1
|
Siman-Tov T, Granot RY, Shany O, Singer N, Hendler T, Gordon CR. Is there a prediction network? Meta-analytic evidence for a cortical-subcortical network likely subserving prediction. Neurosci Biobehav Rev 2019; 105:262-275. [PMID: 31437478 DOI: 10.1016/j.neubiorev.2019.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/25/2019] [Accepted: 08/17/2019] [Indexed: 01/24/2023]
Abstract
Predictive coding is an increasingly influential and ambitious concept in neuroscience viewing the brain as a 'hypothesis testing machine' that constantly strives to minimize prediction error, the gap between its predictions and the actual sensory input. Despite the invaluable contribution of this framework to the formulation of brain function, its neuroanatomical foundations have not been fully defined. To address this gap, we conducted activation likelihood estimation (ALE) meta-analysis of 39 neuroimaging studies of three functional domains (action perception, language and music) inherently involving prediction. The ALE analysis revealed a widely distributed brain network encompassing regions within the inferior and middle frontal gyri, anterior insula, premotor cortex, pre-supplementary motor area, temporoparietal junction, striatum, thalamus/subthalamus and the cerebellum. This network is proposed to subserve domain-general prediction and its relevance to motor control, attention, implicit learning and social cognition is discussed in light of the predictive coding scheme. Better understanding of the presented network may help advance treatments of neuropsychiatric conditions related to aberrant prediction processing and promote cognitive enhancement in healthy individuals.
Collapse
Affiliation(s)
- Tali Siman-Tov
- Sagol Brain Institute Tel Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Roni Y Granot
- Musicology Department, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofir Shany
- Sagol Brain Institute Tel Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Neomi Singer
- Sagol Brain Institute Tel Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Talma Hendler
- Sagol Brain Institute Tel Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Carlos R Gordon
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
2
|
Kolbe SC, Kilpatrick TJ, Mitchell PJ, White O, Egan GF, Fielding J. Inhibitory saccadic dysfunction is associated with cerebellar injury in multiple sclerosis. Hum Brain Mapp 2013; 35:2310-9. [PMID: 24038970 DOI: 10.1002/hbm.22329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 03/12/2013] [Accepted: 04/22/2013] [Indexed: 11/07/2022] Open
Abstract
Cognitive dysfunction is common in patients with multiple sclerosis (MS). Saccadic eye movement paradigms such as antisaccades (AS) can sensitively interrogate cognitive function, in particular, the executive and attentional processes of response selection and inhibition. Although we have previously demonstrated significant deficits in the generation of AS in MS patients, the neuropathological changes underlying these deficits were not elucidated. In this study, 24 patients with relapsing-remitting MS underwent testing using an AS paradigm. Rank correlation and multiple regression analyses were subsequently used to determine whether AS errors in these patients were associated with: (i) neurological and radiological abnormalities, as measured by standard clinical techniques, (ii) cognitive dysfunction, and (iii) regionally specific cerebral white and gray-matter damage. Although AS error rates in MS patients did not correlate with clinical disability (using the Expanded Disability Status Score), T2 lesion load or brain parenchymal fraction, AS error rate did correlate with performance on the Paced Auditory Serial Addition Task and the Symbol Digit Modalities Test, neuropsychological tests commonly used in MS. Further, voxel-wise regression analyses revealed associations between AS errors and reduced fractional anisotropy throughout most of the cerebellum, and increased mean diffusivity in the cerebellar vermis. Region-wise regression analyses confirmed that AS errors also correlated with gray-matter atrophy in the cerebellum right VI subregion. These results support the use of the AS paradigm as a marker for cognitive dysfunction in MS and implicate structural and microstructural changes to the cerebellum as a contributing mechanism for AS deficits in these patients.
