of urology and andrology. Diabetes mellitus-induced ED and cavernous nerve injury-related ED were the two most commonly constructed models of ED in studies. Concerning the types of stem cells, mesenchymal stem cells derived from adipose and bone marrow were most frequently used. Moreover, future research would mainly focus on exosomes, tissue engineering technology, extracorporeal shockwave therapy, and clinical translation. Conclusion The research of SCT for ED will receive increasing global attention in the future. Our study provided bibliometric and visualization analysis of published literature, helping researchers understand the global landscape and frontiers in this field. More preclinical and clinical studies should be conducted to more deeply explore the underlying mechanisms of treatment and promote clinical translation.
Collapse
Affiliation(s)
- Taotao Sun
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Yipiao Liu
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Penghui Yuan
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Zhankui Jia
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Jinjian Yang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| |
Collapse
|
8
|
Gao Q, Chen J, Zuo W, Wang B, Song T, Xu C, Yu W, Dai Y, Gao S, Zhu L, Yang J. ADSCs labeled with SPIONs tracked in corpus cavernosum of rat and miniature pig by MR imaging and histological examination. Sci Rep 2024; 14:1917. [PMID: 38253558 PMCID: PMC10803813 DOI: 10.1038/s41598-023-51076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) have been shown to improve erectile function in animal models of erectile dysfunction. However, few studies have been carried out using a reliable in vivo imaging method to trace transplanted cells in real time, which is necessary for systematic investigation of cell therapy. The study aims to explore the feasibility of non-invasively monitoring intracavernous injection of ADSCs in rat and miniature pig corpus cavernosum using in vivo magnetic resonance (MR) imaging. Thirty-six male Sprague Dawley rats (10 weeks old) and six healthy, sexually mature male miniature pigs (20 kg weight) were obtained. ADSCs were isolated from paratesticular fat of donor rats and cultured. Then ADSCs were labeled with superparamagnetic iron oxide nanoparticles (SPIONs), a type of MR imaging contrast agent, before transplantation into rats and pigs. After intracavernous injection, all rats and pigs underwent and were analyzed by MR imaging at the day of ADSC transplantation and follow-up at 1, 2 and 4 weeks after transplantation. In addition, penile histological examination was performed on all rats and pigs before (n = 6) and at 1 day (n = 6), 1 week (n = 6), 2 weeks (n = 6) or 4 weeks (n = 12) after ADSC transplantation. SPION-labeled ADSCs demonstrated a strong decreased signal intensity compared with distilled water, unlabeled ADSCs or agarose gel. SPION-labeled ADSCs showed a hypointense signal at all concentrations, and the greatest hypointense signal was observed at the concentration of 1 × 106. MR images of the corpus cavernosum showed a hypointense signal located at the injection site. T2*-weighted signal intensity increased over the course of 1 week after ADSCs transplantation, and demonstrated a similar MR signal with that before ADSCs transplantation. After SPION-labeled ADSC injection, T2*-weighted MR imaging clearly demonstrated a marked hypointense signal in pig corpus cavernosum. The T2*-weighted signal faded over time, similar to the MR imaging results in rats. Obvious acute inflammatory exudation was induced by intracavernous injection, and the T2*-weighted signal intensity of these exudation was higher than that of the injection site. The presence of iron was detected by Prussian blue staining, which demonstrated ADSC retention in rat corpus cavernosum. Lack of cellular infiltrations were demonstrated by H&E staining before and 4 weeks after transplantation, which indicated no negative immune response by rats. Prussian blue staining was positive for iron oxide nanoparticles at 2 weeks after transplantation. SPION-labeled ADSCs showed a clear hypointense signal on T2-weight MRI in vitro and in vivo. The MR signal intensity in the corpus cavernosum of the rats and miniature pigs faded and disappeared over time after ADSC transplantation. These findings suggested that MR imaging could trace transplanted ADSCs in the short term in the corpus cavernosum of animals.
Collapse
Affiliation(s)
- Qingqiang Gao
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jianhuai Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenren Zuo
- Department of Urology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Wang
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Tao Song
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chunlu Xu
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wen Yu
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yutian Dai
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Songzhan Gao
- Department of Andrology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Leilei Zhu
- Department of Urology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China.
