1
|
Martinelli I, Mandrioli J, Ghezzi A, Zucchi E, Gianferrari G, Simonini C, Cavallieri F, Valzania F. Multifaceted superoxide dismutase 1 expression in amyotrophic lateral sclerosis patients: a rare occurrence? Neural Regen Res 2025; 20:130-138. [PMID: 38767482 PMCID: PMC11246149 DOI: 10.4103/nrr.nrr-d-23-01904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 02/26/2024] [Indexed: 05/22/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex, brainstem, and spinal cord. While the typical clinical phenotype of ALS involves both upper and lower motor neurons, human and animal studies over the years have highlighted the potential spread to other motor and non-motor regions, expanding the phenotype of ALS. Although superoxide dismutase 1 (SOD1) mutations represent a minority of ALS cases, the SOD1 gene remains a milestone in ALS research as it represents the first genetic target for personalized therapies. Despite numerous single case reports or case series exhibiting extramotor symptoms in patients with ALS mutations in SOD1 (SOD1-ALS), no studies have comprehensively explored the full spectrum of extramotor neurological manifestations in this subpopulation. In this narrative review, we analyze and discuss the available literature on extrapyramidal and non-motor features during SOD1-ALS. The multifaceted expression of SOD1 could deepen our understanding of the pathogenic mechanisms, pointing towards a multidisciplinary approach for affected patients in light of new therapeutic strategies for SOD1-ALS.
Collapse
Affiliation(s)
- Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
- Clinical and Experimental Medicine Ph.D. Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Ghezzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Simonini
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Franco Valzania
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
2
|
Lee A, Henderson R, Aylward J, McCombe P. Gut Symptoms, Gut Dysbiosis and Gut-Derived Toxins in ALS. Int J Mol Sci 2024; 25:1871. [PMID: 38339149 PMCID: PMC10856138 DOI: 10.3390/ijms25031871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Many pathogenetic mechanisms have been proposed for amyotrophic lateral sclerosis (ALS). Recently, there have been emerging suggestions of a possible role for the gut microbiota. Gut microbiota have a range of functions and could influence ALS by several mechanisms. Here, we review the possible role of gut-derived neurotoxins/excitotoxins. We review the evidence of gut symptoms and gut dysbiosis in ALS. We then examine a possible role for gut-derived toxins by reviewing the evidence that these molecules are toxic to the central nervous system, evidence of their association with ALS, the existence of biochemical pathways by which these molecules could be produced by the gut microbiota and existence of mechanisms of transport from the gut to the blood and brain. We then present evidence that there are increased levels of these toxins in the blood of some ALS patients. We review the effects of therapies that attempt to alter the gut microbiota or ameliorate the biochemical effects of gut toxins. It is possible that gut dysbiosis contributes to elevated levels of toxins and that these could potentially contribute to ALS pathogenesis, but more work is required.
Collapse
Affiliation(s)
- Aven Lee
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
| | - Robert Henderson
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
- Department of Neurology, Royal Brisbane & Women’s Hospital, Brisbane, QLD 4029, Australia
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| | - James Aylward
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| | - Pamela McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
- Department of Neurology, Royal Brisbane & Women’s Hospital, Brisbane, QLD 4029, Australia
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| |
Collapse
|
3
|
Liu Y, He X, Yuan Y, Li B, Liu Z, Li W, Li K, Tan S, Zhu Q, Tang Z, Han F, Wu Z, Shen L, Jiang H, Tang B, Qiu J, Hu Z, Wang J. Association of TRMT2B gene variants with juvenile amyotrophic lateral sclerosis. Front Med 2024; 18:68-80. [PMID: 37874476 DOI: 10.1007/s11684-023-1005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/27/2023] [Indexed: 10/25/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motor neurons, and it demonstrates high clinical heterogeneity and complex genetic architecture. A variation within TRMT2B (c.1356G>T; p.K452N) was identified to be associated with ALS in a family comprising two patients with juvenile ALS (JALS). Two missense variations and one splicing variation were identified in 10 patients with ALS in a cohort with 910 patients with ALS, and three more variants were identified in a public ALS database including 3317 patients with ALS. A decreased number of mitochondria, swollen mitochondria, lower expression of ND1, decreased mitochondrial complex I activities, lower mitochondrial aerobic respiration, and a high level of ROS were observed functionally in patient-originated lymphoblastoid cell lines and TRMT2B interfering HEK293 cells. Further, TRMT2B variations overexpression cells also displayed decreased ND1. In conclusion, a novel JALS-associated gene called TRMT2B was identified, thus broadening the clinical and genetic spectrum of ALS.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi, National Regional Center for Neurological Diseases, Nanchang, 330038, China
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Department of Urology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Xi He
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Bin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410078, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Wanzhen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Kaixuan Li
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Department of Urology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Shuo Tan
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Department of Urology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Quan Zhu
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Department of Urology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhengyan Tang
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Department of Urology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Feng Han
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Department of Urology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Ziqiang Wu
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Department of Urology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410078, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410078, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410078, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410078, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410078, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Jian Qiu
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhengmao Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Jiangxi, National Regional Center for Neurological Diseases, Nanchang, 330038, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410078, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410078, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410078, China.
