1
|
Singh VK, Srivastava M, Seed TM. Protein biomarkers for radiation injury and testing of medical countermeasure efficacy: promises, pitfalls, and future directions. Expert Rev Proteomics 2023; 20:221-246. [PMID: 37752078 DOI: 10.1080/14789450.2023.2263652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Radiological/nuclear accidents, hostile military activity, or terrorist strikes have the potential to expose a large number of civilians and military personnel to high doses of radiation resulting in the development of acute radiation syndrome and delayed effects of exposure. Thus, there is an urgent need for sensitive and specific assays to assess the levels of radiation exposure to individuals. Such radiation exposures are expected to alter primary cellular proteomic processes, resulting in multifaceted biological responses. AREAS COVERED This article covers the application of proteomics, a promising and fast developing technology based on quantitative and qualitative measurements of protein molecules for possible rapid measurement of radiation exposure levels. Recent advancements in high-resolution chromatography, mass spectrometry, high-throughput, and bioinformatics have resulted in comprehensive (relative quantitation) and precise (absolute quantitation) approaches for the discovery and accuracy of key protein biomarkers of radiation exposure. Such proteome biomarkers might prove useful for assessing radiation exposure levels as well as for extrapolating the pharmaceutical dose of countermeasures for humans based on efficacy data generated using animal models. EXPERT OPINION The field of proteomics promises to be a valuable asset in evaluating levels of radiation exposure and characterizing radiation injury biomarkers.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
2
|
Singh VK, Seed TM. Development of gamma-tocotrienol as a radiation medical countermeasure for the acute radiation syndrome: current status and future perspectives. Expert Opin Investig Drugs 2023; 32:25-35. [PMID: 36655861 DOI: 10.1080/13543784.2023.2169127] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The possibility of exposure to high doses of total- or partial-body ionizing radiation at a high dose rate due to radiological/nuclear accidents or terrorist attacks is increasing. Despite research and development during the last six decades, there is a shortage of nontoxic, safe, and effective radiation medical countermeasures (MCMs) for radiological and nuclear emergencies. To date, the US Food and Drug Administration (US FDA) has approved only four agents for the mitigation of hematopoietic acute radiation syndrome (H-ARS). AREA COVERED We present the current status of a promising radiation countermeasure, gamma-tocotrienol (GT3; a component of vitamin E) as a radiation MCM that has been investigated in murine and nonhuman primate models of H-ARS. There is significant work with this agent using various omic platforms during the last few years to identify its efficacy biomarkers. EXPERT OPINION GT3 is a newer type of radioprotector having significant injury-countering potential and is currently under advanced development for H-ARS. As a pre-exposure drug, it requires only single doses, lacks significant toxicity, and has minimal, ambient temperature storage requirements; thus, GT3 appears to be an ideal MCM for military and first responders as well as for storage in the Strategic National Stockpile.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
3
|
Li J, Shen Z, Chen W, Feng Z, Fang L, Zhao J, Liu C, Du J, Cheng Y. Screening of miRNAs in White Blood Cell as a Radiation Biomarkers for Rapid Assessment of Acute Radiation Injury. Dose Response 2022; 20:15593258221123679. [PMID: 36132708 PMCID: PMC9483971 DOI: 10.1177/15593258221123679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Accidental radiation exposure is a threat to human health that necessitates
effective clinical diagnosis. Suitable biomarkers are urgently needed for early
assessment of exposure dose. Existing technologies being used to assess the
extent of radiation have notable limitations. As a radiation biomarker, miRNA
has the advantages of simple detection and high throughput. In this study, we
screened for miRNAs with dose and time dependent responses in peripheral blood
leukocytes via miRNA sequencing in establishing the animal model of acute
radiation injury. Four radiation-sensitive and stably expressed miRNAs were
selected out in the 24 h group of leukocyte miRNAs: mmu-miR-130b-5p,
mmu-miR-148b-5p, mmu-miR-184-3p, mmu-miR-26a-2-3p, and five were screened in the
48 h group of leukocyte miRNAs: mmu-miR-130b-5p, mmu-miR-423-5p, mmu-miR-676-3p,
mmu-miR-150-5p, mmu-miR-342-3p.The correlation curves between their expression
and irradiation dose were plotted. Then, the results were validated by RT-qPCR
in mouse peripheral blood. As a result, mmu-miR-150-5p and mmu-miR-342-3p showed
the highest correlation at 48h after irradiation, and mmu-miR-130b-5p showed
good correlation at both 24 h and 48 h after irradiation. In a conclusion, the
miRNAs that are sensitive to ionizing radiation with dose dependent effects were
selected out, which have the potential of forming a rapid assessment scheme for
acute radiation injury.
