1
|
Yaghmur A, Østergaard J, Mu H. Lipid nanoparticles for targeted delivery of anticancer therapeutics: Recent advances in development of siRNA and lipoprotein-mimicking nanocarriers. Adv Drug Deliv Rev 2023; 203:115136. [PMID: 37944644 DOI: 10.1016/j.addr.2023.115136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
The limitations inherent in conventional cancer treatment methods have stimulated recent efforts towards the design of safe nanomedicines with high efficacy for combating cancer through various promising approaches. A plethora of nanoparticles has been introduced in the development of cancer nanomedicines. Among them, different lipid nanoparticles are attractive for use due to numerous advantages and unique opportunities, including biocompatibility and targeted drug delivery. However, a comprehensive understanding of nano-bio interactions is imperative to facilitate the translation of recent advancements in the development of cancer nanomedicines into clinical practice. In this contribution, we focus on lipoprotein-mimicking nanoparticles, which possess unique features and compositions facilitating drug transport through receptor binding mechanisms. Additionally, we describe potential applications of siRNA lipid nanoparticles in the future design of anticancer nanomedicines. Thus, this review highlights recent progress, challenges, and opportunities of lipid-based lipoprotein-mimicking nanoparticles and siRNA nanocarriers designed for the targeted delivery of anticancer therapeutic agents.
Collapse
Affiliation(s)
- Anan Yaghmur
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jesper Østergaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Huiling Mu
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
2
|
Gu L, Liu Y, Zhang W, Li J, Chang C, Su Y, Yang Y. Novel extraction technologies and potential applications of egg yolk proteins. Food Sci Biotechnol 2022; 32:121-133. [PMID: 36590017 PMCID: PMC9795146 DOI: 10.1007/s10068-022-01209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
The high nutritional value and diverse functional properties of egg yolk proteins have led to its widespread use in the fields of food, medicine, and cosmetics. Various extraction methods have been reported to obtain the proteins from egg yolk, however, their utilization is limited due to the relatively low extraction efficiency and/or toxic solvents involved. Several simpler and greener technologies, especially physical fields (ultrasound), have been successfully developed to improve the extraction efficiency. The egg yolk proteins may exert multiple biological activities, enabling them to be a promising tool in improve human health and wellbeing, such as anti-obesity, anti-atherosclerosis, anti-osteoporosis, diagnosis and therapy for SARS-CoV-2 infections. This article summarizes the novel extraction technologies and latest applications of the egg yolk proteins in the recent 5 years, which should stimulate their utilization as health-promoting functional ingredients in foods and other commercial products.
Collapse
Affiliation(s)
- Luping Gu
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China ,Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, 415400 Hunan China
| | - Yufang Liu
- College of Food Engineering and Nutritional Science, Shanxi Normal University, Xi’an, China
| | - Wanqiu Zhang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China
| | - Junhua Li
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China
| | - Cuihua Chang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China
| | - Yujie Su
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China ,Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, 415400 Hunan China
| | - Yanjun Yang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China ,Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, 415400 Hunan China
| |
Collapse
|
3
|
Bakrania A, Zheng G, Bhat M. Nanomedicine in Hepatocellular Carcinoma: A New Frontier in Targeted Cancer Treatment. Pharmaceutics 2021; 14:41. [PMID: 35056937 PMCID: PMC8779722 DOI: 10.3390/pharmaceutics14010041] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death and is associated with a dismal median survival of 2-9 months. The fundamental limitations and ineffectiveness of current HCC treatments have led to the development of a vast range of nanotechnologies with the goal of improving the safety and efficacy of treatment for HCC. Although remarkable success has been achieved in nanomedicine research, there are unique considerations such as molecular heterogeneity and concomitant liver dysfunction that complicate the translation of nanotheranostics in HCC. This review highlights the progress, challenges, and targeting opportunities in HCC nanomedicine based on the growing literature in recent years.
