1
|
Abstract
Tardive dyskinesia (TD) is a heterogeneous, hyperkinetic movement disorder induced by dopamine-receptor blocking agents that presents a unique challenge in the treatment of psychosis. Although acceptance of TD as a serious consequence of antipsychotic treatment was resisted initially, subsequent research by many investigators in psychopharmacology contributed to a rich store of knowledge on many aspects of the disorder. While basic neuroscience investigations continue to deepen our understanding of underlying motor circuitry, past trials of potential treatments of TD focusing on a range of theoretical targets were often inconclusive. Development of newer antipsychotics promised to reduce the risk of TD compared to older drugs, but their improved tolerability unexpectedly enabled an expanding market that paradoxically both increased the absolute number of patients at risk and diminished attention to TD which was relegated to legacy status. Fortunately, development and approval of novel vesicular monoamine transporter inhibitors offered evidence-based symptomatic treatment of TD for the first time and rekindled interest in the disorder. Despite recent progress, many questions remain for future research including the mechanisms underlying TD, genetic predisposition, phenomenological diversity, whether new cases are reversible, how to implement best practices to prevent and treat TD, and whether the development of novel antipsychotics free of the risk of TD is attainable. We owe our patients the aspirational goal of striving for zero prevalence of persistent symptoms of TD in anyone treated for psychosis.
Collapse
Affiliation(s)
- Stanley N Caroff
- Behavioral Health Service, Corporal Michael J. Crescenz VA Medical Center and the Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
2
|
Takeuchi H, Mori Y, Tsutsumi Y. Pathophysiology, prognosis and treatment of tardive dyskinesia. Ther Adv Psychopharmacol 2022; 12:20451253221117313. [PMID: 36312846 PMCID: PMC9597038 DOI: 10.1177/20451253221117313] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/15/2022] [Indexed: 11/06/2022] Open
Abstract
Tardive dyskinesia (TD), a movement disorder associated with antipsychotics, most frequently affects the lower face and jaw muscles, but can also affect walking, breathing and use of the hands and limbs. Knowledge of TD among physicians may be limited, and the pathophysiology of TD is poorly understood. We conducted this review to summarise the current knowledge surrounding the pathophysiology of TD and present recommendations for prevention and treatment based on a literature search and roundtable discussion attended by psychiatrists in Japan. It has been suggested that dopamine hypersensitivity, damaged gamma-aminobutyric acidergic neurons and/or increased production of reactive oxygen species may contribute to development of TD. Symptoms can profoundly affect everyday life; patients who develop TD have poorer prognoses, worse health-related quality of life, greater social withdrawal and higher mortality than patients without TD. Traditional treatment options include dietary supplements, although evidence for their effectiveness is low. Among pharmaceutical interventions, there is moderate evidence that switching to the second-generation antipsychotic clozapine, which has a lower affinity for dopamine D2 receptors than other antipsychotics, may improve symptoms. Vesicular monoamine transporter 2 (VMAT-2) inhibitors, which oppose the increased dopaminergic activity associated with prolonged antipsychotic use by interfering with dopamine uptake and storage, have the strongest evidence for efficacy. VMAT-2 inhibitors are approved in the United States for the treatment of TD, and the first VMAT-2 inhibitor was approved in Japan for this indication in March 2022. Most guidelines recommend treating TD by first reducing the dose of antipsychotics or switching to clozapine or other second-generation antipsychotics, which have a lower association with TD than first-generation antipsychotics. We recommend focusing on prevention and monitoring for TD when prescribing antipsychotics, given that TD is often irreversible. Physicians should treat with antipsychotics only when necessary and at the lowest effective dose, and frequently monitor for TD symptoms. Plain Language Summary Plain Language Summary (In Japanese). Visual Summary Visual Summary (In Japanese).
