1
|
Hu SZ, Yuan ZY, Zhang XX, Yu XJ, Ni HY, Sun SJ, Xu T, Zhan HQ. The emerging role of BLyS/APRIL in autoimmune diseases: Biological characteristics, functions, and therapeutic potential. J Autoimmun 2024; 149:103329. [PMID: 39504927 DOI: 10.1016/j.jaut.2024.103329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
Autoimmune diseases (AIDs) are common diseases in the world. Some cases are difficult to cure and can only delay the progression of the diseases. The B lymphocyte stimulator (BLyS)/a proliferation-inducing ligand (APRIL) plays an important role in B cell homeostasis, regulation of both innate and adaptive immune responses. After binding to their receptors, BLyS/APRIL primarily affects the survival and development of marginal, transitional, and mature B cells. Of note, elevated BLyS/APRIL is seen in many AIDs, such as systemic lupus erythematosus, rheumatoid arthritis, immunoglobulin A nephropathy, etc. Moreover, there is evidence that blocking these two cytokines can control the number of serum autoantibodies, promote the depletion of B lymphocytes, inhibit the activation of T cells and dendritic lymphocytes, and reduce inflammatory stress. Currently, some clinical studies are underway targeting BLyS/APRIL inhibitors for the treatment of AIDs. However, due to the scattered knowledge on the relationship between BLyS/APRIL and AIDs, it is necessary to sort out the existing data. Therefore, in this review, we describe the basic biological characteristics and functions of BLyS/APRIL in AIDs, summarize the potential clinical applications of related inhibitors, especially monoclonal antibodies and recombinant fusion proteins targeting BLyS/APRIL in AIDs, and also outline promising research directions.
Collapse
Affiliation(s)
- Shi-Zhi Hu
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China; Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Zhan-Yuan Yuan
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Xiao-Xun Zhang
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Xiao-Jing Yu
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Hai-Yan Ni
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Sheng-Jia Sun
- Clinical Medical College of Anhui Medical University, 1166 Wangjiang West Road, Hefei, Anhui, 230031, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - He-Qin Zhan
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China; Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
2
|
Sadekova GI, Boyko AN. [Modern pathogenetic treatment of rare demyelinating diseases]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:33-36. [PMID: 39175237 DOI: 10.17116/jnevro202412407233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Rare demyelinating diseases are a group of diseases whose pathogenesis is based on the process of demyelination. This group of diseases includes acute multiple encephalomyelitis (ADEM), opticoneuromyelitis spectrum diseases (NMOSD) and anti-myelin-oligodendrocyte glycoprotein-associated diseases (MOG-antibodies-associated diseases - MOGAD). Recently, new biological drugs for pathogenetic therapy have been developed, which have shown their effectiveness and good tolerability in comparison with therapy with first- and second-line drugs. Aim of the study - analysis of modern possibilities of pathogenetic treatment of patients with ADEM, seronegative and seropositive patients with NMOSD. The analysis was carried out on the basis of English-language publications in PubMed published over the past five years. This review summarizes current ideas about the possibilities of pathogenetic treatment of rare diseases. The advantages of using ravulizumab over other representatives of a new biological therapy associated with the use of monoclonal antibodies are shown. The analyzed data allow us to conclude that there is a significant development of pathogenetic treatment options for ZSONM. However, the effectiveness of new therapeutic biological drugs is still limited due to the lack of a large amount of clinical data to confirm, which creates the need to continue analyzing the experience of their use.
Collapse
Affiliation(s)
- G I Sadekova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A N Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia
- Federal Center of Brain Research and Neurotechnology, Moscow, Russia
| |
Collapse
|
3
|
Carnero Contentti E, Lopez PA, Tkachuk V, Vrech C, Zarate MA, Correale J, Deri N, Luetic G, Marrodan M, Pagani Cassara F, Tavolini D, Ysrraelit MC, Balbuena ME, Hryb J, Chiganer E, Leguizamon F, Knorre E, Zanga G, Pestchanker C, Barboza A, Nadur D, Cristiano E, Patrucco L, Alonso R, Alonso Serena M, Paul F, Rojas JI. Frequency of new asymptomatic MRI lesions during attacks and follow-up of patients with NMOSD in a real-world setting. Mult Scler 2023; 29:1240-1249. [PMID: 37491849 DOI: 10.1177/13524585231187120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
BACKGROUND We aimed to assess the frequency of new asymptomatic lesions on brain and spinal imaging (magnetic resonance imaging (MRI)) and their association with subsequent relapses in a large cohort of neuromyelitis optica spectrum disorder (NMOSD) patients in Argentina. METHODS We retrospectively reviewed 675 MRI (225 performed during an attack and 450 during the relapse-free period (performed at least 3 months from the last attack)) of NMOSD patients who had at least 2 years of clinical and MRI follow-up since disease onset. Kaplan-Meier (KM) curves were used for depicting time from remission MRI to subsequent relapse. RESULTS We included 135 NMOSD patients (64.4% were aquaporin-4-immunoglobulin G (AQP4-IgG)-positive). We found that 26 (19.26%) and 66 (48.88%) of patients experienced at least one new asymptomatic MRI lesion during both the relapse-free period and attacks, respectively. The most frequent asymptomatic MRI lesions were optic nerves followed by short-segment myelitis during the relapse-free period and attacks. KM curves did not show differences in the time taken to develop a new relapse. CONCLUSION Our findings showed that new asymptomatic lesions are relatively frequent. However, the presence of new asymptomatic MRI lesions during the relapse-free period and at relapses was not associated with a shorter time to developing subsequent relapses.