| |
Collapse
|
4
|
AlMadan N, AlMajed A, AlAbbad M, AlNashmi F, Aleissa A. Dental Management of Patients With Amyotrophic Lateral Sclerosis. Cureus 2023; 15:e50602. [PMID: 38226086 PMCID: PMC10788695 DOI: 10.7759/cureus.50602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects the upper and lower motor neurons with upper and lower motor neuron manifestations. It is divided into two variants: a spinal onset and a bulbar onset. The first starts as focal muscle weakness and wasting that spreads with disease progression, while the second phenotype presents with dysarthria, dysphonia, and dysphagia. Moreover, an extra-motor manifestation could be reported with the most commonly reported symptoms being the change in cognition and sleep disorder. Oral manifestations include increased salivation, limited mouth opening, and dysphagia. Patients with ALS have difficulty maintaining oral hygiene, and it is important for the practitioner and the caregiver to take care of this group of population. We herein provide a short review of the disease with a focus on the oral manifestations and dental considerations for management for this group.
Collapse
Affiliation(s)
| | - Ali AlMajed
- Dental Department, Ministry of Health, Riyadh, SAU
| | | | | | | |
Collapse
|
5
|
Seki S, Kitaoka Y, Kawata S, Nishiura A, Uchihashi T, Hiraoka SI, Yokota Y, Isomura ET, Kogo M, Tanaka S. Characteristics of Sensory Neuron Dysfunction in Amyotrophic Lateral Sclerosis (ALS): Potential for ALS Therapy. Biomedicines 2023; 11:2967. [PMID: 38001967 PMCID: PMC10669304 DOI: 10.3390/biomedicines11112967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder characterised by the progressive degeneration of motor neurons, resulting in muscle weakness, paralysis, and, ultimately, death. Presently, no effective treatment for ALS has been established. Although motor neuron dysfunction is a hallmark of ALS, emerging evidence suggests that sensory neurons are also involved in the disease. In clinical research, 30% of patients with ALS had sensory symptoms and abnormal sensory nerve conduction studies in the lower extremities. Peroneal nerve biopsies show histological abnormalities in 90% of the patients. Preclinical research has reported several genetic abnormalities in the sensory neurons of animal models of ALS, as well as in motor neurons. Furthermore, the aggregation of misfolded proteins like TAR DNA-binding protein 43 has been reported in sensory neurons. This review aims to provide a comprehensive description of ALS-related sensory neuron dysfunction, focusing on its clinical changes and underlying mechanisms. Sensory neuron abnormalities in ALS are not limited to somatosensory issues; proprioceptive sensory neurons, such as MesV and DRG neurons, have been reported to form networks with motor neurons and may be involved in motor control. Despite receiving limited attention, sensory neuron abnormalities in ALS hold potential for new therapies targeting proprioceptive sensory neurons.
Collapse
Affiliation(s)
- Soju Seki
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chang C, Zhao Q, Liu P, Yuan Y, Liu Z, Hu Y, Li W, Hou X, Tang X, Jiao B, Guo J, Shen L, Jiang H, Tang B, Zhang X, Wang J. ALS-plus related clinical and genetic study from China. Neurol Sci 2023; 44:3557-3566. [PMID: 37204564 DOI: 10.1007/s10072-023-06843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder. An increasing number of researchers have found extra motor features in ALS, which are also called ALS-plus syndromes. Besides, a great majority of ALS patients also have cognitive impairment. However, clinical surveys of the frequency and genetic background of ALS-plus syndromes are rare, especially in China. METHODS We investigated a large cohort of 1015 patients with ALS, classifying them into six groups according to different extramotor symptoms and documenting their clinical manifestations. Meanwhile, based on their cognitive function, we divided these patients into two groups and compared demographic characteristics. Genetic screening for rare damage variants (RDVs) was also performed on 847 patients. RESULTS As a result, 16.75% of patients were identified with ALS-plus syndrome, and 49.5% of patients suffered cognitive impairment. ALS-plus group had lower ALSFRS-R scores, longer diagnostic delay time, and longer survival times, compared to ALS pure group. RDVs occurred less frequently in ALS-plus patients than in ALS-pure patients (P = 0.042) but showed no difference between ALS-cognitive impairment patients and ALS-cognitive normal patients. Besides, ALS-cognitive impairment group tends to harbour more ALS-plus symptoms than ALS-cognitive normal group (P = 0.001). CONCLUSION In summary, ALS-plus patients in China are not rare and show multiple differences from ALS-pure patients in clinical and genetic features. Besides, ALS-cognitive impairment group tends to harbour more ALS-plus syndrome than ALS-cognitive normal group. Our observations correspond with the theory that ALS involves several diseases with different mechanisms and provide clinical validation.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
- Health Management Center, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Qianqian Zhao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Pan Liu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Yiting Hu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Wanzhen Li