- Department of Surgery, Aheqi County People's Hospital, Xinjiang, China.
| | - Jie Yang
- Department of Urology, Jiangsu Provincial People's Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Department of Urology, People's Hospital of Xinjiang Kizilsu Kirgiz Autonomous Prefecture, Xinjiang, Uygur Autonomous Region, China.
| |
Collapse
|
9
|
Wang S, Qin S, Cai B, Zhan J, Chen Q. Promising therapeutic mechanism for Chinese herbal medicine in ameliorating renal fibrosis in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:932649. [PMID: 37522131 PMCID: PMC10376707 DOI: 10.3389/fendo.2023.932649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most serious chronic microvascular abnormalities of diabetes mellitus and the major cause of uremia. Accumulating evidence has confirmed that fibrosis is a significant pathological feature that contributes to the development of chronic kidney disease in DN. However, the exact mechanism of renal fibrosis in DN is still unclear, which greatly hinders the treatment of DN. Chinese herbal medicine (CHM) has shown efficacy and safety in ameliorating inflammation and albuminuria in diabetic patients. In this review, we outline the underlying mechanisms of renal fibrosis in DN, including oxidative stress (OS) generation and OS-elicited ASK1-p38/JNK activation. Also, we briefly summarize the current status of CHM treating DN by improving renal fibrosis. The treatment of DN by inhibiting ASK1 activation to alleviate renal fibrosis in DN with CHM will promote the discovery of novel therapeutic targets for DN and provide a beneficial therapeutic method for DN.
Collapse
Affiliation(s)
- Shengju Wang
- Department of Nephrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuai Qin
- Department of Nephrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Baochao Cai
- Diabetes Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Jihong Zhan
- Department of Nephrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Argiolas A, Argiolas FM, Argiolas G, Melis MR. Erectile Dysfunction: Treatments, Advances and New Therapeutic Strategies. Brain Sci 2023; 13:802. [PMID: 37239274 PMCID: PMC10216368 DOI: 10.3390/brainsci13050802] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Erectile dysfunction (ED) is the inability to get and maintain an adequate penile erection for satisfactory sexual intercourse. Due to its negative impacts on men's life quality and increase during aging (40% of men between 40 and 70 years), ED has always attracted researchers of different disciplines, from urology, andrology and neuropharmacology to regenerative medicine, and vascular and prosthesis implant surgery. Locally and/or centrally acting drugs are used to treat ED, e.g., phosphodiesterase 5 inhibitors (first in the list) given orally, and phentolamine, prostaglandin E1 and papaverine injected intracavernously. Preclinical data also show that dopamine D4 receptor agonists, oxytocin and α-MSH analogues may have a role in ED treatment. However, since pro-erectile drugs are given on demand and are not always efficacious, new strategies are being tested for long lasting cures of ED. These include regenerative therapies, e.g., stem cells, plasma-enriched platelets and extracorporeal shock wave treatments to cure damaged erectile tissues. Although fascinating, these therapies are laborious, expensive and not easily reproducible. This leaves old vacuum erection devices and penile prostheses as the only way to get an artificial erection and sexual intercourse with intractable ED, with penile prosthesis used only by accurately selected patients.
Collapse
Affiliation(s)
- Antonio Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.M.A.); (M.R.M.)
| | - Francesco Mario Argiolas
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.M.A.); (M.R.M.)
| | - Giacomo Argiolas
- General Medicine Unit, Hospital San Michele, ARNAS“G. Brotzu”, Piazzale Ricchi 1, 09100 Cagliari, Italy;
| | - Maria Rosaria Melis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy; (F.M.A.); (M.R.M.)
| |
Collapse
|
11
|
Siregar S, Novesar AR, Mustafa A. Application of Stem Cell in Human Erectile Dysfunction - A Systematic Review. Res Rep Urol 2022; 14:379-388. [PMID: 36320568 PMCID: PMC9618244 DOI: 10.2147/rru.s376556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Erectile dysfunction is a health problem that arises from various conditions and causes an impaired quality of life with a significant health burden. Regenerative and stem cell therapies are some of the potential treatments for erectile dysfunction. This study aimed to review the available information in the literature regarding the use of stem cells in the treatment of erectile dysfunction. Methods This study is a systematic review conducted based on the PubMed, Google Scholar, Cochrane, and DOAJ databases. Literature searching was conducted in English and included articles from 2000 to 2020. Results The result was a total of 318 articles. Following the elimination process, 9 articles remained in the final analysis. The analyzed studies included 164 patients with erectile dysfunction with various medical conditions. Several stem cell types have been used for treating erectile dysfunction, including mesenchymal stem cell, placental matrix-derived stem cell, mesenchymal stem cell-derived exosome, adipose-derived stem cell, bone marrow-derived mononuclear stem cell, and umbilical cord blood stem cell. Generally, stem cell therapy showed a good efficacy and safety profile, although not enough studies on the protocol, dosage, and mechanism of action. Conclusion Stem cell therapy has a good therapeutic potential in erectile dysfunction, the available data from the literature could be the base of usage of stem cells in the treatment of erectile dysfunction although need more research for broader usage.