Collapse
Affiliation(s)
- Scott C Kolbe
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
3
|
A 7T fMRI study of cerebellar activation in sequential finger movement tasks. Exp Brain Res 2013; 228:243-54. [DOI: 10.1007/s00221-013-3558-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/02/2013] [Indexed: 11/25/2022]
|
4
|
McFarland J, Cannon DM, Schmidt H, Ahmed M, Hehir S, Emsell L, Barker G, McCarthy P, Elliott MA, McDonald C. Association of grey matter volume deviation with insight impairment in first-episode affective and non-affective psychosis. Eur Arch Psychiatry Clin Neurosci 2013; 263:133-41. [PMID: 22673767 DOI: 10.1007/s00406-012-0333-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 05/23/2012] [Indexed: 12/21/2022]
Abstract
The neurobiological correlates of impaired insight in psychotic illness remain uncertain and may be confounded by factors such as illness progression and medication use. Our study consisted of two separate experiments. In the first experiment, we examined the association between measures of insight and regional brain volume in thirty-two patients with first-episode psychosis. In the second experiment, we looked at similar associations in thirty individuals with chronic schizophrenia. Detailed measures of symptom awareness and symptom attribution were obtained using the Scale to assess Unawareness of Mental Disorder. MRI scans were acquired and analysed using Statistical Non-Parametric Mapping for voxel-based analyses of grey matter maps. Regression models were used to assess the relationship between insight and grey matter volume in both the first-episode psychosis and the chronic schizophrenia experiments whilst controlling for potential confounds. In first-episode psychosis patients, symptom misattribution was associated with increased grey matter in the right and left caudate, right thalamus, left insula, putamen and cerebellum. In the chronic schizophrenia study, there were no significant associations between regional grey matter volume and measures of insight. These findings suggest that neuroplastic changes within subcortical and frontotemporal regions are associated with impaired insight in individuals during their first episode of psychosis.
Collapse
Affiliation(s)
- John McFarland
- Department of Psychiatry, School of Medicine, National University of Ireland, Galway, Co., Galway, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Mendez-Balbuena I, Naranjo JR, Wang X, Andrykiewicz A, Huethe F, Schulte-Mönting J, Hepp-Reymond MC, Kristeva R. The strength of the corticospinal coherence depends on the predictability of modulated isometric forces. J Neurophysiol 2012; 109:1579-88. [PMID: 23255723 DOI: 10.1152/jn.00187.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Isometric compensation of predictably frequency-modulated low forces is associated with corticomuscular coherence (CMC) in beta and low gamma range. It remains unclear how the CMC is influenced by unpredictably modulated forces, which create a mismatch between expected and actual sensory feedback. We recorded electroencephalography from the contralateral hand motor area, electromyography (EMG), and the motor performance of 16 subjects during a visuomotor task in which they had to isometrically compensate target forces at 8% of the maximum voluntary contraction with their right index finger. The modulated forces were presented with predictable or unpredictable frequencies. We calculated the CMC, the cortical motor alpha-, beta-, and gamma-range spectral powers (SP), and the task-related desynchronization (TRD), as well as the EMG SP and the performance. We found that in the unpredictable condition the CMC was significantly lower and associated with lower cortical motor SP, stronger TRD, higher EMG SP, and worse performance. The findings suggest that due to the mismatch between predicted and actual sensory feedback leading to higher computational load and less stationary motor state, the unpredictable modulation of the force leads to a decrease in corticospinal synchrony, an increase in cortical and muscle activation, and a worse performance.
Collapse
|
6
|
Fielding J, Corben L, Cremer P, Millist L, White O, Delatycki M. Disruption to higher order processes in Friedreich ataxia. Neuropsychologia 2010; 48:235-42. [PMID: 19766130 DOI: 10.1016/j.neuropsychologia.2009.09.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/21/2009] [Accepted: 09/11/2009] [Indexed: 01/28/2023]
Abstract
Friedreich ataxia (FRDA), the most common of the genetically inherited ataxias, is characterised by ocular motor deficits largely reflecting disruption to brainstem-cerebellar circuitry. These deficits include fixation instability, saccadic dysmetria, disrupted pursuit, and vestibular abnormalities. Whether higher order or cognitive control processes involved the generation of more volitional eye movements are similarly impaired, has not been explored previously. This research examined antisaccade and memory-guided saccade characteristics in 13 individuals with genetically confirmed FRDA, and contrasted performance with neurologically healthy individuals. We demonstrate, for the first time, a broad range of deficits in FDRA consistent with disruption to higher order processes involved in the control of saccadic eye movement. Significant differences between FDRA and control participants were revealed across all movement parameters (latency, gain, velocity, position error), and across all saccade types, including alterations to velocity profiles. FDRA participants also generated significantly more erroneous responses to non-target stimuli in both saccade paradigms. Finally, a number of correlations between ocular motor and clinical measures were revealed including those between contrast acuity and saccadic latency (all saccade types), disease duration and measures of response inhibition (errors and relative latencies for antisaccades), and neurological scores and error latencies, arguably a reflection of difficulty resolving response conflict. These results suggest a role for the cerebellum in higher order cognitive control processes, and further support the proposal that eye movement markers, which can be measured with accuracy and reliability, may be a useful biomarker in FDRA.