Collapse
Affiliation(s)
- Jiaxun Li
- College of Basic Medicine, Naval Medical University, Shanghai, China
| | - Zhefan Shen
- College of Basic Medicine, Naval Medical University, Shanghai, China
| | - Wei Chen
- Naval Medical Center, Naval Medical University, Shanghai, China
| | | | - Lan Fang
- Naval Medical University, Shanghai, China
| | | | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jicong Du
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Ying Cheng
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Gamma-tocotrienol, a radiation countermeasure, reverses proteomic changes in serum following total-body gamma irradiation in mice. Sci Rep 2022; 12:3387. [PMID: 35233005 PMCID: PMC8888544 DOI: 10.1038/s41598-022-07266-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Radiological incidents or terrorist attacks would likely expose civilians and military personnel to high doses of ionizing radiation, leading to the development of acute radiation syndrome. We examined the effectiveness of prophylactic administration of a developmental radiation countermeasure, γ-tocotrienol (GT3), in a total-body irradiation (TBI) mouse model. CD2F1 mice received GT3 24 h prior to 11 Gy cobalt-60 gamma-irradiation. This dose of radiation induces severe hematopoietic acute radiation syndrome and moderate gastrointestinal injury. GT3 provided 100% protection, while the vehicle control group had 100% mortality. Two-dimensional differential in-gel electrophoresis was followed by mass spectrometry and Ingenuity Pathway Analysis (IPA). Analysis revealed a change in expression of 18 proteins in response to TBI, and these changes were reversed with prophylactic treatment of GT3. IPA revealed a network of associated proteins involved in cellular movement, immune cell trafficking, and inflammatory response. Of particular interest, significant expression changes in beta-2-glycoprotein 1, alpha-1-acid glycoprotein 1, alpha-2-macroglobulin, complement C3, mannose-binding protein C, and major urinary protein 6 were noted after TBI and reversed with GT3 treatment. This study reports the untargeted approach, the network, and specific serum proteins which could be translated as biomarkers of both radiation injury and protection by countermeasures.
Collapse
|
5
|
Maan K, Baghel R, Bakhshi R, Dhariwal S, Tyagi R, Rana P. An integrative chemometric approach and correlative metabolite networking of LC-MS and 1H NMR based urine metabolomics for radiation signatures. Mol Omics 2022; 18:214-225. [PMID: 34982087 DOI: 10.1039/d1mo00399b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The increasing threat of nuclear terrorism or radiological accident has made high throughput radiation biodosimetry a requisite for the immediate response for triage. Owing to detection of subtle alterations in biological pathways before the onset of clinical conditions, metabolomics has become an important tool for studying biomarkers and the related mechanisms for radiation induced damage. Here, we have attempted to combine two detection techniques, LC-MS and 1H NMR spectroscopy, to obtain a comprehensive metabolite profile of urine at 24 h following lethal (7.5 Gy) and sub-lethal (5 Gy) irradiation in mice. Integrated data analytics using multiblock-OPLSDA (MB-OPLSDA), correlation networking and pathway analysis was used to identify metabolic disturbances associated with radiation exposure. MB-OPLSDA revealed better clustering and separation of irradiated groups compared with controls without overfitting (p-value of CV-ANOVA: 1.5 × 10-3). Metabolites identified through MB-OPLSDA, namely, taurine, creatine, citrate and 2-oxoglutarate, were found to be dose independent markers and further support and validate our earlier findings as potential radiation injury biomarkers. Integrated analysis resulted in the enhanced coverage of metabolites and better correlation networking in energy, taurine, gut flora, L-carnitine and nucleotide metabolism observed post irradiation in urine. Our study thus emphasizes the major advantage of using the two detection techniques along with integrated analysis for better detection and comprehensive understanding of disturbed metabolites in biological pathways.