Collapse
Affiliation(s)
| | - Pablo A Lopez
- Neuroimmunology Unit, Department of Neurosciences, Hospital Alemán, Buenos Aires, Argentina
| | - Verónica Tkachuk
- Sección de Neuroinmunología y Enfermedades Desmielinizantes, Servicio de Neurología, Hospital de Clínicas José de San Martín, Buenos Aires, Argentina
| | - Carlos Vrech
- Departamento de Enfermedades Desmielinizantes, Sanatorio Allende, Córdoba, Argentina
| | - María A Zarate
- Departamento de Enfermedades Desmielinizantes, Sanatorio Allende, Córdoba, Argentina
| | - Jorge Correale
- Departamento de Neurología, Fleni, Buenos Aires, Argentina
| | - Norma Deri
- Centro de Especialidades Neurológicas y Rehabilitación, CENyR, Buenos Aires, Argentina
| | | | | | - Fátima Pagani Cassara
- Instituto de Neurociencias, Fundación Favaloro/INECO/Buenos Aires, Argentina Servicio de Neurología, Hospital Universitario Austral, Buenos Aires, Argentina
| | | | | | - María E Balbuena
- Sección de Neuroinmunología y Enfermedades Desmielinizantes, Servicio de Neurología, Hospital de Clínicas José de San Martín, Buenos Aires, Argentina
| | - Javier Hryb
- Consultorio de Neuroinmunología, Hospital Carlos G. Durand, Buenos Aires, Argentina
| | - Edson Chiganer
- Consultorio de Neuroinmunología, Hospital Carlos G. Durand, Buenos Aires, Argentina
| | | | - Eduardo Knorre
- Hospital de Agudos, Dr. Teodoro Álvarez, Buenos Aires, Argentina
| | - Gisela Zanga
- Departamento de Neurología, Hospital Cesar Milstein, Buenos Aires, Argentina
| | | | | | - Débora Nadur
- Sección de Neuroinmunología y Enfermedades Desmielinizantes, Servicio de Neurología, Hospital de Clínicas José de San Martín, Buenos Aires, Argentina
| | - Edgardo Cristiano
- Centro de Esclerosis Múltiple de Buenos Aires, Buenos Aires, Argentina
| | - Liliana Patrucco
- Centro de Esclerosis Múltiple de Buenos Aires, Buenos Aires, Argentina
| | - Ricardo Alonso
- Centro Universitario de Esclerosis Múltiple, Hospital Ramos Mejía, Buenos Aires, Argentina
| | - Marina Alonso Serena
- Servicio de Clínica Médica, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Juan Ignacio Rojas
- Centro de Esclerosis Múltiple de Buenos Aires, Buenos Aires, Argentina Servicio de Neurología, Unidad de EM y Enfermedades Desmielinizantes, Hospital Universitario de CEMIC, Buenos Aires, Argentina
| |
Collapse
|
4
|
Schindler P, Aktas O, Ringelstein M, Wildemann B, Jarius S, Paul F, Ruprecht K. Glial fibrillary acidic protein as a biomarker in neuromyelitis optica spectrum disorder: a current review. Expert Rev Clin Immunol 2023; 19:71-91. [PMID: 36378751 DOI: 10.1080/1744666x.2023.2148657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing, often debilitating neuroinflammatory disease, whose predominant clinical manifestations are longitudinally extensive transverse myelitis and optic neuritis. About 80% of the patients with an NMOSD phenotype have pathogenic autoantibodies against the astrocyte water channel aquaporin-4 (AQP4-IgG). While therapeutic options for NMOSD have greatly expanded in recent years, well-established biomarkers for prognosis or treatment response are still lacking. Glial fibrillary acidic protein (GFAP) is mainly expressed in astrocytes and can be detected in cerebrospinal fluid (CSF) and blood of patients with NMOSD. AREAS COVERED Here, we comprehensively review the current knowledge on GFAP as a biomarker in NMOSD. EXPERT OPINION In patients with AQP4-IgG+ NMOSD, GFAP levels are elevated in CSF and serum during acute attacks and correlate with disability, consistent with the pathophysiology of this antibody-mediated astrocytopathy. Serum GFAP levels tend to be higher in AQP4-IgG+ NMOSD than in its differential diagnoses, multiple sclerosis, and myelin oligodendrocyte antibody-associated disease. Importantly, serum GFAP levels in AQP4-IgG+ NMOSD during remission may be predictive of future disease activity. Serial serum GFAP measurements are emerging as a biomarker to monitor disease activity in AQP4-IgG+ NMOSD and could have the potential for application in clinical practice.