Collapse
Affiliation(s)
- Joanne Fielding
- Centre for Neuroscience, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
7
|
Mostofsky SH, Powell SK, Simmonds DJ, Goldberg MC, Caffo B, Pekar JJ. Decreased connectivity and cerebellar activity in autism during motor task performance. Brain 2009; 132:2413-25. [PMID: 19389870 PMCID: PMC2732264 DOI: 10.1093/brain/awp088] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 01/30/2009] [Accepted: 03/02/2009] [Indexed: 11/14/2022] Open
Abstract
Although motor deficits are common in autism, the neural correlates underlying the disruption of even basic motor execution are unknown. Motor deficits may be some of the earliest identifiable signs of abnormal development and increased understanding of their neural underpinnings may provide insight into autism-associated differences in parallel systems critical for control of more complex behaviour necessary for social and communicative development. Functional magnetic resonance imaging was used to examine neural activation and connectivity during sequential, appositional finger tapping in 13 children, ages 8-12 years, with high-functioning autism (HFA) and 13 typically developing (TD), age- and sex-matched peers. Both groups showed expected primary activations in cortical and subcortical regions associated with motor execution [contralateral primary sensorimotor cortex, contralateral thalamus, ipsilateral cerebellum, supplementary motor area (SMA)]; however, the TD group showed greater activation in the ipsilateral anterior cerebellum, while the HFA group showed greater activation in the SMA. Although activation differences were limited to a subset of regions, children with HFA demonstrated diffusely decreased connectivity across the motor execution network relative to control children. The between-group dissociation of cerebral and cerebellar motor activation represents the first neuroimaging data of motor dysfunction in children with autism, providing insight into potentially abnormal circuits impacting development. Decreased cerebellar activation in the HFA group may reflect difficulty shifting motor execution from cortical regions associated with effortful control to regions associated with habitual execution. Additionally, diffusely decreased connectivity may reflect poor coordination within the circuit necessary for automating patterned motor behaviour. The findings might explain impairments in motor development in autism, as well as abnormal and delayed acquisition of gestures important for socialization and communication.
Collapse
|
8
|
Activation of the pre-supplementary motor area but not inferior prefrontal cortex in association with short stop signal reaction time--an intra-subject analysis. BMC Neurosci 2009; 10:75. [PMID: 19602259 PMCID: PMC2719646 DOI: 10.1186/1471-2202-10-75] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 07/14/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our previous work described the neural processes of motor response inhibition during a stop signal task (SST). Employing the race model, we computed the stop signal reaction time (SSRT) to index individuals' ability in inhibitory control. The pre-supplementary motor area (preSMA), which shows greater activity in individuals with short as compared to those with long SSRT, plays a role in mediating response inhibition. In contrast, the right inferior prefrontal cortex (rIFC) showed greater activity during stop success as compared to stop error. Here we further pursued this functional differentiation of preSMA and rIFC on the basis of an intra-subject approach. RESULTS Of 65 subjects who participated in four sessions of the SST, we identified 30 individuals who showed a difference in SSRT but were identical in other aspects of stop signal performance between the first ("early") and last two ("late") sessions. By comparing regional brain activation between the two sessions, we confirmed greater preSMA but not rIFC activity during short as compared to long SSRT session within individuals. Furthermore, putamen, anterior cerebellum and middle/posterior cingulate cortex also showed greater activity in association with short SSRT. CONCLUSION These results are consistent with a role of medial prefrontal cortex in controlled action and inferior frontal cortex in orienting attention. We discussed these findings with respect to the process of attentional monitoring and inhibitory motor control during stop signal inhibition.