Collapse
Affiliation(s)
- Kiran Maan
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India. .,Department of Biomedical Sciences, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Ruchi Baghel
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India.
| | - Radhika Bakhshi
- Department of Biomedical Sciences, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Seema Dhariwal
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India.
| | - Ritu Tyagi
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India.
| | - Poonam Rana
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, S. K Mazumdar Road, Timarpur, Delhi-54, India.
| |
Collapse
|
6
|
Singh VK, Seed TM, Cheema AK. Metabolomics-based predictive biomarkers of radiation injury and countermeasure efficacy: current status and future perspectives. Expert Rev Mol Diagn 2021; 21:641-654. [PMID: 34024238 DOI: 10.1080/14737159.2021.1933448] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION There is an urgent need for specific and sensitive bioassays to augment biodosimetric assessments of unwanted and excessive radiation exposures that originate from unexpected nuclear/radiological events, including nuclear accidents, acts of terrorism, or the use of a radiological dispersal device. If sufficiently intense, such ionizing radiation exposures are likely to impact normal metabolic processes within the cells and organs of the body, thus inducing multifaceted biological responses. AREAS COVERED This review covers the application of metabolomics, an emerging and promising technology based on quantitative and qualitative determinations of small molecules in biological samples for the rapid assessment of an individual's exposure to ionizing radiation. Recent advancements in the analytics of high-resolution chromatography, mass spectrometry, and bioinformatics have led to untargeted (global) and targeted (quantitative phase) approaches to identify biomarkers of radiation injury and countermeasure efficacy. Biomarkers are deemed essential for both assessing the radiation exposure levels and for extrapolative processes involved in determining scaling factors of a given radiation countering medicinal between experimental animals and humans. EXPERT OPINION The discipline of metabolomics appears to be highly informative in assessing radiation exposure levels and for identifying biomarkers of radiation injury and countermeasure efficacy.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants,Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Serices University of the Health Sciences, Bethesda, MD, USA.,Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
7
|
Clayton NP, Khan-Malek RC, Dangler CA, Zhang D, Ascah A, Gains M, Gardner B, Mockbee C, Keutzer JM, McManus J, Authier S. Sargramostim (rhu GM-CSF) Improves Survival of Non-Human Primates with Severe Bone Marrow Suppression after Acute, High-Dose, Whole-Body Irradiation. Radiat Res 2021; 195:191-199. [PMID: 33302291 DOI: 10.1667/rade-20-00131.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/02/2020] [Indexed: 11/03/2022]
Abstract
Exposure to acute, high-dose, whole-body ionizing radiation results in bone marrow failure (hematopoietic acute radiation syndrome with resultant infection, bleeding, anemia, and increased risk of death). Sargramostim (yeast-derived rhu GM-CSF), a yeast-derived, molecularly cloned, hematopoietic growth factor and pleiotropic cytokine supports proliferation, differentiation, maturation and survival of cells of several myeloid lineages. We evaluated the efficacy of sargramostim in non-human primates (rhesus macaques) exposed to whole-body ionizing radiation at a 50-60% lethal dose. The primary end point was day 60 survival. Non-human primates received daily subcutaneous sargramostim (7 mcg/kg/day) or control. To reflect the anticipated setting of a nuclear or radiologic event, treatment began 48 h postirradiation, and non-human primates received only moderate supportive care (no whole blood transfusions or individualized antibiotics). Sargramostim significantly increased day 60 survival to 78% (95% confidence interval, 61-90%) vs. 42% (26-59%; P = 0.0018) in controls. Neutrophil, platelet and lymphocyte recovery rates were accelerated and infection rates decreased. Improved survival when sargramostim was started 48 h postirradiation, without use of intensive supportive care, suggests sargramostim may be effective in treating humans exposed to acute, high-dose whole-body, ionizing radiation in a scenario such as a mass casualty event.