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Xiaorong Hou
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Xuxiong Tang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, People's Republic of China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, People's Republic of China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, People's Republic of China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, People's Republic of China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, People's Republic of China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xuewei Zhang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, People's Republic of China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
7
|
Kitaoka Y, Seki S, Kawata S, Nishiura A, Kawamura K, Hiraoka SI, Kogo M, Tanaka S. Analysis of Feeding Behavior Characteristics in the Cu/Zn Superoxide Dismutase 1 (SOD1) SOD1G93A Mice Model for Amyotrophic Lateral Sclerosis (ALS). Nutrients 2023; 15:nu15071651. [PMID: 37049492 PMCID: PMC10097127 DOI: 10.3390/nu15071651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive disease affecting upper and lower motor neurons. Feeding disorders are observed in patients with ALS. The mastication movements and their systemic effects in patients with ALS with feeding disorders remain unclear. Currently, there is no effective treatment for ALS. However, it has been suggested that treating feeding disorders and improving nutritional status may prolong the lives of patients with ALS. Therefore, this study elucidates feeding disorders observed in patients with ALS and future therapeutic agents. We conducted a temporal observation of feeding behavior and mastication movements using an open-closed mouth evaluation artificial intelligence (AI) model in an ALS mouse model. Furthermore, to determine the cause of masticatory rhythm modulation, we conducted electrophysiological analyses of mesencephalic trigeminal neurons (MesV). Here, we observed the modulation of masticatory rhythm with a prolonged open phase in the ALS mouse model from the age of 12 weeks. A decreased body weight was observed simultaneously, indicating a correlation between the prolongation of the open phase and the decrease observed. We found that the percentage of firing MesV was markedly decreased. This study partially clarifies the role of feeding disorders in ALS.
Collapse
|
8
|
Hippocampal Metabolic Alterations in Amyotrophic Lateral Sclerosis: A Magnetic Resonance Spectroscopy Study. Life (Basel) 2023; 13:life13020571. [PMID: 36836928 PMCID: PMC9965919 DOI: 10.3390/life13020571] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Magnetic resonance spectroscopy (MRS) in amyotrophic lateral sclerosis (ALS) has been overwhelmingly applied to motor regions to date and our understanding of frontotemporal metabolic signatures is relatively limited. The association between metabolic alterations and cognitive performance in also poorly characterised. MATERIAL AND METHODS In a multimodal, prospective pilot study, the structural, metabolic, and diffusivity profile of the hippocampus was systematically evaluated in patients with ALS. Patients underwent careful clinical and neurocognitive assessments. All patients were non-demented and exhibited normal memory performance. 1H-MRS spectra of the right and left hippocampi were acquired at 3.0T to determine the concentration of a panel of metabolites. The imaging protocol also included high-resolution T1-weighted structural imaging for subsequent hippocampal grey matter (GM) analyses and diffusion tensor imaging (DTI) for the tractographic evaluation of the integrity of the hippocampal perforant pathway zone (PPZ). RESULTS ALS patients exhibited higher hippocampal tNAA, tNAA/tCr and tCho bilaterally, despite the absence of volumetric and PPZ diffusivity differences between the two groups. Furthermore, superior memory performance was associated with higher hippocampal tNAA/tCr bilaterally. Both longer symptom duration and greater functional disability correlated with higher tCho levels. CONCLUSION Hippocampal 1H-MRS may not only contribute to a better academic understanding of extra-motor disease burden in ALS, but given its sensitive correlations with validated clinical metrics, it may serve as practical biomarker for future clinical and clinical trial applications. Neuroimaging protocols in ALS should incorporate MRS in addition to standard structural, functional, and diffusion sequences.
Collapse
|
9
|
Sensory Involvement in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms232415521. [PMID: 36555161 PMCID: PMC9779879 DOI: 10.3390/ijms232415521] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) is pre-eminently a motor disease, the existence of non-motor manifestations, including sensory involvement, has been described in the last few years. Although from a clinical perspective, sensory symptoms are overshadowed by their motor manifestations, this does not mean that their pathological significance is not relevant. In this review, we have made an extensive description of the involvement of sensory and autonomic systems described to date in ALS, from clinical, neurophysiological, neuroimaging, neuropathological, functional, and molecular perspectives.