Collapse
Affiliation(s)
- Hiroyoshi Takeuchi
- Department of Neuropsychiatry, School of
Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582,
Japan
| | - Yasuhiro Mori
- Department of Psychiatry, Aichi Medical
University, Aichi, Japan
| | | |
Collapse
|
3
|
Differentiating tardive dyskinesia: a video-based review of antipsychotic-induced movement disorders in clinical practice. CNS Spectr 2022; 27:208-217. [PMID: 33213556 PMCID: PMC9249122 DOI: 10.1017/s109285292000200x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accurate diagnosis and appropriate treatment of tardive dyskinesia (TD) are imperative, as its symptoms can be highly disruptive to both patients and their caregivers. Misdiagnosis can lead to incorrect interventions with suboptimal or even deleterious results. To aid in the identification and differentiation of TD in the psychiatric practice setting, we review its clinical features and movement phenomenology, as well as those of other antipsychotic-induced movement disorders, with accompanying links to illustrative videos. Exposure to dopamine receptor blocking agents (DRBAs) such as antipsychotics or antiemetics is associated with a spectrum of movement disorders including TD. The differential diagnosis of TD is based on history of DRBA exposure, recent discontinuation or dose reduction of a DRBA, and movement phenomenology. Common diagnostic challenges are the abnormal behaviors and dyskinesias associated with advanced age or chronic mental illness, and other movement disorders associated with DRBA therapy, such as akathisia, parkinsonian tremor, and tremor related to use of mood stabilizing agents (eg, lithium, divalproex). Duration of exposure may help rule out acute drug-induced syndromes such as acute dystonia or acute/subacute akathisia. Another important consideration is the potential for TD to present together with other drug-induced movement disorders (eg, parkinsonism, parkinsonian tremor, and postural tremor from mood stabilizers) in the same patient, which can complicate both diagnosis and management. After documentation of the phenomenology, severity, and distribution of TD movements, treatment options should be reviewed with the patient and caregivers.
Collapse
|
4
|
Zakharov D, Buriak I, Mihailov V. Tardive neuroleptic-induced dyskinesias. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:31-35. [DOI: 10.17116/jnevro202212201131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Synthesis and analysis of dihydrotetrabenazine derivatives as novel vesicular monoamine transporter 2 inhibitors. Eur J Med Chem 2021; 224:113718. [PMID: 34329999 DOI: 10.1016/j.ejmech.2021.113718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/04/2023]
Abstract
Vesicular monoamine transporter 2 (VMAT2) is essential for synaptic transmission of all biogenic amines in the brain including serotonin, norepinephrine, histamine, and dopamine (DA). Given its crucial role in the neurophysiology and pharmacology of the central nervous system, VMAT2 is recognized as an important therapeutic target for various neurological disorders such as tardive dyskinesia (TD). Here, a novel series of dihydrotetrabenazine derivative analogs were designed and synthesized to evaluate their effects on [3H]dihydrotetrabenazine (DTBZ) binding and [3H]DA uptake at VMAT2. Of these analogs, compound 13e showed a high binding affinity for VMAT2 (IC50 = 5.13 ± 0.16 nM) with excellent inhibition of [3H]DA uptake (IC50 = 6.04 ± 0.03 nM) in striatal synaptosomes. In human liver microsomes, 13e was more stable (T1/2 = 161.2 min) than other reported VMAT2 inhibitors such as DTBZ (T1/2 = 119.5 min). In addition, 13e effectively inhibited the spontaneous locomotor activity (percent inhibition at 3 μmol/kg = 64.7%) in Sprague-Dawley rats. Taken together, our results indicate that 13e might be a promising lead compound for the development of novel treatments of TD.
Collapse
|
6
|
Caroff SN, Gutman AR, Northrop J, Leong SH, Berkowitz RM, Campbell EC. Effect of Varenicline on Tardive Dyskinesia: A Pilot Study. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:355-360. [PMID: 33888664 PMCID: PMC8077061 DOI: 10.9758/cpn.2021.19.2.355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023]
Abstract
Objective Although evidence implicates striatal cholinergic impairment as a mechanism underlying tardive dyskinesia, trials of nonspecific cholinergic agents have been inconclusive. As a partial agonist at specific nicotinic receptor subtypes, varenicline reduces drug-induced dyskinesias in animal models suggesting promise as a treatment for tardive dyskinesia. Methods Three schizophrenia patients with tardive dyskinesia who were smokers underwent an open trial of varenicline. After a 2-week baseline, subjects received varenicline 1 mg twice daily. Changes from baseline on the Abnormal Involuntary Movement Scale were measured after a 4-week varenicline stabilization period, and 6 weeks after the smoking quit date in one patient. Results Varenicline had no effect on mean Abnormal Involuntary Movement Scale scores after 4 weeks. Although smoking decreased after 4 weeks on varenicline and diminished further in one patient after 10 weeks, this also appeared to have no effect on ratings of tardive dyskinesia. Conclusion In contrast to animal models, no significant change in tardive dyskinesia occurred in response to varenicline replacement in three schizophrenia patients. Further investigations of cholinergic mechanisms in tardive dyskinesia are worthwhile as agents for specific cholinergic targets become available for treatment. In addition, treatment trials of tardive dyskinesia should control for smoking status, while patients on antipsychotics receiving nicotine replacement therapies for smoking should be studied further for changes in movement.