Collapse
Affiliation(s)
| | | | | | - Donghui Zhang
- Global Biostatistics and Programming, Sanofi, Bridgewater, New Jersey
| | | | | | | | | | - Joan M Keutzer
- Global Rare Diseases, Sanofi Genzyme, Cambridge, Massachusetts
| | - John McManus
- Partner Therapeutics, Inc, Lexington, Massachusetts
| | | |
Collapse
|
8
|
Li Y, Singh J, Varghese R, Zhang Y, Fatanmi OO, Cheema AK, Singh VK. Transcriptome of rhesus macaque (Macaca mulatta) exposed to total-body irradiation. Sci Rep 2021; 11:6295. [PMID: 33737626 PMCID: PMC7973550 DOI: 10.1038/s41598-021-85669-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
The field of biodosimetry has seen a paradigm shift towards an increased use of molecular phenotyping technologies including omics and miRNA, in addition to conventional cytogenetic techniques. Here, we have used a nonhuman primate (NHP) model to study the impact of gamma-irradiation on alterations in blood-based gene expression. With a goal to delineate radiation induced changes in gene expression, we followed eight NHPs for 60 days after exposure to 6.5 Gy gamma-radiation for survival outcomes. Analysis of differential gene expression in response to radiation exposure yielded 26,944 dysregulated genes that were not significantly impacted by sex. Further analysis showed an increased association of several pathways including IL-3 signaling, ephrin receptor signaling, ErbB signaling, nitric oxide signaling in the cardiovascular system, Wnt/β-catenin signaling, and inflammasome pathway, which were associated with positive survival outcomes in NHPs after acute exposure to radiation. This study provides novel insights into major pathways and networks involved in radiation-induced injuries that may identify biomarkers for radiation injury.
Collapse
Affiliation(s)
- Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Jatinder Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine "America's Medical School", Uniformed Serices University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Rency Varghese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Yubo Zhang
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, USA
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine "America's Medical School", Uniformed Serices University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine "America's Medical School", Uniformed Serices University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, USA. .,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
9
|
Singh VK, Seed TM. BIO 300: a promising radiation countermeasure under advanced development for acute radiation syndrome and the delayed effects of acute radiation exposure. Expert Opin Investig Drugs 2021; 29:429-441. [PMID: 32450051 DOI: 10.1080/13543784.2020.1757648] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION There are no radioprotectors currently approved by the United States Food and Drug Administration (US FDA) for either the hematopoietic acute radiation syndrome (H-ARS) or for the acute radiation gastrointestinal syndrome (GI-ARS). There are currently, however, three US FDA-approved medicinals that serve to mitigate acute irradiation-associated hematopoietic injury. AREA COVERED We present the current status of a promising radiation countermeasure, BIO 300 (a genistein-based agent), that has been extensively investigated in murine models of H-ARS and models of the delayed effects of acute radiation exposure (DEARE) and is currently being evaluated in large animal models. It is also being developed for the prevention of radiation-induced toxicities associated with solid tumor radiotherapy and is the subject of two active Investigational New Drug (IND) applications. We have included a listing and brief review of significant investigations of this promising medical countermeasure. EXPERT OPINION BIO 300 is a leading radioprotector under advanced development for H-ARS and DEARE, as well as for select oncologic indication(s). Efficacy following oral administration (po), lack of clinical side effects, storage at ambient temperature, and intended dual use makes BIO 300 an ideal candidate for military and civilian use as well as for storage in the Strategic National Stockpile.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | | |
Collapse
|
10
|
Shukla SK, Sharma AK, Bajaj S, Yashavarddhan MH. Radiation proteome: a clue to protection, carcinogenesis, and drug development. Drug Discov Today 2020; 26:525-531. [PMID: 33137481 DOI: 10.1016/j.drudis.2020.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/29/2020] [Accepted: 10/26/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Sandeep Kumar Shukla
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Lucknow road, Timarpur, Delhi, 110054, India.