Collapse
|
10
|
Functional alterations in large-scale resting-state networks of amyotrophic lateral sclerosis: A multi-site study across Canada and the United States. PLoS One 2022; 17:e0269154. [PMID: 35709100 PMCID: PMC9202847 DOI: 10.1371/journal.pone.0269154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a multisystem neurodegenerative disorder characterized by progressive degeneration of upper motor neurons and lower motor neurons, and frontotemporal regions resulting in impaired bulbar, limb, and cognitive function. Magnetic resonance imaging studies have reported cortical and subcortical brain involvement in the pathophysiology of ALS. The present study investigates the functional integrity of resting-state networks (RSNs) and their importance in ALS. Intra- and inter-network resting-state functional connectivity (Rs-FC) was examined using an independent component analysis approach in a large multi-center cohort. A total of 235 subjects (120 ALS patients; 115 healthy controls (HC) were recruited across North America through the Canadian ALS Neuroimaging Consortium (CALSNIC). Intra-network and inter-network Rs-FC was evaluated by the FSL-MELODIC and FSLNets software packages. As compared to HC, ALS patients displayed higher intra-network Rs-FC in the sensorimotor, default mode, right and left fronto-parietal, and orbitofrontal RSNs, and in previously undescribed networks including auditory, dorsal attention, basal ganglia, medial temporal, ventral streams, and cerebellum which negatively correlated with disease severity. Furthermore, ALS patients displayed higher inter-network Rs-FC between the orbitofrontal and basal ganglia RSNs which negatively correlated with cognitive impairment. In summary, in ALS there is an increase in intra- and inter-network functional connectivity of RSNs underpinning both motor and cognitive impairment. Moreover, the large multi-center CALSNIC dataset permitted the exploration of RSNs in unprecedented detail, revealing previously undescribed network involvement in ALS.
Collapse
|
11
|
Rubio MA, Herrando-Grabulosa M, Gaja-Capdevila N, Vilches JJ, Navarro X. Characterization of somatosensory neuron involvement in the SOD1 G93A mouse model. Sci Rep 2022; 12:7600. [PMID: 35534694 PMCID: PMC9085861 DOI: 10.1038/s41598-022-11767-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
SOD1G93A mice show loss of cutaneous small fibers, as in ALS patients. Our objective is to characterize the involvement of different somatosensory neuron populations and its temporal progression in the SOD1G93A mice. We aim to further define peripheral sensory involvement, analyzing at the same time points the neuronal bodies located in the dorsal root ganglia (DRG) and the distal part of their axons in the skin, in order to shed light in the mechanisms of sensory involvement in ALS. We performed immunohistochemical analysis of peptidergic (CGRP), non-peptidergic (IB4) fibers in epidermis, as well as sympathetic sudomotor fibers (VIP) in the footpads of SOD1G93A mice and wild type littermates at 4, 8, 12 and 16 weeks of age. We also immunolabeled and quantified neuronal bodies of IB4, CGRP and parvalbumin (PV) positive sensory neurons in lumbar DRG. We detected a reduction of intraepidermal nerve fiber density in the SOD1G93A mice of both peptidergic and non-peptidergic axons, compared with the WT, being the non-peptidergic the fewest. Sweat gland innervation was similarly affected in the SOD1G93A mouse at 12 weeks. Nonetheless, the number of DRG neurons from different sensory populations remained unchanged during all stages. Cutaneous sensory axons are affected in the SOD1G93A mouse, with non-peptidergic being slightly more vulnerable than peptidergic axons. Loss or lack of growth of the distal portion of sensory axons with preservation of the corresponding neuronal bodies suggest a distal axonopathy.
Collapse
Affiliation(s)
- Miguel A Rubio
- Neuromuscular Unit, Department of Neurology, Hospital del Mar, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mireia Herrando-Grabulosa
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Nuria Gaja-Capdevila
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jorge J Vilches
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain. .,Unitat de Fisiologia Medica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
12
|
Rubio MA, Herrando-Grabulosa M, Velasco R, Blasco I, Povedano M, Navarro X. TDP-43 Cytoplasmic Translocation in the Skin Fibroblasts of ALS Patients. Cells 2022; 11:209. [PMID: 35053327 PMCID: PMC8773870 DOI: 10.3390/cells11020209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/10/2022] Open
Abstract
Diagnosis of ALS is based on clinical symptoms when motoneuron degeneration is significant. Therefore, new approaches for early diagnosis are needed. We aimed to assess if alterations in appearance and cellular localization of cutaneous TDP-43 may represent a biomarker for ALS. Skin biopsies from 64 subjects were analyzed: 44 ALS patients, 10 healthy controls (HC) and 10 neurological controls (NC) (Parkinson's disease and multiple sclerosis). TDP-43 immunoreactivity in epidermis and dermis was analyzed, as well as the percentage of cells with TDP-43 cytoplasmic localization. We detected a higher amount of TDP-43 in epidermis (p < 0.001) and in both layers of dermis (p < 0.001), as well as a higher percentage of TDP-43 cytoplasmic positive cells (p < 0.001) in the ALS group compared to HC and NC groups. Dermal cells containing TDP-43 were fibroblasts as identified by co-labeling against vimentin. ROC analyses (AUC 0.867, p < 0.001; CI 95% 0.800-0.935) showed that detection of 24.1% cells with cytoplasmic TDP-43 positivity in the dermis had 85% sensitivity and 80% specificity for detecting ALS. We have identified significantly increased TDP-43 levels in epidermis and in the cytoplasm of dermal cells of ALS patients. Our findings provide support for the use of TDP-43 in skin biopsies as a potential biomarker.