Collapse
Affiliation(s)
- Patrick Schindler
- Experimental and Clinical Research Center, A Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, A Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Mewes D, Kuchling J, Schindler P, Khalil AAA, Jarius S, Paul F, Chien C. Diagnostik der Neuromyelitis-optica-Spektrum-Erkrankung (NMOSD) und der MOG-Antikörper-assoziierten Erkrankung (MOGAD). Klin Monbl Augenheilkd 2022; 239:1315-1324. [DOI: 10.1055/a-1918-1824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ZusammenfassungDie Aquaporin-4-Antikörper-positive Neuromyelitis-optica-Spektrum-Erkrankung (engl. NMOSD) und die Myelin-Oligodendrozyten-Glykoprotein-Antikörper-assoziierte Erkrankung (engl. MOGAD) sind
Autoimmunerkrankungen des zentralen Nervensystems. Typische Erstmanifestationen sind bei Erwachsenen Optikusneuritis und Myelitis. Eine Beteiligung auch von Hirn und Hirnstamm, spätestens im
weiteren Verlauf, ist häufig. Während die NMOSD nahezu immer schubförmig verläuft, nimmt die MOGAD gelegentlich einen monophasischen Verlauf. Die Differenzialdiagnostik ist anspruchsvoll und
stützt sich auf u. a. auf radiologische und serologische Befunde. Die Abgrenzung von der häufigeren neuroinflammatorischen Erkrankung, Multiple Sklerose (MS), ist von erheblicher Bedeutung,
da sich Behandlung und langfristige Prognose von NMOSD, MOGAD und MS wesentlich unterscheiden. Die vielfältigen Symptome und die umfangreiche Diagnostik machen eine enge Zusammenarbeit
zwischen Ophthalmologie, Neurologie und Radiologie erforderlich. Dieser Artikel gibt einen Überblick über typische MRT-Befunde und die serologische Antikörperdiagnostik bei NMOSD und MOGAD.
Zwei illustrative Fallberichte aus der ärztlichen Praxis ergänzen die Darstellung.
Collapse
Affiliation(s)
- Darius Mewes
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin & Max-Delbrück-Centrum für molekulare Medizin Berlin, Berlin, Deutschland
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Biomedical Innovation Academy, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| | - Joseph Kuchling
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Biomedical Innovation Academy, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Klinik für Neurologie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| | - Patrick Schindler
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin & Max-Delbrück-Centrum für molekulare Medizin Berlin, Berlin, Deutschland
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Klinik für Neurologie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| | - Ahmed Abdelrahim Ahmed Khalil
- Centrum für Schlaganfallforschung, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Abteilung Neurologie, Max-Planck-Institut für Kognitions- und Neurowissenschaften, Leipzig, Deutschland
- Mind Brain Body Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Sven Jarius
- AG Molekulare Neuroimmunologie, Neurologische Klinik, Universität Heidelberg, Heidelberg, Deutschland
| | - Friedemann Paul
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin & Max-Delbrück-Centrum für molekulare Medizin Berlin, Berlin, Deutschland
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Klinik für Neurologie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| | - Claudia Chien
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin & Max-Delbrück-Centrum für molekulare Medizin Berlin, Berlin, Deutschland
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Klinik für Psychiatrie und Psychotherapie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| |
Collapse
|
6
|
Ding J, Jiang X, Cai Y, Pan S, Deng Y, Gao M, Lin Y, Zhao N, Wang Z, Yu H, Qiu H, Jin Y, Xue J, Guo Q, Ni L, Zhang Y, Hao Y, Guan Y. Telitacicept following plasma exchange in the treatment of subjects with recurrent neuromyelitis optica spectrum disorders: A single‐center, single‐arm, open‐label study. CNS Neurosci Ther 2022; 28:1613-1623. [PMID: 35851754 PMCID: PMC9437241 DOI: 10.1111/cns.13904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/25/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Neuromyelitis optica spectrum disorders (NMOSD), mainly mediated by B cells and AQP4 antibody, has a high rate of recurrence. Telitacicept is a novel drug specifically targeting the upstream signaling for the activation of B cell with its following production of autoimmune antibodies. Thus, it may be a promising approach. Our study preliminarily explored the potential safety and effectiveness of Telitacicept following plasma exchange in the treatment of recurrent NMOSD. Methods This was a single‐center, single‐arm, open‐label study enrolling eight patients with recurrent NMOSD in China. All patients received plasma exchange three times, followed by Telitacicept 240 mg every week for 46 times. The primary endpoint was the time of first recurrence after enrollment. Secondary end points included: changes in Expanded Disability Status Scale score, Optic Spinal Impairment Scale score, Hauser Ambulation Index, number of lesions on MRI, retinal nerve fiber layer thickness measured by optical coherence tomography, latency and amplitude of visual evoked potential, titer of AQP4 antibody, and immune parameters of blood. Safety was also assessed. The study was registered with Chictr.org.cn (ChiCTR1800019427). Results Eight eligible patients were enrolled. Relapse occurred in two patients (25%) and five patients (63%) remained relapse free after 48 weeks of treatment. The time to first recurrence was prolonged and the number of recurrences was reduced (p < 0.001, power of test = 1). One patient withdrew from the study due to low neutrophil count. No serious adverse events occurred. Conclusions In this small, uncontrolled study, Telitacicept following plasma exchange has the potential to be a safe treatment for patients with recurrent NMOSD. It may prolong the recurrence interval and reduces the annual count of recurrences. A multicenter randomized controlled study with a larger sample is thus feasible and needed to further assess its safety and efficacy.