Collapse
Affiliation(s)
- Safendra Siregar
- Urology Department, Hasan Sadikin Academic Medical Center Universitas Padjadjaran, Bandung, Indonesia,Correspondence: Safendra Siregar, Urology Department, Hasan Sadikin Academic Medical Center Universitas Padjadjaran, Bandung, Indonesia, Email
| | - Aidil Rahman Novesar
- Urology Department, Hasan Sadikin Academic Medical Center Universitas Padjadjaran, Bandung, Indonesia
| | - Akhmad Mustafa
- Urology Department, Hasan Sadikin Academic Medical Center Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
12
|
Kang J, Song Y, Zhang Z, Wang S, Lu Y, Liu X. Identification of Key microRNAs in Diabetes Mellitus Erectile Dysfunction Rats with Stem Cell Therapy by Bioinformatic Analysis of Deep Sequencing Data. World J Mens Health 2022; 40:663-677. [PMID: 35021304 PMCID: PMC9482859 DOI: 10.5534/wjmh.210147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Accepted: 09/30/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Diabetes mellitus erectile dysfunction (DMED) is a common resulting complication of diabetes. Studies have shown mesenchymal stem cell (MSC)-based therapy was beneficial in alleviating erectile function of DMED rats. While the pathogenesis of DMED and the mechanism MSCs actions are unclear. MATERIALS AND METHODS We constructed a rat model of DMED with or without intracavernous injection of MSCs, and performed microRNA (miRNA) sequencing of corpora cavernosa tissues. RESULTS We identified three overlapping differentially expressed miRNAs (rno-miR-1298, rno-miR-122-5p, and rno-miR-6321) of the normal control group, DMED group, and DMED+MSCs group. We predicted 285 target genes of three miRNAs through RNAhybrid and miRanda database and constructed a miRNA-target gene network through Cytoscape. Next, we constructed protein-protein interaction networks through STRING database and identified the top 10 hub genes with highest connectivity scores. Five GO terms including cellular response to growth factor stimulus (GO:0071363), ossification (GO:0001503), response to steroid hormone (GO:0048545), angiogenesis (GO:0001525), positive regulation of apoptotic process (GO:0043065), and one Reactome pathway (Innate Immune System) were significantly enriched by 10 hub genes using the Metascape database. We selected the GSE2457 dataset to validate the expression of hub genes and found only the expression of B4galt1 was statistically different (p<0.001). B4galt1 was highly expressed in penile tissues of diabetic rats and would be negatively regulated by rno-miR-1298. CONCLUSIONS Three key miRNAs were identified in DMED rats with stem cell therapy and the miR-1298/B4GalT1 axis might exert function in stem cell therapy for ED.
Collapse
Affiliation(s)
- Jiaqi Kang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuxuan Song
- Department of Urology, Peking University People's Hospital, Beijing, China.,Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Zhexin Zhang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Lu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
13
|
Zhou B, Chen Y, Yuan H, Wang T, Feng J, Li M, Liu J. NOX1/4 Inhibitor GKT-137831 Improves Erectile Function in Diabetic Rats by ROS Reduction and Endothelial Nitric Oxide Synthase Reconstitution. J Sex Med 2021; 18:1970-1983. [PMID: 34649814 DOI: 10.1016/j.jsxm.2021.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Previous studies have shown that oxidative stress contributes to hyperglycemia-induced erectile dysfunction. A preferential direct inhibitor of NOX1 and NOX4, GKT-137831, exhibited a strong anti‑oxidative role via blockade of reactive oxygen species (ROS) generation in endothelial cells, but whether GKT-137831 could improve erectile function was not clear. AIM Our study was designed to investigate the effect of NOX1/4 inhibition on improving diabetic erectile dysfunction (ED) in rats. METHODS We used streptozotocin to induce type 1 diabetes mellitus (DM) in 32 male Sprague Dawley (SD) rats (8 weeks old). Eight weeks later, type 1 diabetes mellitus-induced erectile dysfunction (DMED) in rats was confirmed using an apomorphine test. Our study consisted of 3 groups: (i) nondiabetic control group (n = 8), (ii) DMED + vehicle group (DMED group; n = 8), and (iii) DMED + GKT-137831 group (n = 9); GKT-137831 was given as a once-daily intraperitoneal injection for 4 weeks. Cavernous nerve electrostimulation was used to evaluate erectile function. Western blot, ELISA, immunohistochemistry, and immunofluorescence were used to measure expression of specific proteins, and DHE fluorescent probe was performed to detect ROS level. OUTCOMES Intracavernous pressure (ICP), nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling pathway, oxidative stress level, inflammatory response, corporal autophagy, and apoptosis were measured. RESULTS Erectile function in the DMED group was significantly impaired compared to the nondiabetic control group, whereas this impairment was improved with GKT-137831 treatment by 70%. Similarly, endothelial function and overactivated oxidative stress in the corpus cavernosum (CC) of the DMED + GKT-137831 group were improved. The DMED group showed serious inflammatory responses and excessive autophagy, which were inhibited by GKT-137831 treatment in the DMED + GKT-137831 group. CLINICAL TRANSLATION Our study showed improvement in erectile function with GKT-137831 in a diabetic rat ED model. STRENGTH AND LIMITATIONS This study suggested for the first time that GKT-137831, an NOX1/4 inhibitor undergoing clinical trials, is effective in improving erectile function in rats with type 1 DMED. However, we only investigated GKT-137831 treatment of streptozotocin-induced type 1 diabetic rats, and therapeutic evidence in other types of diabetes is lacking. CONCLUSION GKT-137831 improves erectile function by 70% in type 1 DMED rats and constitutes a promising compound for the treatment of type 1 DMED, likely by inhibition of overactivated oxidative stress, down-regulation of proinflammatory factors, and amelioration of excessive autophagy and endothelial function. B Zhou, Y Chen, H Yuan, et al. NOX1/4 Inhibitor GKT-137831 Improves Erectile Function in Diabetic Rats by ROS Reduction and Endothelial Nitric Oxide Synthase Reconstitution. J Sex Med 2021;XX:XXX-XXX.