Collapse
Affiliation(s)
- Miguel A. Rubio
- Neuromuscular Unit, Department of Neurology, Hospital del Mar, 08003 Barcelona, Spain;
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.H.-G.); (R.V.); (I.B.)
| | - Mireia Herrando-Grabulosa
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.H.-G.); (R.V.); (I.B.)
| | - Roser Velasco
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.H.-G.); (R.V.); (I.B.)
- Neuro-Oncology Unit, Department of Neurology, Hospital Universitari de Bellvitge-ICO and IDIBELL, 08907 L’Hospitalet, Spain
| | - Israel Blasco
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.H.-G.); (R.V.); (I.B.)
| | - Monica Povedano
- Department of Neurology, Hospital Universitari de Bellvitge, 08907 L’Hospitalet, Spain;
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.H.-G.); (R.V.); (I.B.)
| |
Collapse
|
13
|
Zakharova MN, Abramova AA. Lower and upper motor neuron involvement and their impact on disease prognosis in amyotrophic lateral sclerosis. Neural Regen Res 2022; 17:65-73. [PMID: 34100429 PMCID: PMC8451581 DOI: 10.4103/1673-5374.314289] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease characterized by progressive muscle wasting, breathing and swallowing difficulties resulting in patient’s death in two to five years after disease onset. In amyotrophic lateral sclerosis, both upper and lower motor neurons of the corticospinal tracts are involved in the process of neurodegeneration, accounting for great clinical heterogeneity of the disease. Clinical phenotype has great impact on the pattern and rate of amyotrophic lateral sclerosis progression and overall survival prognosis. Creating more homogenous patient groups in order to study the effects of drug agents on specific manifestations of the disease is a challenging issue in amyotrophic lateral sclerosis clinical trials. Since amyotrophic lateral sclerosis has low incidence rates, conduction of multicenter trials requires certain standardized approaches to disease diagnosis and staging. This review focuses on the current approaches in amyotrophic lateral sclerosis classification and staging system based on clinical examination and additional instrumental methods, highlighting the role of upper and lower motor neuron involvement in different phenotypes of the disease. We demonstrate that both clinical and instrumental findings can be useful in evaluating severity of upper motor neuron and lower motor neuron involvement and predicting the following course of the disease. Addressing disease heterogeneity in amyotrophic lateral sclerosis clinical trials could lead to study designs that will assess drug efficacy in specific patient groups, based on the disease pathophysiology and spatiotemporal pattern. Although clinical evaluation can be a sufficient screening method for dividing amyotrophic lateral sclerosis patients into clinical subgroups, we provide proof that instrumental studies could provide valuable insights in the disease pathology.
Collapse
|
14
|
Ngo ST, Wang H, Henderson RD, Bowers C, Steyn FJ. Ghrelin as a treatment for amyotrophic lateral sclerosis. J Neuroendocrinol 2021; 33:e12938. [PMID: 33512025 DOI: 10.1111/jne.12938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/27/2022]
Abstract
Ghrelin is a gut hormone best known for its role in regulating appetite and stimulating the secretion of the anabolic hormone growth hormone (GH). However, there is considerable evidence to show wider-ranging biological actions of ghrelin that favour improvements in cellular and systemic metabolism, as well as neuroprotection. Activation of these ghrelin-mediated pathways may alleviate pathogenic processes that are assumed to contribute to accelerated progression of disease in patients with neurodegenerative disease. Here, we provide a brief overview on the history of discoveries that led to the identification of ghrelin. Focussing on the neurodegenerative disease amyotrophic lateral sclerosis (ALS), we also present an overview of emerging evidence that suggests that ghrelin and ghrelin mimetics may serve as potential therapies for the treatment of ALS. Given that ALS is a highly heterogeneous disease, where multiple disease mechanisms contribute to variability in disease onset and rate of disease progression, we speculate that the wide-ranging biological actions of ghrelin might offer therapeutic benefit through modulating multiple disease-relevant processes observed in ALS. Expanding on the well-known actions of ghrelin in regulating food intake and GH secretion, we consider the potential of ghrelin-mediated pathways in improving body weight regulation, metabolism and the anabolic and neuroprotective actions of GH and insulin-like growth factor-1 (IGF-1). This is of clinical significance because loss of body weight, impairments in systemic and cellular metabolism, and reductions in IGF-1 are associated with faster disease progression and worse disease outcome in patients with ALS.