Collapse
Affiliation(s)
- Jie Ding
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Xianguo Jiang
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Yu Cai
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Shuting Pan
- Clinical Research Center, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Ye Deng
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Meichun Gao
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Yan Lin
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Nan Zhao
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Ze Wang
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Haojun Yu
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Huiying Qiu
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Yuyan Jin
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Jiahui Xue
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Quan Guo
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Liping Ni
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Ying Zhang
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Yong Hao
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, School of Medicine Shanghai Jiaotong University Shanghai China
| |
Collapse
|
7
|
Ruck T, Nimmerjahn F, Wiendl H, Lünemann JD. Next-generation antibody-based therapies in neurology. Brain 2022; 145:1229-1241. [PMID: 34928330 PMCID: PMC9630709 DOI: 10.1093/brain/awab465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/04/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Antibody-based therapeutics are now standard in the treatment of neuroinflammatory diseases, and the spectrum of neurological diseases targeted by those approaches continues to grow. The efficacy of antibody-based drug platforms is largely determined by the specificity-conferring antigen-binding fragment (Fab) and the crystallizable fragment (Fc) driving antibody function. The latter provides specific instructions to the immune system by interacting with cellular Fc receptors and complement components. Extensive engineering efforts have enabled tuning of Fc functions to modulate effector functions and to prolong or reduce antibody serum half-lives. Technologies that improve bioavailability of antibody-based treatment platforms within the CNS parenchyma are being developed and could invigorate drug discovery for a number of brain diseases for which current therapeutic options are limited. These powerful approaches are currently being tested in clinical trials or have been successfully translated into the clinic. Here, we review recent developments in the design and implementation of antibody-based treatment modalities in neurological diseases.
Collapse
Affiliation(s)
- Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Falk Nimmerjahn
- Department of Biology, Division of Genetics, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
8
|
Lee HL, Kim SH, Seok JM, Kim BJ, Kim HJ, Kim BJ. Results of a Survey on Diagnostic Procedures and Treatment Choices for Neuromyelitis Optica Spectrum Disorder in Korea: Beyond the Context of Current Clinical Guidelines. J Clin Neurol 2022; 18:207-213. [PMID: 35274837 PMCID: PMC8926765 DOI: 10.3988/jcn.2022.18.2.207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Purpose Neuromyelitis optica spectrum disorder (NMOSD) is a rare demyelinating disease of the central nervous system (CNS). We investigated the medical behaviors of experts in Korea when they are diagnosing and treating NMOSD. Methods An anonymous questionnaire on the diagnosis and treatment of NMOSD was distributed to experts in CNS demyelinating diseases. Results Most respondents used the 2015 diagnostic criteria for NMOSD and applied a cerebrospinal fluid examination, magnetic resonance imaging (MRI) of the brain and spine, and anti-aquaporin-4 antibody testing to all suspected cases of NMOSD. All respondents prescribed steroid pulse therapy as an first-line therapy in the acute phase of NMOSD, and 67% prescribed azathioprine for maintenance therapy in NMOSD. However, details regarding monitoring, the tapering period of oral steroids, second-line therapy use in refractory cases, management during pregnancy, and schedule of follow-up MRI differed according to the circumstances of individual patients. We analyzed the differences in response rates between two groups of respondents according to the annual number of NMOSD patients that they treated. The group that had been treating ≥10 NMOSD patients annually preferred rituximab more often as the second-line therapy (p=0.011) and had more experience with rituximab treatment (p=0.015) compared with the group that had been treating <10 NMOSD patients. Conclusions This study has revealed that NMOSD experts in Korea principally follow the available treatment guidelines. However, the differences in specific clinical practices applied to uncertain cases that have been revealed will need to be investigated further in order to formulate suitable recommendations.