Collapse
Affiliation(s)
- Anita Bakrania
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada;
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2N2, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mamatha Bhat
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada;
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2N2, Canada
- Division of Gastroenterology, Department of Medicine, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
4
|
Ossoli A, Wolska A, Remaley AT, Gomaraschi M. High-density lipoproteins: A promising tool against cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159068. [PMID: 34653581 DOI: 10.1016/j.bbalip.2021.159068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
High-density lipoproteins (HDL) are well known for their protective role against the development and progression of atherosclerosis. Atheroprotection is mainly due to the key role of HDL within the reverse cholesterol transport, and to their ability to exert a series of antioxidant and anti-inflammatory activities. Through the same mechanisms HDL could also affect cancer cell proliferation and tumor progression. Many types of cancers share common alterations of cellular metabolism, including lipid metabolism. In this context, not only fatty acids but also cholesterol and its metabolites play a key role. HDL were shown to reduce cancer cell content of cholesterol, overall rewiring cholesterol homeostasis. In addition, HDL reduce oxidative stress and the levels of pro-inflammatory molecules in cancer cells and in the tumor microenvironment (TME). Here, HDL can also help in reverting tumor immune escape and in inhibiting angiogenesis. Interestingly, HDL are good candidates for drug delivery, targeting antineoplastic agents to the tumor mass mainly through their binding to the scavenger receptor BI. Since they could affect cancer development and progression per se, HDL-based drug delivery systems may render cancer cells more sensitive to antitumor agents and reduce the development of drug resistance.
Collapse
Affiliation(s)
- Alice Ossoli
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Monica Gomaraschi
- Centro Enrica Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
5
|
Pedersbæk D, Krogager L, Albertsen CH, Ringgaard L, Hansen AE, Jønsson K, Larsen JB, Kjær A, Andresen TL, Simonsen JB. Effect of apoA-I PEGylation on the Biological Fate of Biomimetic High-Density Lipoproteins. ACS OMEGA 2021; 6:871-880. [PMID: 33458538 PMCID: PMC7808163 DOI: 10.1021/acsomega.0c05468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/08/2020] [Indexed: 05/05/2023]
Abstract
Biomimetic high-density lipoproteins (b-HDL) have in the past two decades been applied for various drug delivery applications. As b-HDL inherently have relatively long circulation half-life and high tumor accumulation, this has inspired researchers to use b-HDL to selectively deliver drugs to tumors. PEGylation of the b-HDL has been pursued to increase the circulation half-life and therapeutic efficacy even further. The b-HDL consist of lipids stabilized by a protein/peptide scaffold, and while PEGylation of the scaffold has been shown to greatly increase the circulation half-life of the scaffold, the effect of PEGylation of the lipids is much less significant. Still, it remains to be evaluated how the biological fate, including cellular uptake, biodistribution, and circulation half-life, of the b-HDL lipids is affected by PEGylation of the b-HDL scaffold. We studied this with apolipoprotein A-I (apoA-I)-based b-HDL and mono-PEGylated b-HDL (PEG b-HDL) both in vitro and in vivo. We found that PEGylation of the b-HDL scaffold only seemed to have minimal effect on the biological fate of the lipids. Both b-HDL and PEG b-HDL overall shared similar biological fates, which includes cellular uptake through the scavenger receptor class B type 1 (SR-BI) and relatively high tumor accumulation. This highlights that b-HDL are dynamic particles, and the biological fates of the b-HDL components (lipids and scaffold) can differ. A phenomenon that may also apply for other multicomponent nanoparticles.
Collapse
Affiliation(s)
- Dennis Pedersbæk
- Department
of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Louise Krogager
- Department
of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Camilla Hald Albertsen
- Department
of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Lars Ringgaard
- Department
of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anders E. Hansen
- Department
of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Katrine Jønsson
- Department
of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jannik B. Larsen
- Department
of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Andreas Kjær
- Department
of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular
Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thomas L. Andresen
- Department
of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jens B. Simonsen
- Department
of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Malajczuk CJ, Gandhi NS, Mancera RL. Structure and intermolecular interactions in spheroidal high-density lipoprotein subpopulations. JOURNAL OF STRUCTURAL BIOLOGY-X 2020; 5:100042. [PMID: 33437963 PMCID: PMC7788233 DOI: 10.1016/j.yjsbx.2020.100042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022]
Abstract
High-density lipoprotein subpopulations have unique surface profiles and dynamics. Relative hydrophobic surface area decreases with increasing lipoprotein size. Core lipid exposure at the lipoprotein surface decreases with increasing size. Cholesterol molecules localise near apolipoprotein A-I central helices. Lipid and protein interactions stabilise multifoil models of apolipoprotein A-I.