Collapse
Affiliation(s)
- Bingyan Zhou
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinwei Chen
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huixing Yuan
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchao Li
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jihong Liu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Towe M, Peta A, Saltzman RG, Balaji N, Chu K, Ramasamy R. The use of combination regenerative therapies for erectile dysfunction: rationale and current status. Int J Impot Res 2021; 34:735-738. [PMID: 34253869 DOI: 10.1038/s41443-021-00456-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/01/2021] [Accepted: 06/21/2021] [Indexed: 11/09/2022]
Abstract
Erectile Dysfunction (ED) is defined as the inability to achieve and maintain an erection sufficient for sexual intercourse. Available treatments for ED provide only symptomatic relief, which is for the most part temporary. Regenerative therapies such as Low Intensity Shockwave, Platelet-Rich Plasma, and Stem Cell therapy can potentially provide a "cure" for ED by reversing the underlying pathology of ED rather than just treating the symptoms. Low Intensity Shockwave therapy is the most evidence based at this point and is thought to act by improving penile blood flow, repairing previous nerve damage, and activating stem cells. Stem Cell therapy takes advantage of the self-replicative potential of stem cells to create new corporal tissue, but also to recruit host cells and angiogenic factors to stimulate endogenous repair. Platelet-Rich Plasma therapy uses concentrated growth factors that already exist within the bloodstream to repair damaged nerves and increase penile blood flow. The use of combination restorative therapy may provide an additive or synergistic benefit greater than any one therapy alone because of its overlapping mechanisms of action on the penis but is a topic that remains to be studied.
Collapse
Affiliation(s)
- Maxwell Towe
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Akhil Peta
- Chicago Medical School at Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Russell G Saltzman
- Interdisciplinary Stem Cell Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Navin Balaji
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Kevin Chu
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Ranjith Ramasamy
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
15
|
Restorative Therapies for Erectile Dysfunction: Position Statement From the Sexual Medicine Society of North America (SMSNA). Sex Med 2021; 9:100343. [PMID: 34000480 PMCID: PMC8240368 DOI: 10.1016/j.esxm.2021.100343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Current non-invasive treatments for erectile dysfunction (ED) include oral medications, intracavernosal injections, and vacuum-assisted devices. Though these therapies work well for many, a subset of patients have contraindications or are unsatisfied with these options. Restorative therapies for ED are a new frontier of treatments focused on regenerating diseased tissue and providing a potential "cure" for ED. AIM The aim of this position statement is to examine existing clinical trial data for restorative therapies and identify elements that require further research before widespread adoption. METHODS A literature review was performed to identify all clinical trials performed with regenerative therapy for ED. This includes treatments such as stem cell therapy (SCT), platelet rich plasma (PRP), and restorative related technologies like low-intensity shockwave therapy (LiSWT). MAIN OUTCOME MEASURES Most clinical trials in restorative therapies were assessed for safety, feasibility, or efficacy. This included recording adverse events, changes in sexual function and erectile function questionnaires, and diagnostics measures. RESULTS To date there is an absence of robust clinical data supporting the efficacy of restorative therapies regarding ED, though technologies such as LiSWT have established relative safety. CONCLUSIONS Restorative therapies are a promising technology that represents a new frontier of treatment geared towards reversing disease pathology rather than just treating symptoms. However, current published clinical studies are limited. Future work needs to be adequately powered, multi-center, randomized, sham/placebo-controlled trials in well-characterized patient populations to ensure safety and demonstrate efficacy. Until these studies are done, restorative therapies should be reserved for clinical trials and not offered in routine clinical practice. Liu JL, Chu KY, Gabrielson AT, et al. Restorative Therapies for Erectile Dysfunction: Position Statement From the Sexual Medicine Society of North America (SMSNA). J Sex Med 2021;9:100343.