Collapse
|
9
|
Rao H, Di X, Chan RCK, Ding Y, Ye B, Gao D. A regulation role of the prefrontal cortex in the fist-edge-palm task: evidence from functional connectivity analysis. Neuroimage 2008; 41:1345-51. [PMID: 18495496 DOI: 10.1016/j.neuroimage.2008.04.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 04/04/2008] [Accepted: 04/08/2008] [Indexed: 11/24/2022] Open
Abstract
The Fist-Edge-Palm (FEP) task is a motor sequencing task that is widely used in neurological examination. Deficits in this task are believed to reflect impairment in the frontal lobe regions. However, two recent functional brain imaging studies of the FEP task using conventional subtraction analysis failed to demonstrate FEP-induced activation in the prefrontal cortex (PFC), which contradicts existing neuropsychological literature. In this study, psychophysiological interaction (PPI) analysis was used to reanalyze our previous neuroimaging dataset from 10 healthy subjects in order to evaluate the changes of functional connectivity between the sensorimotor cortex and the prefrontal regions during the performances of the FEP task relative to simple motor control tasks. The PPI analysis revealed significantly increased functional connectivity between bilateral sensorimotor cortex and the right inferior and middle frontal cortex during the performance of the FEP task compared with the control tasks. However, regional signal changes showed no significant activation differences in these prefrontal regions. These results provide evidence supporting the involvement of the frontal lobe in the performance of the FEP task, and suggest a role of regulation, rather than direct participation, of the prefrontal cortex in the execution of complex motor sequence tasks such as the FEP task.
Collapse
Affiliation(s)
- Hengyi Rao
- Department of Psychology, Center for Functional Brain Imaging and First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510275, China.
| | | | | | | | | | | |
Collapse
|
10
|
Picard H, Amado I, Mouchet-Mages S, Olié JP, Krebs MO. The role of the cerebellum in schizophrenia: an update of clinical, cognitive, and functional evidences. Schizophr Bull 2008; 34:155-72. [PMID: 17562694 PMCID: PMC2632376 DOI: 10.1093/schbul/sbm049] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The role of the cerebellum in schizophrenia has been highlighted by Andreasen's hypothesis of "cognitive dysmetria," which suggests a general dyscoordination of sensorimotor and mental processes. Studies in schizophrenic patients have brought observations supporting a cerebellar impairment: high prevalence of neurological soft signs, dyscoordination, abnormal posture and propioception, impaired eyeblink conditioning, impaired adaptation of the vestibular-ocular reflex or procedural learning tests, and lastly functional neuroimaging studies correlating poor cognitive performances with abnormal cerebellar activations. Despite those compelling evidences, there has been, to our knowledge, no recent review on the clinical, cognitive, and functional literature supporting the role of the cerebellum in schizophrenia. We conducted a Medline research focusing on cerebellar dysfunctions in schizophrenia. Emphasis was given to recent literature (after 1998). The picture arising from this review is heterogeneous. While in some domains, the role of the cerebellum seems clearly defined (ie, neurological soft signs, posture, or equilibrium), in other domains, the cerebellar contribution to schizophrenia seems limited or indirect (ie, cognition) if present at all (ie, affectivity). Functional models of the cerebellum are proposed as a background for interpreting these results.
Collapse
Affiliation(s)
- Hernàn Picard
- INSERM U796, Pathophysiology of psychiatric diseases, University Paris Descartes, Sainte-Anne Hospital, Paris, France.
| | | | | | | | | |
Collapse
|
11
|
Tunik E, Schmitt PJ, Grafton ST. BOLD coherence reveals segregated functional neural interactions when adapting to distinct torque perturbations. J Neurophysiol 2007; 97:2107-20. [PMID: 17202232 PMCID: PMC1945221 DOI: 10.1152/jn.00405.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In the natural world, we experience and adapt to multiple extrinsic perturbations. This poses a challenge to neural circuits in discriminating between different context-appropriate responses. Using event-related fMRI, we characterized the neural dynamics involved in this process by randomly delivering a position- or velocity-dependent torque perturbation to subjects' arms during a target-capture task. Each perturbation was color-cued during movement preparation to provide contextual information. Although trajectories differed between perturbations, subjects significantly reduced error under both conditions. This was paralleled by reduced BOLD signal in the right dentate nucleus, the left sensorimotor cortex, and the left intraparietal sulcus. Trials included "NoGo" conditions to dissociate activity related to preparation from execution and adaptation. Subsequent analysis identified perturbation-specific neural processes underlying preparation ("NoGo") and adaptation ("Go") early and late into learning. Between-perturbation comparisons of BOLD magnitude revealed negligible differences for both preparation and adaptation trials. However, a network-level analysis of BOLD coherence revealed that by late learning, response preparation ("NoGo") was attributed to a relative focusing of coherence within cortical and basal ganglia networks in both perturbation conditions, demonstrating a common network interaction for establishing arbitrary visuomotor associations. Conversely, late-learning adaptation ("Go") was attributed to a focusing of BOLD coherence between a cortical-basal ganglia network in the viscous condition and between a cortical-cerebellar network in the positional condition. Our findings demonstrate that trial-to-trial acquisition of two distinct adaptive responses is attributed not to anatomically segregated regions, but to differential functional interactions within common sensorimotor circuits.