Collapse
Affiliation(s)
- Hye Lim Lee
- Department of Neurology, Korea University College of Medicine, Seoul, Korea
| | - Su-Hyun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Jin Myoung Seok
- Department of Neurology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University, College of Medicine, Cheonan, Korea
| | - Byung Jo Kim
- Department of Neurology, Korea University College of Medicine, Seoul, Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Byoung Joon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
9
|
Ma J, Yu H, Wang H, Zhang X, Feng K. Evaluation of effect of empirical attack-preventive immunotherapies in neuromyelitis optica spectrum disorders: An update systematic review and meta -analysis. J Neuroimmunol 2021; 363:577790. [PMID: 34959021 DOI: 10.1016/j.jneuroim.2021.577790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/28/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disease of the central nervous system, which mainly involves the optic nerve and spinal cord. Frequent relapse can accumulate the degree of disability. At present, the main treatment options are immunosuppressants and blood purification. The first-line immunosuppressants for NMOSD are mainly rituximab (RTX), mycophenolate mofetil (MMF) and azathioprine (AZA). Therefore, we designed this systematic review and meta-analysis to evaluate the safety and effect of the above three drugs in the treatment of NMOSD patients. METHODS The following Medical Subject Heading (MeSH) and related entry terms are used to search English literature in PubMed, MEDLINE and CENTRAL databases, respectively. MeSH include: Neuromyelitis optic and Rituximab or Azathioprine or Mycophenolate Mofetil; entry terms include: NMO Spectrum Disorder, NMO Spectrum Disorders, Neuromyelitis Optica (NMO) Spectrum Disorder, Neuromyelitis Optica Spectrum Disorders, Devic Neuromyelitis Optica, Neuromyelitis Optica, Devic, Devic's Disease, Devic Syndrome, Devic's Neuromyelitis Optica, Neuromyelitis Optica (NMO) Spectrum Disorders, CD20 Antibody, Rituximab CD20 Antibody, Mabthera, IDEC-C2B8 Antibody, GP2013, Rituxan, Mycophenolate Mofetil, Mofetil, Mycophenolate, Mycophenolic Acid, Morpholinoethyl Ester, Cellcept, Mycophenolate Sodium, Myfortic, Mycophenolate Mofetil Hydrochloride, Mofetil Hydrochloride, Mycophenolate, RS 61443, RS-61443, RS61443, azathioprine sodium, azathioprine sulfate (note: literature retrieval operators "AND" "OR" "NOT" are used to link MeSH with Entry Terms.) The literature search found a total of 3058 articles about rituximab, mycophenolate mofetil and azathioprine in the treatment of NMOSD, 63 of which were included in this study after a series of screening. RESULTS 930,933,732 patients with NMOSD were enrolled, who had been treated with MMF, AZA and RTX, respectively. The pooled standardized mean difference (SMD) of EDSS before and after RTX treated was -0.58 (95%CI: -0.72, -0.44) (I2 = 0%, p = 0.477), before and after MMF treated was -0.47 (95%CI: -0.73, -0.21) (I2 = 85.6%, p<0.001), before and after AZA treated was -0.41 (95%CI: -0.60, -0.23) (I2 = 65.4%, p<0.001). there was no significant difference in the effect of the three drugs on reducing EDSS scores (RTX vs MMF, p = 0.522; RTX vs AZA, p = 0.214; MMF vs AZA, p = 0.732). The pooled standardized mean difference (SMD) of ARR before and after RTX treated was -1.45 (95%CI: -1.72, -1.18) (I2 = 72.4%, p<0.001), before and after MMF treated was -1.14 (95%CI: -1.31, -0.97) (I2 = 54.5%, p<0.001), before and after AZA treated was -1.11 (95%CI: -1.39, -0.83) (I2 = 83.4%, p<0.001). RTX significantly reduced ARR compared with the other two drugs (RTX vs MMF, p = 0.039; RTX vs AZA, p = 0.049; MMF vs AZA, p = 0.436). CONCLUSION The results of this systematic review and meta-analysis showed that the treatment of NMOSD patients with RTX, MMF and AZA is associated with decreased number of relapses and disability improvement as well, and there was no significant difference in the effect of the three drugs on reducing EDSS scores, but RTX significantly reduced ARR compared with the other two drugs.