Collapse
|
16
|
Wu YN, Liao CH, Chen KC, Chiang HS. CXCL5 Cytokine Is a Major Factor in Platelet-Rich Plasma's Preservation of Erectile Function in Rats After Bilateral Cavernous Nerve Injury. J Sex Med 2021; 18:698-710. [PMID: 33741291 DOI: 10.1016/j.jsxm.2020.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/13/2020] [Accepted: 12/28/2020] [Indexed: 10/21/2022]
Abstract
BACKGROUND The neuro-protective and tissue-protective properties of platelet-rich plasma (PRP) have been demonstrated through treating bilateral cavernous nerve (CN) injury in rats, although the underlying mechanisms have not been fully clarified. AIM To determine factors released from PRP and explore their role in mediating preservation of erectile function (EF) in a rat model of CN injury. METHODS Male Sprague-Dawley rats (aged 10 weeks) were used in this study. 6 rats were used to obtain blood for PRP and whole plasma preparation. We probed samples using a cytokine antibody array and performed enzyme-linked immunosorbent assay (ELISA). We determined the expression patterns of C-X-C motif chemokine ligand 5 (CXCL5) and receptors in the major pelvic ganglion (MPG) and corpus cavernosum via immunostaining. 32 rats were divided into 4 groups based on the type of injection received: (i) sham, (ii) vehicle, (iii) 400 μL of PRP, and (iv) 30 ng/kg of CXCL5. Groups 2-4 were subjected to bilateral CN crush (BCNC) injury. 4 weeks later, EF was assessed by CN electrostimulation, and CNs and penile tissue were collected for histological analysis. OUTCOME Cytokine antibody array, ELISA, erectile response, and immunofluorescence staining readings. RESULTS The PRP contained high levels of CXCL5. MPG neurons expressed CXCL5 and CXCR2. PRP intracavernous injection stabilized CXCR2 and increased CXCL5 expression in the MPG after BCNC, thus enhancing neuroprotection. CXCL5 injection improved BCNC-induced erectile dysfunction by preventing smooth muscle atrophy. CLINICAL IMPLICATIONS The therapeutic efficacy of PRP in CN injury-induced erectile dysfunction may arise from the synergy among multiple biomolecules. Our study serves as a basis for future studies on PRP formulation to provide safe and effective medications for the maintenance of EF after radical prostatectomy in patients with prostate cancer. STRENGTHS & LIMITATIONS A strength of our study is that our model was able to isolate the role of cytokines, specifically CXCL5, as part of the mechanism responsible for PRP's protective properties. However, the rat cytokine array provided limited experimental targets. The rats used were not at the age corresponding to prostate cancer patients in clinical settings. Our study did not explore CXCL5 blocking in the PRP group. Finally, the main protein quantification results by western blotting were hampered because of small tissue samples. CONCLUSIONS This study provides evidence for the role of CXCL5 and CXCR2 as mediators of PRP effects in the preservation of EF after CN injury. Wu YN, Liao CH, Chen KC, et al. CXCL5 Cytokine Is a Major Factor in Platelet-Rich Plasma's Preservation of Erectile Function in Rats After Bilateral Cavernous Nerve Injury. J Sex Med 2021;18:698-710.
Collapse
Affiliation(s)
- Yi-No Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chun-Hou Liao
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Kuo-Chiang Chen
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Department of Urology, Cathay General Hospital, Taipei, Taiwan.
| | - Han-Sun Chiang
- Division of Urology, Department of Surgery, Cardinal Tien Hospital, New Taipei City, Taiwan; Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan; Department of Urology, Fu Jen Catholic University Hospital, New Taipei City, Taiwan.
| |
Collapse
|
17
|
Lin YH, Liao CH, Wong SM, Chiang BJ, Chen HC, Wu YN. A short term follow up for intracavernosal injection of platelet rich plasma for the treatment of erectile dysfunction. UROLOGICAL SCIENCE 2021. [DOI: 10.4103/uros.uros_22_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Combined Transplantation of Adipose Tissue-Derived Stem Cells and Endothelial Progenitor Cells Improve Diabetic Erectile Dysfunction in a Rat Model. Stem Cells Int 2020; 2020:2154053. [PMID: 32714394 PMCID: PMC7354671 DOI: 10.1155/2020/2154053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Erectile dysfunction (ED) is a common complication in men suffered with diabetic mellitus. Stem cell transplantation is a promising strategy for the treatment of diabetic ED (DED). In this study, we evaluated whether combined transplantation of adipose tissue-derived stem cells (ADSCs) and endothelial progenitor cells (EPCs) could improve the erectile function of the DED rat model. DED rats were induced via intraperitoneal injection of streptozotocin (50 mg/kg), and ED was screened by apomorphine (100 mg/kg). DED rats were divided into 4 groups (n = 14 each): DED, ADSC, EPC, and ADSC/EPC group. Another 14 age-matched male SD rats with normal erectile function were served as the normal group. The normal group and the DED group were received intracavernous injection with phosphate-buffered saline (PBS). And the other groups were received intracavernous injection with ADSCs (1 × 106), EPCs (1 × 106), and ADSCs/EPCs (0.5 × 106/0.5 × 106), respectively. The total intracavernous pressure (ICP) and mean arterial pressure (MAP) were recorded at day 28 after injection. The endothelium, smooth muscle, and penile dorsal nerves were assessed within cavernoursal tissue. On day 28 after injection, the ADSC/EPC group displayed more significantly enhanced ICP and ICP/MAP than the DED or ADSC or EPC group (p < 0.05). Immunofluorescent analysis and western blot demonstrated that the improvement of erectile function in the ADSC/EPC5 group was associated with increased expression of endothelial marker (CD31) and the correction of eNOS-cGMP-NO signaling. More 5-ethynyl-2′-deoxyuridine- (EdU-) positive EPCs could be found lining in the cavernous endothelial layer in the ADSC/EPC group than the EPC group, which was attributed to the paracrine of vascular endothelial growth factor (VEGF) and stromal-derived factor-1 (SDF-1) by ADSCs. Combined transplantation of ADSCs and EPCs has a synergic effect in repairing the endothelial function of DED rats, and the underlying mechanism might be the paracrine of VEGF and SDF-1 by ADSCs, which improves the recruitment and proliferation of EPCs in the cavernosum.