Collapse
Affiliation(s)
- Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Hao Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Robert D Henderson
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Cyril Bowers
- Department of Internal Medicine, Tulane University Health Sciences Centre, New Orleans, LA, USA
| | - Frederik J Steyn
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Lucia D, McCombe PA, Henderson RD, Ngo ST. Disorders of sleep and wakefulness in amyotrophic lateral sclerosis (ALS): a systematic review. Amyotroph Lateral Scler Frontotemporal Degener 2020; 22:161-169. [PMID: 33191797 DOI: 10.1080/21678421.2020.1844755] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Disorders of sleep and wakefulness are common among neurodegenerative diseases. While amyotrophic lateral sclerosis (ALS) predominately manifests as motor symptoms, there is emerging evidence that disruptions to sleep and wakefulness also occur. This systematic review aims to report the most common disorders of sleep and wakefulness in ALS. We conducted a qualitative systematic review as per PRISMA guidelines and searched literature assessing the association between disorders of sleep and wakefulness with ALS using the PubMed and Medline database. Overall, 50-63% of patients with ALS have poor sleep quality as reported using the Pittsburgh Sleep Quality Index Questionnaire (PSQI). A higher proportion of ALS patients are categorized as poor sleepers, however there is conflicting evidence as to whether patients with ALS are more likely to exhibit excessive daytime sleepiness. Of the studies that utilized polysomnography, all reported various degrees of impairment to sleep microstructure and architecture among ALS patients. In future, longitudinal clinical studies will be essential for establishing the significance of impaired sleep in ALS. Future studies are also needed to establish whether the self-reported measures of poor sleep and impairment to sleep architecture occurs as a direct consequence of the disease, whether they are an early manifestation of the disease, and/or if they contribute to the neurodegenerative process.
Collapse
Affiliation(s)
- Diana Lucia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - Pamela A McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Robert D Henderson
- Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.,Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
16
|
Riancho J, Paz-Fajardo L, López de Munaín A. Clinical and preclinical evidence of somatosensory involvement in amyotrophic lateral sclerosis. Br J Pharmacol 2020; 178:1257-1268. [PMID: 32673410 DOI: 10.1111/bph.15202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/01/2020] [Accepted: 07/12/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron neurodegenerative disease. Although it has been classically considered as a disease limited to the motor system, there is increasing evidence for the involvement of other neural and non-neuronal systems. In this review, we will discuss currently existing literature regarding the involvement of the sensory system in ALS. Human studies have reported intradermic small fibre loss, sensory axonal predominant neuropathy, as well as somatosensory cortex hyperexcitability. In line with this, ALS animal studies have demonstrated the involvement of several sensory components. Specifically, they have highlighted the impairment of sensory-motor networks as a potential mechanism for the disease. The elucidation of these "non-motor" systems involvement, which might also be part of the degeneration process, should prompt the scientific community to re-consider ALS as a pure motor neuron disease, which may in turn result in more holistic research approaches. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Javier Riancho
- Service of Neurology, Hospital Sierrallana-IDIVAL, Torrelavega, Spain.,Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain.,Centro de Investigación en Red de Enfermedades Neurodegenerativas, CIBERNED, Instituto Carlos III, Madrid, Spain
| | - Lucía Paz-Fajardo
- Service of Internal Medicine, Hospital Sierrallana-IDIVAL, Torrelavega, Spain
| | - Adolfo López de Munaín
- Centro de Investigación en Red de Enfermedades Neurodegenerativas, CIBERNED, Instituto Carlos III, Madrid, Spain.,Neurosciences Area, Biodonostia Research Institute, San Sebastián, Spain.,Neurology Department, Donostia University Hospital-OSAKIDETZA, San Sebastián, Spain.,Neurosciences Department, Basque Country University, San Sebastián, Spain
| |
Collapse
|
17
|
Alruwaili AR, Pannek K, Henderson RD, Gray M, Kurniawan ND, McCombe PA. Serial MRI studies over 12 months using manual and atlas-based region of interest in patients with amyotrophic lateral sclerosis. BMC Med Imaging 2020; 20:90. [PMID: 32746800 PMCID: PMC7397614 DOI: 10.1186/s12880-020-00489-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by loss of upper and lower motor neurons. There is a need for an imaging biomarker to track disease progression. Previously, magnetic resonance imaging (MRI) has shown loss of grey and white matter in the brain of patients with ALS compared to controls. We performed serial diffusion tractography imaging (DTI) study of patients with ALS looking for changes over time. METHODS On all subjects (n = 15), we performed three MRI studies at 6 month intervals. DTI changes were assessed with tract-based spatial statistics (TBSS) and region of interest (ROI) studies. Cortic-spinal tract (CST) was selected for our ROI at the upper level; the posterior limb of internal capsule (PLIC), and a lower level in the pons. RESULTS There was no significant change in DTI measures over 12 months of observation. Better correlation of manual and atlas-based ROI methods was found in the posterior limb of the internal capsule than the pons. CONCLUSION While previous DTI studies showed significant differences between ALS subjects and controls, within individual subjects there is little evidence of progression over 12 months. This suggests that DTI is not a suitable biomarker to assess disease progression in ALS.