Collapse
Affiliation(s)
- Jia Ma
- Department of Neurology, Beijing Shunyi Hospital, NO.3 Guangming South Street, Shunyi District, Beijing 101300, China; Department of Neurology, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing 100160, China
| | - Haihua Yu
- Department of Neurology, Beijing Shunyi Hospital, NO.3 Guangming South Street, Shunyi District, Beijing 101300, China
| | - Hao Wang
- Department of Neurology, Beijing Shunyi Hospital, NO.3 Guangming South Street, Shunyi District, Beijing 101300, China
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing 100160, China.
| | - Kai Feng
- Department of Neurology, Beijing Shunyi Hospital, NO.3 Guangming South Street, Shunyi District, Beijing 101300, China.
| |
Collapse
|
10
|
Asseyer S. AQP4-IgG autoimmunity in Japan and Germany: Differences in clinical profiles and prognosis in seropositive neuromyelitis optica spectrum disorders. Mult Scler J Exp Transl Clin 2021; 7:20552173211006862. [PMID: 34017610 PMCID: PMC8114278 DOI: 10.1177/20552173211006862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Clinical outcomes in neuromyelitis optica spectrum disorders (NMOSD) vary across different regions. OBJECTIVE To describe clinical profiles in Japanese and German NMOSD patients. METHODS Medical records of aquaporin-4-immunoglobulin G (AQP4-IgG) positive NMOSD patients from Japan (n = 54) and Germany (n = 38) were retrospectively analyzed. RESULTS The disability status was similar between both cohorts, although Japanese patients had a longer disease duration (13.3 ± 11.1 vs. 8.1 ± 6.9 years, p = 0.018) but similar relapse rates. Optic neuritis and myelitis were the most frequent attacks in both cohorts. Brain attacks occurred more frequently in Japanese patients (40.7% vs. 15.8%, p = 0.020). The time from disease onset (median [interquartile range] 2.3 [0.3-10.1] vs. 0.6 [0.2-1.9] years, p = 0.009) and the number of attacks (2.5 [1-7] vs. 2 [1-3], p = 0.047) until start of the first immunotherapy were higher in the Japanese cohort. Rituximab was the most common drug in the German cohort (52.6%) and not given in the Japanese cohort (p < 0.001), where oral prednisolone was the most common drug (92.6% vs. 15.8%, p < 0.001). The frequency of autoimmune comorbidities was higher in the German cohort (39.5% vs. 18.5%, p = 0.047). CONCLUSION Compared with Japanese NMOSD patients, German patients presented with similar disability despite shorter disease duration and earlier and more frequent immunosuppressive therapy.
Collapse
Affiliation(s)
- Susanna Asseyer
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charite-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany NeuroCure Clinical Research Center, Charite- Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
11
|
Ayzenberg I, Kleiter I. [Treatment of antibody-mediated encephalomyelitis : Strategies for the treatment of neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein antibody-associated disease]. DER NERVENARZT 2021; 92:334-348. [PMID: 33783551 DOI: 10.1007/s00115-021-01090-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Antibody-mediated encephalomyelitis, such as neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), and glial fibrillary acidic protein (GFAP) antibody-associated astrocytopathy belong to a group of newly described autoimmune diseases. AIM Presentation of the treatment of antibody-mediated encephalomyelitis with a focus on NMOSD and MOGAD. METHODS Selective literature search in PubMed taking the consultation version of the S2k guidelines of the German Society of Neurology (DGN) on the diagnosis and treatment of multiple sclerosis (MS), NMOSD and MOG IgG-associated diseases into account. RESULTS Acute relapses are treated with high-dose steroid pulse therapy or apheresis therapy (plasma exchange or immunoadsorption). It is crucial to start treatment as quickly as possible and apheresis therapy can also be used as first-line treatment under certain conditions. For prophylactic immunotherapy, steroids, classical immunosuppressants and monoclonal antibodies with specific mechanisms of action are used. Eculizumab, inebilizumab and satralizumab are the first drugs approved for NMOSD. Symptomatic treatment and neurorehabilitation are important complementary measures. CONCLUSION Treatment of antibody-mediated encephalomyelitis differs from treatment of multiple sclerosis and requires specific measures.