Human serum high-density lipoproteins (HDLs) are a population of small, dense protein-lipid aggregates that are crucial for intravascular lipid trafficking and are protective against cardiovascular disease. The spheroidal HDL subfraction can be separated by size and density into five major subpopulations with distinct molecular compositions and unique biological functionalities: HDL3c, HDL3b, HDL3a, HDL2a and HDL2b. Representative molecular models of these five subpopulations were developed and characterised for the first time in the presence of multiple copies of its primary protein component apolipoprotein A-I (apoA-I) using coarse-grained molecular dynamics simulations. Each HDL model exhibited size, morphological and compositional profiles consistent with experimental observables. With increasing particle size the separation of core and surface molecules became progressively more defined, resulting in enhanced core lipid mixing, reduced core lipid exposure at the surface, and the formation of an interstitial region between core and surface molecules in HDL2b. Cholesterol molecules tended to localise around the central helix-5 of apoA-I, whilst triglyceride molecules predominantly interacted with aromatic, hydrophobic residues located within the terminal helix-10 across all subpopulation models. The three intermediate HDL models exhibited similar surface profiles despite having distinct molecular compositions. ApoA-I in trefoil, quatrefoil and pentafoil arrangements across the surface of HDL particles exhibited significant warping and twisting, but largely retained intermolecular contacts between adjacent apoA-I chains. Representative HDL subpopulations differed in particle size, morphology, intermolecular interaction profiles and lipid and protein dynamics. These findings reveal how different HDL subpopulations might exhibit distinct functional associations depending on particle size, form and composition.
Collapse
Affiliation(s)
- Chris J Malajczuk
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Neha S Gandhi
- School of Mathematical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Ricardo L Mancera
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
7
|
Pedersbæk D, Simonsen JB. A systematic review of the biodistribution of biomimetic high-density lipoproteins in mice. J Control Release 2020; 328:792-804. [PMID: 32971201 DOI: 10.1016/j.jconrel.2020.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022]
Abstract
For the past two decades, biomimetic high-density lipoproteins (b-HDL) have been used for various drug delivery applications. The b-HDL mimic the endogenous HDL, and therefore possess many attractive features for drug delivery, including high biocompatibility, biodegradability, and ability to transport and deliver their cargo (e.g. drugs and/or imaging agents) to specific cells and tissues that are recognized by HDL. The b-HDL designs reported in the literature often differ in size, shape, composition, and type of incorporated cargo. However, there exists only limited insight into how the b-HDL design dictates their biodistribution. To fill this gap, we conducted a comprehensive systematic literature search of biodistribution studies using various designs of apolipoprotein A-I (apoA-I)-based b-HDL (i.e. b-HDL with apoA-I, apoA-I mutants, or apoA-I mimicking peptides). We carefully screened 679 papers (search hits) for b-HDL biodistribution studies in mice, and ended up with 24 relevant biodistribution profiles that we compared according to b-HDL design. We show similarities between b-HDL biodistribution studies irrespectively of the b-HDL design, whereas the biodistribution of the b-HDL components (lipids and scaffold) differ significantly. The b-HDL lipids primarily accumulate in liver, while the b-HDL scaffold primarily accumulates in the kidney. Furthermore, both b-HDL lipids and scaffold accumulate well in the tumor tissue in tumor-bearing mice. Finally, we present essential considerations and strategies for b-HDL labeling, and discuss how the b-HDL biodistribution can be tuned through particle design and administration route. Our meta-analysis and discussions provide a detailed overview of the fate of b-HDL in mice that is highly relevant when applying b-HDL for drug delivery or in vivo imaging applications.