Collapse
Affiliation(s)
- Eugene Tunik
- HB 6162 Moore Hall, Dept. of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH 03755
- Department of Physical Therapy, Steinhardt School of Education, New York University, 380 2 Ave, 4 Floor, New York, NY, 10010
| | - Paul J. Schmitt
- HB 6162 Moore Hall, Dept. of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH 03755
| | - Scott T. Grafton
- HB 6162 Moore Hall, Dept. of Psychological and Brain Sciences, Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH 03755
- Department of Psychology, Sage Center for the Study of the Mind, Building 251, UC Santa Barbara, Santa Barbara, CA 93106-9660
| |
Collapse
|
12
|
Chan RCK, Rao H, Chen EEH, Ye B, Zhang C. The neural basis of motor sequencing: an fMRI study of healthy subjects. Neurosci Lett 2006; 398:189-94. [PMID: 16469446 DOI: 10.1016/j.neulet.2006.01.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 12/17/2005] [Accepted: 01/10/2006] [Indexed: 11/24/2022]
Abstract
The present study used functional MRI to clarify the brain regions activated during a series of motor sequencing tasks in healthy volunteers. Ten subjects were scanned while performing three soft signs tasks ranging from simple (PT: palm tapping), moderate (PS: pronation/supination) to complex movements (FEP: fist-edge-palm). The FEP task induced significant activations within the cortical networks including bilateral sensorimotor, SMA, left parietal, and right cerebellum, but no activation in the prefrontal area. Moreover, the percentage signal changes within the left sensorimotor, left thalamus and right cerebellum showed an increase in activation with task complexity. The present findings challenge the traditional belief that FEP was a task for frontal lobe function but suggest that successful performance of more complex neurological soft sign tasks like FEP requires the participation of more brain areas than simple motor sequencing and coordination task like PS and PT. These also provide the empirical data on the neural basis of neurological soft signs for further study in other clinical group like schizophrenia in the near future.
Collapse
Affiliation(s)
- Raymond C K Chan
- Department of Psychology, Sun Yat-Sen University, and Department of Radiology, First Affiliated Hospital, Guangzhou 510275, PR
| | | | | | | | | |
Collapse
|
13
|
Nitschke MF, Arp T, Stavrou G, Erdmann C, Heide W. The cerebellum in the cerebro-cerebellar network for the control of eye and hand movements--an fMRI study. PROGRESS IN BRAIN RESEARCH 2005; 148:151-64. [PMID: 15661188 DOI: 10.1016/s0079-6123(04)48013-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The coordination of optical information and manipulation of objects in space by eye and hand movements is controlled by a cerebro-cerebellar network. The differential influence of prefrontal, motor, or parietal areas in combination with cerebellar areas, especially within the posterior hemispheres, on the control of eye and hand movements is not very well defined. Using fMRI we investigated the functional representation of isolated or combined eye and hand movements within the cerebellum and the impact of differential cognitive preload on the activation patterns. Each task consisted of the performance of saccades or hand movements triggered by a cue presented on a screen in front of the scanner. Saccades were tested for visually guided saccades, triple step saccades, and for visuospatial memory. Sequential finger opposition movements were tested for predictive and nonpredictive movements. Combined and isolated eye-hand reaching movements were tested toward a target presented in 5 different horizontal positions. Visually guided saccades activated the cerebellar vermis lobuli VI-VII, triple step saccades, including visuospatial memorization, in addition the cerebellar hemispheres lobuli VII-VIII. Sequential finger movements and reaching movements activated a cerebellar network consisting of the lobuli IV-VI, the vermis, and the lobuli VII-VIII with broader areas and additional regions especially within the lobus VII for more complex movements. The combined in contrast to the isolated performance of eye and hand movements demonstrated specialized activation foci within the cerebellar vermis and posterior hemispheres. We could demonstrate a differential representation of eye and hand movements within the cerebellum. Additional "cognitive" preload within a given task leads to additional activation of the posterior cerebellar hemispheres, with a subspecialization corresponding to premotor and parietal area connections.
Collapse
Affiliation(s)
- M F Nitschke
- Department of Neurology, Medical University of Lübeck, Germany.
| | | | | | | | | |
Collapse
|