Collapse
|
19
|
Gur S, Hellstrom WJ. Harnessing Stem Cell Potential for the Treatment of Erectile Function in Men with Diabetes Mellitus: From Preclinical/Clinical Perspectives to Penile Tissue Engineering. Curr Stem Cell Res Ther 2020; 15:308-320. [DOI: 10.2174/1574888x14666190828142045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/10/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Background::
According to the World Health Organization, more than 150 million people
are diabetic, and this number will increase twofold by the year 2025. Diabetes-related complications
affect all body organ systems, including the penis. Diabetes-induced Erectile Dysfunction (ED) is
caused by neuropathy of the penile nerves and vasculopathy involving the smooth muscle and endothelium
of the corpus cavernosum.
Objective::
This study aims to present an overview of Stem Cell (SC) research in diabetic animal models
of ED, focusing on the function, signaling, and niches that have a prominent role in the regeneration
of cavernosal cells and penile tissues. We highlight common erectile pathologies caused by diabetes
and review relevant preclinical trials. We also discuss paracrine mechanisms of various SC therapies
involved in the repair of endothelial cells and cavernous nerves in these diabetic models.
Method::
A PubMed search was performed, with dates ranging from inception until Mar 31, 2019.
Results::
This review provides a comprehensive evaluation of the various strategies that have been
investigated for improving SC delivery methods, through preclinical literature and published clinical
trials regarding ED in men with diabetes. Various cell-type applications have benefited erectile function
in diabetic models of ED.
Conclusion::
This review examines the progress and remaining challenges in diabetes-related SC research
regarding ED. Moving forward, it is only with a combined effort of basic biology and translational
work that the potential of SC-based therapies in diabetes in ED can be realized.
Collapse
Affiliation(s)
- Serap Gur
- Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, United States
| | - Wayne J.G. Hellstrom
- Department of Urology, Tulane University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
20
|
Stem-cell therapy for erectile dysfunction: a review of clinical outcomes. Int J Impot Res 2020; 33:271-277. [PMID: 32350455 DOI: 10.1038/s41443-020-0279-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/04/2020] [Accepted: 04/03/2020] [Indexed: 12/21/2022]
Abstract
The prevalence of erectile dysfunction (ED) has increased in recent decades. Although many treatments offer some benefits for patients with ED, unmet therapeutic needs remain, and promising new approaches are under investigation. One of these approaches is the use of stem-cell (SC) therapy for ED. We comprehensively reviewed the published literature and ongoing phase 1 and phase 2 trials and identified 27 trials by using SC therapy to treat ED. Of the 27 trials, three have been withdrawn, nine have published results, six are complete but without published results, and nine trials are ongoing or have an "unknown" status. Our analysis revealed that SC therapy represents a promising option to treat ED, although published data exist for less than 100 patients. Large placebo-controlled trials with longer follow-up are needed to confirm the long-term safety and efficacy of SC therapy for ED.