| | - Ajay Kumar Sharma
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Lucknow road, Timarpur, Delhi, 110054, India
| | - Sania Bajaj
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Lucknow road, Timarpur, Delhi, 110054, India
| | - M H Yashavarddhan
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow road, Timarpur, Delhi, 110054, India
| |
Collapse
|
11
|
Singh VK, Seed TM. Entolimod as a radiation countermeasure for acute radiation syndrome. Drug Discov Today 2020; 26:17-30. [PMID: 33065293 DOI: 10.1016/j.drudis.2020.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/12/2020] [Accepted: 10/05/2020] [Indexed: 01/11/2023]
Abstract
High doses of total-body or partial-body radiation exposure can result in a life-threatening acute radiation syndrome as manifested by severe morbidity. Entolimod (CBLB502) is effective in protecting against, and mitigating the development of, the hematopoietic and gastrointestinal subsyndromes of the acute radiation syndrome in rodents and nonhuman primates. Entolimod treatment reduces radiation-induced apoptosis and accelerates the regeneration of progenitors in radiation-damaged tissues. The drug has been evaluated clinically for its pharmacokinetics (PK), toxicity, and biomarkers. The US Food and Drug Administration (FDA) has granted investigational new drug, fast-track, and orphan drug statuses to entolimod. Its safety, efficacy, and animal-to-human dose conversion data allowed its progression with a pre-emergency use authorization application submission.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD 20814, USA
| |
Collapse
|
12
|
Repurposing Drugs for Cancer Radiotherapy: Early Successes and Emerging Opportunities. ACTA ACUST UNITED AC 2020; 25:106-115. [PMID: 30896532 DOI: 10.1097/ppo.0000000000000369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has long been recognized that combining radiotherapy with cytotoxic drugs such as cisplatin can improve efficacy. However, while concurrent chemoradiotherapy improves patient outcomes, it comes at costs of increased toxicity. A tremendous opportunity remains to investigate drug combinations in the clinical setting that might increase the benefits of radiation without additional toxicity. This chapter highlights opportunities to apply repurposing of drugs along with a mechanistic understanding of radiation effects on cancer and normal tissue to discover new therapy-modifying drugs and help rapidly translate them to the clinic. We survey candidate radiosensitizers that alter DNA repair, decrease hypoxia, block tumor survival signaling, modify tumor metabolism, block growth factor signaling, slow tumor invasiveness, impair angiogenesis, or stimulate antitumor immunity. Promising agents include widely used drugs such as aspirin, metformin, and statins, offering the potential to improve outcomes, decrease radiation doses, and lower costs. Many other candidate drugs are also discussed.
Collapse
|
13
|
Bajaj S, Alam SI, Ahmad B, Farooqi H, Gupta ML. Combination of podophyllotoxin and rutin modulate radiation-induced alterations of jejunal proteome in mice. Int J Radiat Biol 2020; 96:879-893. [PMID: 32167845 DOI: 10.1080/09553002.2020.1741721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: Gastrointestinal (GI) injuries post ionizing radiation (IR) becomes a crucial factor in survival. Thus, the current study was aimed to explore the molecular mechanisms behind IR produced GI proteome alterations and their amelioration by a safe radioprotective formulation candidate, G-003M (podophyllotoxin+rutin).Materials and method: C57BL/6 mice were administered with G-003M 1 h before 9 Gy whole body γ irradiation. 2DE-MS analysis was conducted to identify differential expression of jejunum proteins with fold change >1.5 (p < .05) at various time-points. Results: G-003M pre-administration decreased total number of differential proteins. It mediated protection to cytoskeleton, modulated stress, apoptosis and inflammatory proteins. Direct effect on eukaryotic translation initiation factor 4H (Eif4h), thioredoxin domain-containing protein 17 (Txndc17) and interferon-induced protein 35 (Ifi35) was observed. Bioinformatics depicted transcription factor-MYC, was also positively modulated by G-003M. Further, it also enhanced level of citrulline (ELISA analysis), and restored crypts and villi lengths (histological analysis) against severe damage caused by lethal irradiation.Conclusion: Current findings reveal that G-003M may be an efficient candidate in protecting key proteins of metabolic and biochemical pathways assisting in the rapid recovery of GI proteome. This fairly improved the chances of animal survival exposed to lethal doses of whole body radiation.
Collapse
Affiliation(s)
- Sania Bajaj
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi, India.,Department of Biotechnology, School of Chemical and Life Sciences, Delhi, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence R&D Establishment (DRDE), Defence R&D Organization (DRDO), Gwalior, India
| | - Basir Ahmad
- JH-Institute of Molecular Medicine, New Delhi, India
| | - Humaira Farooqi
- Department of Biotechnology, School of Chemical and Life Sciences, Delhi, India
| | - Manju Lata Gupta
- Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|