Collapse
Affiliation(s)
- Ilya Ayzenberg
- Klinik für Neurologie, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Deutschland.
| | - Ingo Kleiter
- Klinik für Neurologie, St. Josef Hospital Bochum, Ruhr-Universität Bochum, Bochum, Deutschland
- Marianne-Strauß-Klinik, Behandlungszentrum Kempfenhausen für Multiple Sklerose Kranke gemeinnützige GmbH, Milchberg 21, 82335, Berg, Deutschland
| |
Collapse
|
12
|
Ding J, Cai Y, Deng Y, Jiang X, Gao M, Lin Y, Zhao N, Wang Z, Yu H, Lv W, Zhang Y, Hao Y, Guan Y. Telitacicept Following Plasma Exchange in the Treatment of Subjects With Recurrent NMOSD: Study Protocol for a Single-Center, Single-Arm, Open-Label Study. Front Neurol 2021; 12:596791. [PMID: 33868140 PMCID: PMC8044936 DOI: 10.3389/fneur.2021.596791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune demyelinating disease that recurrently relapses and leads to severe disability. The available choices for disease prevention are few or intolerable. Previous studies suggested that telitacicept may provide a promising therapeutic strategy for autoimmune diseases involving B cells. Therefore, this study aims to assess the effectiveness and safety of telitacicept for recurrent NMOSD. Methods: We will perform a single-arm, single-center, open-label, specialist study with a total enrollment of eight participants. The treatment regimen includes plasma exchange three times and subcutaneous injection of telitacicept for 46 cycles, with a total period of 48 weeks. The primary endpoint is the time to first recurrence after enrollment. Secondary endpoints are Expanded Disability Status Scale (EDSS) score, Opticospinal Impairment Scale (OSIS) score, Hauser Ambulation Index, number of lesions on MRI, and changes in visual evoked potential (VEP), optical coherence tomography (OCT) and immunologic status. All adverse events after medication will be documented and investigated. Discussion: This study will explore the safety and effectiveness of telitacicept following plasma exchange regarding the time to recurrence in neuromyelitis optica spectrum disorder (NMOSD) for the first time. Clinical Trial Registration:Chictr.org.cn, identifier ChiCTR1800019427
Collapse
Affiliation(s)
- Jie Ding
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu Cai
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ye Deng
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xianguo Jiang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Meichun Gao
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Lin
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Nan Zhao
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ze Wang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Haojun Yu
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wenwen Lv
- Clinical Research Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ying Zhang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yong Hao
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
13
|
Schmetzer O, Lakin E, Roediger B, Duchow A, Asseyer S, Paul F, Siebert N. Anti-aquaporin 4 IgG Is Not Associated With Any Clinical Disease Characteristics in Neuromyelitis Optica Spectrum Disorder. Front Neurol 2021; 12:635419. [PMID: 33776892 PMCID: PMC7994757 DOI: 10.3389/fneur.2021.635419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Neuromyelitis optica spectrum disorder (NMOSD) is a clinically defined, inflammatory central nervous system (CNS) disease of unknown cause, associated with humoral autoimmune findings such as anti-aquaporin 4 (AQP4)-IgG. Recent clinical trials showed a benefit of anti-B cell and anti-complement-antibodies in NMOSD, suggesting relevance of anti-AQP4-IgG in disease pathogenesis. Objective: AQP4-IgG in NMOSD is clearly defined, yet up to 40% of the patients are negative for AQP4-IgG. This may indicate that AQP4-IgG is not disease-driving in NMOSD or defines a distinct patient endotype. Methods: We established a biobank of 63 clinically well-characterized NMOSD patients with an extensive annotation of 351 symptoms, patient characteristics, laboratory results and clinical scores. We used phylogenetic clustering, heatmaps, principal component and longitudinal causal interference analyses to test for the relevance of anti-AQP4-IgG. Results: Anti-AQP4-IgG was undetectable in 29 (46%) of the 63 NMOSD patients. Within anti-AQP4-IgG-positive patients, anti-AQP4-IgG titers did not correlate with clinical disease activity. Comparing anti-AQP4-IgG-positive vs. -negative patients did not delineate any clinically defined subgroup. However, anti-AQP4-IgG positive patients had a significantly (p = 0.022) higher rate of additional autoimmune diagnoses. Conclusion: Our results challenge the assumption that anti-AQP4-IgG alone plays a disease-driving role in NMOSD. Anti-AQP4-IgG might represent an epiphenomenon associated with NMOSD, may represent one of several immune mechanisms that collectively contribute to the pathogenesis of this disease or indeed, anti-AQP4-IgG might be the relevant factor in only a subgroup of patients.