Collapse
|
21
|
Ory J, Saltzman RG, Blachman-Braun R, Dadoun S, DiFede DL, Premer C, Hurwitz B, Hare JM, Ramasamy R. The Effect of Transendocardial Stem Cell Injection on Erectile Function in Men With Cardiomyopathy: Results From the TRIDENT, POSEIDON, and TAC-HFT Trials. J Sex Med 2020; 17:695-701. [PMID: 32059936 DOI: 10.1016/j.jsxm.2020.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/30/2019] [Accepted: 01/04/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Despite limited human data, there is a growing interest in the use of stem cell therapy (SCT) for erectile dysfunction (ED). AIM To determine the effect of transendocardial stem cell injection on erectile function on men with cardiomyopathy and ED. METHODS We used International Index of Erectile Function (IIEF) scores collected from men enrolled in 3 separate randomized controlled trials: Comparison of Allogeneic vs Autologous Bone Marrow-Derived Mesenchymal Stem Cells Delivered by Transendocardial Injection in Patients With Ischemic Cardiomyopathy (POSEIDON), Transendocardial Mesenchymal Stem Cells and Mononuclear Bone Marrow Cells for Ischemic Cardiomyopathy (TAC-HFT), and Dose Comparison Study of Allogeneic Mesenchymal Stem Cells in Patients With Ischemic Cardiomyopathy (TRIDENT). These trials recruited patients with ischemic cardiomyopathy and ejection fraction less than 50%. Inclusion and exclusion criteria were identical in all 3 trials. The primary intervention in these trials included transendocardial stem cell injection of stem cells or placebo via cardiac catheterization. The follow-up period was 1 year. IIEF data were collected at baseline and at multiple time points in each trial. OUTCOMES We investigated erectile function over time based on cell dose, cell source (autologous vs allogenic), cell type (mesenchymal stem cells vs bone marrow mononuclear cells), and comparing men who received SCT with those who received placebo. RESULTS A total of 36 men were identified with complete IIEF data. 8 men received placebo injection, and 28 received SCT. The median age was 66.5 years. Comorbidities were similar among all men. Analysis was performed on men with ED, defined by an IIEF-EF score of 24 or less. In the placebo and all-comer SCT group, the median IIEF-EF score was 5 [1-8] and 5 [1-15] at baseline and was 3.5 [3-5.8] and 7 [1-18] at 12 months (P > .05). When analyzed by cell dose, the IIEF-EF score in men who received 200 million cells increased significantly over 12 months (14 [4-23] to 20 [15-24.5], P = .014.) Similarly, an autologous cell source resulted in a similar increase from baseline to 12 months (14 [3.8-23.3] to 20 [12-22], P = .030). CLINICAL IMPLICATIONS Erectile function may improve after systemic delivery of SCT in men with ischemic cardiomyopathy and at least mild ED. STRENGTHS & LIMITATIONS This post hoc analysis is the first to investigate the effect of SCT on erectile function using randomized, placebo-controlled data. Weaknesses include that ED was not a primary end point, and men were not originally recruited based on erectile function. CONCLUSION Future trials on systemic delivery of SCT for ED should focus on high cell dose and autologous cell source, as these seem to provide the best response in men with at least mild ED. Ory J, Saltzman RG, Blachman-Braun R, et al. The Effect of Transendocardial Stem Cell Injection on Erectile Function in Men With Cardiomyopathy: Results From the TRIDENT, POSEIDON, and TAC-HFT Trials. J Sex Med 2020;17:695-701.
Collapse
Affiliation(s)
- Jesse Ory
- Department of Urology, Dalhousie University, Halifax, NS, Canada; Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Russell G Saltzman
- Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, USA
| | - Ruben Blachman-Braun
- Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, USA
| | - Simon Dadoun
- Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, USA
| | - Darcy L DiFede
- Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, USA
| | - Courtney Premer
- Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, USA
| | - Barry Hurwitz
- Behavioral Medicine Research Center, University of Miami, Miami, FL, USA
| | - Joshua M Hare
- Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA; Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, USA.
| |
Collapse
|
22
|
Park HJ, Jeong H, Park YH, Yim HW, Ha US, Hong SH, Kim SW, Kim NJ, Lee JY. Adipose Tissue-Derived Stem Cell Therapy for Cavernous Nerve Injury-Induced Erectile Dysfunction in the Rat Model: A Systematic Review and Meta-Analysis Using Methodological Quality Assessment. Int J Stem Cells 2019; 12:206-217. [PMID: 31022999 PMCID: PMC6657942 DOI: 10.15283/ijsc18122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/24/2022] Open
Abstract
Background and Objectives Few studies were evaluated the effect of blindness on outcome in animal models, though a potential effect of blinding has been reported in clinical trials. We evaluated the effects of adipose tissue-derived stem cells (ADSCs) on cavernous nerve injury (CNI)-induced erectile dysfunction (ED) in the rat and examined how proper blinding of the outcome assessor affected treatment effect. Methods and Results We searched in Pubmed, EMBASE, Cochrane and Web of Science databases from inception to January 2019. We included CNI animal model, randomized controlled experiments, and ADSC intervention. Erectile function and structural changes were assessed by intracavernous pressure and mean arterial pressure (ICP/MAP) ratios, neuronal nitric oxide synthase (nNOS) levels, cavernous smooth muscle and collagen (CSM/collagen) ratios, and cyclic guanosine monophosphate (cGMP). Results Nineteen studies were included in the final meta-analysis. The ICP/MAP ratio of the ADSC treatment group increased compared to the control group (SMD=1.33, 95%CI: 1.11~1.56, I2=72%). The nNOS level (SMD=2.29, 95%CI: 1.74~2.84, I2=75%), CSM/collagen (SMD=2.57, 95%CI: 1.62~3.52; I2=85%), and cGMP (SMD=2.96, 95%CI: 1.82~4.10, I2=62%) were also increased in the ADSC treatment group. Preplanned subgroup analysis was conducted to explore the source of heterogeneity. Five studies with blinded outcome assessment were significantly less effective than the unblinded studies (SMD=1.33, 95%CI: 0.86~1.80; SMD=1.81, 95%CI: 1.17~2.46, respectively). Conclusions ADSCs might be effective in improving erectile function and structural change in CNI-induced ED. However, non-blinded outcome assessors might cause detection bias and overestimate treatment efficacy. Therefore, the ADSC efficacy must be further evaluated with a rigorous study design to avoid bias.