Collapse
Affiliation(s)
- Dennis Pedersbæk
- Technical University of Denmark, Department of Health Technology, 2800 Kgs. Lyngby, Denmark
| | - Jens B Simonsen
- Technical University of Denmark, Department of Health Technology, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
8
|
Henrich SE, McMahon KM, Plebanek MP, Calvert AE, Feliciano TJ, Parrish S, Tavora F, Mega A, De Souza A, Carneiro BA, Thaxton CS. Prostate cancer extracellular vesicles mediate intercellular communication with bone marrow cells and promote metastasis in a cholesterol-dependent manner. J Extracell Vesicles 2020; 10:e12042. [PMID: 33408816 PMCID: PMC7775568 DOI: 10.1002/jev2.12042] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/10/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022] Open
Abstract
Primary tumours can establish long-range communication with distant organs to transform them into fertile soil for circulating tumour cells to implant and proliferate, a process called pre-metastatic niche (PMN) formation. Tumour-derived extracellular vesicles (EV) are potent mediators of PMN formation due to their diverse complement of pro-malignant molecular cargo and their propensity to target specific cell types (Costa-Silva et al., 2015; Hoshino et al., 2015; Peinado et al., 2012; Peinado et al., 2017). While significant progress has been made to understand the mechanisms by which pro-metastatic EVs create tumour-favouring microenvironments at pre-metastatic organ sites, comparatively little attention has been paid to the factors intrinsic to recipient cells that may modify the extent to which pro-metastatic EV signalling is received and transduced. Here, we investigated the role of recipient cell cholesterol homeostasis in prostate cancer (PCa) EV-mediated signalling and metastasis. Using a bone metastatic model of enzalutamide-resistant PCa, we first characterized an axis of EV-mediated communication between PCa cells and bone marrow that is marked by in vitro and in vivo PCa EV uptake by bone marrow myeloid cells, activation of NF-κB signalling, enhanced osteoclast differentiation, and reduced myeloid thrombospondin-1 expression. We then employed a targeted, biomimetic approach to reduce myeloid cell cholesterol in vitro and in vivo prior to conditioning with PCa EVs. Reducing myeloid cell cholesterol prevented the uptake of PCa EVs by recipient myeloid cells, abolished NF-κB activity and osteoclast differentiation, stabilized thrombospondin-1 expression, and reduced metastatic burden by 77%. These results demonstrate that cholesterol homeostasis in bone marrow myeloid cells regulates pro-metastatic EV signalling and metastasis by acting as a gatekeeper for EV signal transduction.
Collapse
Affiliation(s)
- Stephen E. Henrich
- Department of UrologyFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Simpson Querrey Institute for BioNanotechnologyNorthwestern UniversityChicagoIllinoisUSA
| | - Kaylin M. McMahon
- Department of UrologyFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Simpson Querrey Institute for BioNanotechnologyNorthwestern UniversityChicagoIllinoisUSA
| | - Michael P. Plebanek
- Department of UrologyFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Simpson Querrey Institute for BioNanotechnologyNorthwestern UniversityChicagoIllinoisUSA
| | - Andrea E. Calvert
- Department of UrologyFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Simpson Querrey Institute for BioNanotechnologyNorthwestern UniversityChicagoIllinoisUSA
| | - Timothy J. Feliciano
- Department of UrologyFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Simpson Querrey Institute for BioNanotechnologyNorthwestern UniversityChicagoIllinoisUSA
| | - Samuel Parrish
- Department of UrologyFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Fabio Tavora
- Department of PathologyMessejana Heart and Lung HospitalFortalezaBrazil
| | - Anthony Mega
- Warren Alpert Medical SchoolBrown UniversityProvidenceRhode IslandUSA
- Lifespan Cancer InstituteProvidenceRhode IslandUSA
| | - Andre De Souza
- Warren Alpert Medical SchoolBrown UniversityProvidenceRhode IslandUSA
- Lifespan Cancer InstituteProvidenceRhode IslandUSA
| | - Benedito A. Carneiro
- Warren Alpert Medical SchoolBrown UniversityProvidenceRhode IslandUSA
- Lifespan Cancer InstituteProvidenceRhode IslandUSA
| | - C. Shad Thaxton
- Department of UrologyFeinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Simpson Querrey Institute for BioNanotechnologyNorthwestern UniversityChicagoIllinoisUSA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
9
|
Nazir S, Jankowski V, Bender G, Zewinger S, Rye KA, van der Vorst EP. Interaction between high-density lipoproteins and inflammation: Function matters more than concentration! Adv Drug Deliv Rev 2020; 159:94-119. [PMID: 33080259 DOI: 10.1016/j.addr.2020.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/20/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
High-density lipoprotein (HDL) plays an important role in lipid metabolism and especially contributes to the reverse cholesterol transport pathway. Over recent years it has become clear that the effect of HDL on immune-modulation is not only dependent on HDL concentration but also and perhaps even more so on HDL function. This review will provide a concise general introduction to HDL followed by an overview of post-translational modifications of HDL and a detailed overview of the role of HDL in inflammatory diseases. The clinical potential of HDL and its main apolipoprotein constituent, apoA-I, is also addressed in this context. Finally, some conclusions and remarks that are important for future HDL-based research and further development of HDL-focused therapies are discussed.
Collapse
|