Collapse
Affiliation(s)
- Oliver Schmetzer
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, NeuroCure Clinical Research Center (NCRC) and Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Elisa Lakin
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, NeuroCure Clinical Research Center (NCRC) and Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Ben Roediger
- Novartis Institutes for Biomedical Research - Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| | - Ankelien Duchow
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, NeuroCure Clinical Research Center (NCRC) and Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Susanna Asseyer
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, NeuroCure Clinical Research Center (NCRC) and Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemann Paul
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, NeuroCure Clinical Research Center (NCRC) and Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nadja Siebert
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, NeuroCure Clinical Research Center (NCRC) and Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Duchow A, Bellmann-Strobl J. Satralizumab in the treatment of neuromyelitis optica spectrum disorder. Neurodegener Dis Manag 2021; 11:49-59. [DOI: 10.2217/nmt-2020-0046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare and debilitating autoimmune astrocytopathy with a predominantly relapsing disease course. Satralizumab, a humanized monoclonal antibody, was designed to treat NMOSD by targeting the IL-6 receptor. Satralizumab builds on positive experiences of off-label use tocilizumab in recent years. Before 2019, no medications were approved for the treatment of NMOSD. In 2020, satralizumab became the third compound to enter the US market, adding to the complement inhibitor eculizumab and the CD19 inhibitor inebilizumab. Here, we review the two randomized, double-blind, Phase III trials that investigated the subcutaneous administration of satralizumab as add-on treatment and monotherapy. Both studies revealed positive effects concerning the reduction of relapse risk for AQP4 seropositive NMOSD patients and generally good tolerability.
Collapse
Affiliation(s)
- Ankelien Duchow
- Neurocure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, & Berlin Institute of Health, 10117 Berlin, Germany
- Experimental & Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, & Berlin Institute of Health & Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Judith Bellmann-Strobl
- Neurocure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, & Berlin Institute of Health, 10117 Berlin, Germany
- Experimental & Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, & Berlin Institute of Health & Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| |
Collapse
|
15
|
Review of approved NMO therapies based on mechanism of action, efficacy and long-term effects. Mult Scler Relat Disord 2020; 46:102538. [PMID: 33059216 PMCID: PMC7539063 DOI: 10.1016/j.msard.2020.102538] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/10/2023]
Abstract
Neuromyelitis optica (NMO - including NMO spectrum disorders [NMOSD]) is a devastating disease. Up until recently, there was no proven agent to treat to prevent relapses. We now have three agents indicated for the treatment of NMO. We might suggest the following sequence – 1st line using eculizumab for rapid efficacy and stabilization without effect on the acquired immune system followed by satrilizumab (long term immunomodulation). Reserve inebilizumab (immunosuppressant) for breakthrough disease and salvage the severe with AHSCBMT. In NMO, control the complement, transition to modulation, and reserve suppression – and salvage the severe with AHSCBMT.
Importance Neuromyelitis optica (NMO - including NMO spectrum disorders [NMOSD]) is a devastating disease. Eighty-three percent of patients with transverse myelitic (TM) attacks and 67% of patients with optic neuritis (ON) attacks have no or a partial recovery. Observations Up until recently, there was no proven agent to treat to prevent relapses. The neuro-immunological community had a dearth of indicated agents for NMOSD. We now have three agents indicated for the treatment of NMO including (eculizumab [Soliris®]), an anti-C5 complement inhibitor, satralizumab (ENSRYNG®), a monoclonal antibody against the IL-6 receptor (IL-6R) that blocks B cell antibody production and inebilizumab (Uplinza®), a monoclonal antibody that binds to the B-cell surface antigen CD19 with subsequent B and plasmablast cell lymphocytolysis with decreasing antibody production. Autologous hematopoietic stem cell bone marrow transplantation (AHSCBMT) has also been used. How do we sequence NMO therapies with the understanding of the acuteness and severity of the disease, the individual mechanism of action (MOA) and rapidity of onset of action, onset of efficacy and long-term safety of each agent? Conclusions and Relevance We might suggest the following sequence – 1st line using eculizumab for rapid efficacy and stabilization without effect on the acquired immune system followed by satrilizumab (long term immunomodulation). Reserve inebilizumab (immunosuppressant) for breakthrough disease and salvage the severe with AHSCBMT. In NMO, control the complement, transition to modulation, and reserve suppression – and salvage the severe with AHSCBMT.
Collapse
|