Collapse
Affiliation(s)
- Ashwag R Alruwaili
- The University of Queensland, Centre for Clinical Research, Brisbane, Australia. .,King Saud University, Riyadh, Saudi Arabia. .,School of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| | - Kerstin Pannek
- Australian E-Health Research Centre, CSIRO, Brisbane, Australia
| | - Robert D Henderson
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia.,The Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia
| | - Marcus Gray
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia.,Gehrmann Laboratory, University of Queensland, Brisbane, QLD, Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Pamela A McCombe
- The University of Queensland, Centre for Clinical Research, Brisbane, Australia.,School of Medicine, The University of Queensland, Brisbane, QLD, Australia.,The Department of Neurology, Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia
| |
Collapse
|
18
|
McCombe PA, Lee JD, Woodruff TM, Henderson RD. The Peripheral Immune System and Amyotrophic Lateral Sclerosis. Front Neurol 2020; 11:279. [PMID: 32373052 PMCID: PMC7186478 DOI: 10.3389/fneur.2020.00279] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease that is defined by loss of upper and lower motor neurons, associated with accumulation of protein aggregates in cells. There is also pathology in extra-motor areas of the brain, Possible causes of cell death include failure to deal with the aggregated proteins, glutamate toxicity and mitochondrial failure. ALS also involves abnormalities of metabolism and the immune system, including neuroinflammation in the brain and spinal cord. Strikingly, there are also abnormalities of the peripheral immune system, with alterations of T lymphocytes, monocytes, complement and cytokines in the peripheral blood of patients with ALS. The precise contribution of the peripheral immune system in ALS pathogenesis is an active area of research. Although some trials of immunomodulatory agents have been negative, there is strong preclinical evidence of benefit from immune modulation and further trials are currently underway. Here, we review the emerging evidence implicating peripheral immune alterations contributing to ALS, and their potential as future therapeutic targets for clinical intervention.
Collapse
Affiliation(s)
- Pamela A. McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
- Wesley Medical Research, The Wesley Hospital, Brisbane, QLD, Australia
| | - John D. Lee
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Trent M. Woodruff
- Wesley Medical Research, The Wesley Hospital, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
19
|
Alruwaili AR, Pannek K, Henderson RD, Gray M, Kurniawan ND, McCombe PA. Tract integrity in amyotrophic lateral sclerosis: 6-month evaluation using MR diffusion tensor imaging. BMC Med Imaging 2019; 19:19. [PMID: 30795741 PMCID: PMC6387547 DOI: 10.1186/s12880-019-0319-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 02/13/2019] [Indexed: 11/17/2022] Open
Abstract
Background This study was performed to assess changes in diffusion tensor imaging (DTI) over time in patients with amyotrophic lateral sclerosis (ALS). Methods We performed DTI in 23 ALS patients who had two magnetic resonance imaging (MRI) scans at 6 month intervals and to correlate results with clinical features. The revised ALS functional rating scale (ALSFRS–R) was administered at each clinical visit. Data analysis included voxel–based white matter tract–based spatial statistics (TBSS) and atlas–based region–of–interest (ROI) analysis of fractional anisotropy (FA) and mean diffusivity (MD). Results With TBSS, there were no significant changes between the two scans. The average change in FA and MD in the ROIs over 6 months was small and not significant after allowing for multiple comparisons. After allowing for multiple comparisons, there was no significant correlation of FA or MD with ALSFRS–R. Conclusion This study shows that there is little evidence of progressive changes in DTI over time in ALS. This could be because white matter is already substantially damaged by the time of onset of symptoms of ALS.
Collapse
Affiliation(s)
- Ashwag R Alruwaili
- Faculty of Medicine, The University of Queensland, Australia and King Saud University, Brisbane, Australia
| | - Kerstin Pannek
- The Australian e-Health Research Centre, CSIRO, Brisbane, Australia
| | - Robert D Henderson
- Department of Neurology, Faculty of Medicine, Royal Brisbane and Women's Hospital and The University of Queensland, Brisbane, Australia
| | - Marcus Gray
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Pamela A McCombe
- Faculty of Medicine, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Herston, QLD, 4029, Australia.
| |
Collapse
|
20
|
Garton FC, Benyamin B, Zhao Q, Liu Z, Gratten J, Henders AK, Zhang ZH, Edson J, Furlong S, Morgan S, Heggie S, Thorpe K, Pfluger C, Mather KA, Sachdev PS, McRae AF, Robinson MR, Shah S, Visscher PM, Mangelsdorf M, Henderson RD, Wray NR, McCombe PA. Whole exome sequencing and DNA methylation analysis in a clinical amyotrophic lateral sclerosis cohort. Mol Genet Genomic Med 2017; 5:418-428. [PMID: 28717666 PMCID: PMC5511806 DOI: 10.1002/mgg3.302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
Background Gene discovery has provided remarkable biological insights into amyotrophic lateral sclerosis (ALS). One challenge for clinical application of genetic testing is critical evaluation of the significance of reported variants. Methods We use whole exome sequencing (WES) to develop a clinically relevant approach to identify a subset of ALS patients harboring likely pathogenic mutations. In parallel, we assess if DNA methylation can be used to screen for pathogenicity of novel variants since a methylation signature has been shown to associate with the pathogenic C9orf72 expansion, but has not been explored for other ALS mutations. Australian patients identified with ALS‐relevant variants were cross‐checked with population databases and case reports to critically assess whether they were “likely causal,” “uncertain significance,” or “unlikely causal.” Results Published ALS variants were identified in >10% of patients; however, in only 3% of patients (4/120) could these be confidently considered pathogenic (in SOD1 and TARDBP). We found no evidence for a differential DNA methylation signature in these mutation carriers. Conclusions The use of WES in a typical ALS clinic demonstrates a critical approach to variant assessment with the capability to combine cohorts to enhance the largely unknown genetic basis of ALS.