Collapse
Affiliation(s)
- Hyo Jung Park
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Korea
| | - Hyunsuk Jeong
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong Hyun Park
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyeon Woo Yim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - U-Syn Ha
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung-Hoo Hong
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Na Jin Kim
- Medical Library, The Catholic University of Korea, Seoul, Korea
| | - Ji Youl Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
23
|
In vivo tracking on longer retention of transplanted myocardin gene-modified adipose-derived stem cells to improve erectile dysfunction in diabetic rats. Stem Cell Res Ther 2019; 10:208. [PMID: 31311594 PMCID: PMC6636019 DOI: 10.1186/s13287-019-1325-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/11/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Stem cell therapy has revealed a promising future for treating erectile dysfunction (ED), but the fate and curative mechanism of intracavernosal transplanted stem cells are under further exploration. This study aimed to demonstrate the effects of myocardin gene modification on improving erectile function and prolonging the retention of implanted adipose-derived stem cells (ASCs) using in vivo small animal imaging. METHODS ASCs were isolated, cultured, and identified by flow cytometry and osteogenic and adipogenic induction. The effects of gene modification on cell proliferation, apoptosis, and contraction were determined by CCK-8, EdU, flow cytometry, and collagen gel lattice contraction assays as well as confocal microscopy. A total of 20 normal and 60 diabetes mellitus ED to (DMED) Sprague-Dawley rats were recruited to the 7 day and 21 day groups. Each group contained subgroups of 10 rats each: the negative control (NC), DMED + ASCs plus Ad-Luc-Myocardin, DMED + ASCs plus Ad-Luc, and DMED + phosphate buffer solution (PBS) groups. Erectile function was evaluated with the intracavernosal pressure/mean arterial pressure (△ICP/MAP) ratio. In vivo small animal imaging and an EdU cell tracking strategy were introduced to detect the transplanted ASCs, and IHC and WB were performed to assess smooth muscle cell protein levels. RESULTS The ASCs expressed high CD29 and CD90 and scant CD45, while the multi-induction potential was verified by oil red O and alizarin red staining. Gene transfection of myocardin had no significant influence on ASC apoptosis but inhibited cell proliferation and promoted cell contraction. Myocardin combined with ASCs enhanced the therapeutic potential of ASCs for improving the △ICP/MAP ratio as well as α-SMA and calponin expression. In vivo imaging confirmed that ASCs resided within the cavernous body in 21 days, while only a few red EdU dots were detected. CONCLUSIONS Myocardin induced ASC differentiation towards smooth muscle-like cells and enhanced the therapeutic potential of ASCs for ameliorating ED in STZ-induced diabetic rats. Notably, in vivo small animal tracking was an effective strategy for monitoring the implanted stem cells, and this strategy might have advantages over traditional EdU assays.
Collapse
|
24
|
Yang J, Yu Z, Zhang Y, Zang G, Zhuan L, Tang Z, Liu Y, Wang T, Wang S, Liu J. Preconditioning of adipose‐derived stem cells by phosphodiesterase‐5 inhibition enhances therapeutic efficacy against diabetes‐induced erectile dysfunction. Andrology 2019; 8:231-240. [DOI: 10.1111/andr.12661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
Affiliation(s)
- J. Yang
- Department of Urology, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
- Institute of Urology of Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
| | - Z. Yu
- Department of Urology, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
- Institute of Urology of Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
| | - Y. Zhang
- Department of Urology, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
- Institute of Urology of Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
| | - G.‐H. Zang
- Department of Urology, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
- Institute of Urology of Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
| | - L. Zhuan
- Department of Urology, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
- Institute of Urology of Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
| | - Z. Tang
- Department of Urology, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
- Institute of Urology of Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
| | - Y. Liu
- Department of Neurology, Tongji Medical College Huazhong University of Science and Technology Hubei China
| | - T. Wang
- Department of Urology, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
- Institute of Urology of Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
| | - S.‐G. Wang
- Department of Urology, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
- Institute of Urology of Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
| | - J.‐H. Liu
- Department of Urology, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
- Institute of Urology of Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and Technology HubeiChina
| |
Collapse
|