Collapse
Affiliation(s)
- Fleur C Garton
- Queensland Brain InstituteThe University of QueenslandSt LuciaQueensland4072Australia.,Institute for Molecular BioscienceThe University of QueenslandSt LuciaQueensland4072Australia
| | - Beben Benyamin
- Queensland Brain InstituteThe University of QueenslandSt LuciaQueensland4072Australia.,Institute for Molecular BioscienceThe University of QueenslandSt LuciaQueensland4072Australia
| | - Qiongyi Zhao
- Queensland Brain InstituteThe University of QueenslandSt LuciaQueensland4072Australia
| | - Zhijun Liu
- Queensland Brain InstituteThe University of QueenslandSt LuciaQueensland4072Australia.,Institute for Molecular BioscienceThe University of QueenslandSt LuciaQueensland4072Australia
| | - Jacob Gratten
- Queensland Brain InstituteThe University of QueenslandSt LuciaQueensland4072Australia.,Institute for Molecular BioscienceThe University of QueenslandSt LuciaQueensland4072Australia
| | - Anjali K Henders
- Queensland Brain InstituteThe University of QueenslandSt LuciaQueensland4072Australia.,Institute for Molecular BioscienceThe University of QueenslandSt LuciaQueensland4072Australia
| | - Zong-Hong Zhang
- Queensland Brain InstituteThe University of QueenslandSt LuciaQueensland4072Australia
| | - Janette Edson
- Queensland Brain InstituteThe University of QueenslandSt LuciaQueensland4072Australia
| | - Sarah Furlong
- Queensland Brain InstituteThe University of QueenslandSt LuciaQueensland4072Australia
| | - Sarah Morgan
- Reta Lila Weston InstituteUCL Institute of NeurologyLondonUK.,Department of Molecular NeuroscienceUCL Institute of NeurologyLondonUK
| | - Susan Heggie
- UQ Centre for Clinical ResearchThe University of QueenslandRoyal Brisbane & Women's HospitalBrisbane4029Australia
| | - Kathryn Thorpe
- UQ Centre for Clinical ResearchThe University of QueenslandRoyal Brisbane & Women's HospitalBrisbane4029Australia
| | - Casey Pfluger
- UQ Centre for Clinical ResearchThe University of QueenslandRoyal Brisbane & Women's HospitalBrisbane4029Australia
| | - Karen A Mather
- Centre for Healthy Brain AgeingSchool of PsychiatryFaculty of MedicineThe University of New South WalesSydneyNew South Wales2052Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain AgeingSchool of PsychiatryFaculty of MedicineThe University of New South WalesSydneyNew South Wales2052Australia.,Neuropsychiatric InstitutePrince of Wales HospitalRandwickNew South WalesAustralia
| | - Allan F McRae
- Queensland Brain InstituteThe University of QueenslandSt LuciaQueensland4072Australia.,Institute for Molecular BioscienceThe University of QueenslandSt LuciaQueensland4072Australia
| | - Matthew R Robinson
- Queensland Brain InstituteThe University of QueenslandSt LuciaQueensland4072Australia.,Institute for Molecular BioscienceThe University of QueenslandSt LuciaQueensland4072Australia
| | - Sonia Shah
- Queensland Brain InstituteThe University of QueenslandSt LuciaQueensland4072Australia
| | - Peter M Visscher
- Queensland Brain InstituteThe University of QueenslandSt LuciaQueensland4072Australia.,Institute for Molecular BioscienceThe University of QueenslandSt LuciaQueensland4072Australia.,University of Queensland Diamantina InstituteTranslational Research InstituteBrisbaneQueensland4012Australia
| | - Marie Mangelsdorf
- Queensland Brain InstituteThe University of QueenslandSt LuciaQueensland4072Australia
| | - Robert D Henderson
- Department of NeurologyRoyal Brisbane & Women's HospitalBrisbane4029Australia
| | - Naomi R Wray
- Queensland Brain InstituteThe University of QueenslandSt LuciaQueensland4072Australia.,Institute for Molecular BioscienceThe University of QueenslandSt LuciaQueensland4072Australia
| | - Pamela A McCombe
- UQ Centre for Clinical ResearchThe University of QueenslandRoyal Brisbane & Women's HospitalBrisbane4029Australia
| |
Collapse
|