Collapse
Affiliation(s)
- Stanley N Caroff
- Behavioral Health Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.,Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alisa R Gutman
- Behavioral Health Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - John Northrop
- Behavioral Health Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Shirley H Leong
- Behavioral Health Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Rosalind M Berkowitz
- Behavioral Health Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - E Cabrina Campbell
- Behavioral Health Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.,Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
7
|
Caroff SN. Recent Advances in the Pharmacology of Tardive Dyskinesia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2020; 18:493-506. [PMID: 33124584 PMCID: PMC7609206 DOI: 10.9758/cpn.2020.18.4.493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 12/30/2022]
Abstract
Tardive dyskinesia (TD) is a syndrome of abnormal involuntary movements that follows treatment with dopamine D2-receptor antagonists. Recent approval of vesicular monoamine transporter-2 (VMAT2) inhibitors offers hope for reducing the impact of TD. Although these drugs represent a significant advance in patient care and a practical step forward in providing relief for patients with TD, understanding of the pharmacology of TD that could inform future research to prevent and reverse TD remains incomplete. This review surveys evidence for the effectiveness of VMAT2 inhibitors and other agents in the context of theories of pathogenesis of TD. In patients for whom VMAT2 inhibitors are ineffective or intolerable, as well as for extending therapeutic options and insights regarding underlying mechanisms, a review of clinical trial results examined as experimental tests of etiologic hypotheses is worthwhile. There are still compelling reasons for further investigations of the pharmacology of TD, which could generate alternative preventive and potentially curative treatments. Finally, benefits from novel drugs are best realized within an overall treatment strategy addressing the condition and needs of individual patients.
Collapse
Affiliation(s)
- Stanley N. Caroff
- Behavioral Health Service, Corporal Michael J. Crescenz VA Medical Center and the Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Abstract
Tardive dyskinesia (TD) is a delayed and potentially irreversible motor complication following chronic exposure to centrally acting dopamine receptor antagonists, mainly of the class of antipsychotics drugs. New generations of antipsychotic drugs reduced its mean prevalence to 20%, but it continues to mar the drug experience and social integration in a significant fraction of patients. The underlying molecular cascade remains elusive, explaining in part why TD management is so often difficult. Protocol variations between experimental laboratories and inter-species differences in the biological response to antipsychotic drugs have added layers of complexity. The traditional dopamine D2 receptor supersensitivity hypothesis was revisited in an experimental nonhuman primate model. Findings in the striatum revealed a strong upregulation of D3, not D2, receptors specific to dyskinetic animals, and indirect evidence suggestive of a link between overactivation of glycogen synthase kinase-3β signaling and TD. New effective vesicular monoamine transporter type 2 inhibitors alleviating TD have been approved in the USA. They were integrated to an emerging stepwise treatment algorithm for troublesome TD, which also includes consideration for changes in the current antipsychotic drug regimen and recognition of potentially aggravating factors such as anticholinergic co-medications. These advances may benefit TD.
Collapse
|
9
|
Rodriguez-López J, Arrojo M, Paz E, Páramo M, Costas J. Identification of relevant hub genes for early intervention at gene coexpression modules with altered predicted expression in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109815. [PMID: 31715283 DOI: 10.1016/j.pnpbp.2019.109815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 01/20/2023]
Abstract
Genetic risk for schizophrenia is due to the joint effect of multiple genes acting mainly at two different processes, prenatal/perinatal neurodevelopment and adolescence/early adulthood synapse maturation. Identification of important genes at the second process is of relevance for early intervention. The aim of this work was to identify gene co-expression modules with altered expression in schizophrenia during adolescence/early adulthood. To this goal, we predicted frontal cortex gene expression in one discovery sample, the largest GWAS of schizophrenia from the Psychiatric Genomics Consortium, using S-prediXcan, and in one target sample, consisting of 625 schizophrenic patients and 819 controls from Spain, using prediXcan. Prediction models were trained on GTEx frontal cortex expression dataset. In parallel, we identified brain co-expression modules from BrainSpan using WGCNA. Then, we estimated polygenic risk scores based on predicted expression (PE-PRS) for each co-expression module in the target sample, based on PE-PRS model from the discovery sample. This analysis led to the identification of a module with mainly adolescence/adulthood expression whose PE-PRS was significantly associated with schizophrenia. The module was significantly enriched in synaptic processes. Several hub genes at this module are drugabble, according to the drug-gene interaction database, and/or involved in synaptic transmission, such as the voltage-gated ion channels SCN2B and KCNAB2, the calcium calmodulin kinases CAMK2A and CAMK1G, or genes involved in synaptic vesicle cycle, such as DNM1, or SYNGR1. Therefore, identification of this module may be the first step in patient stratification based on biology, as well as in drug design and drug repurposing efforts.
Collapse
Affiliation(s)
- Julio Rodriguez-López
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Arrojo
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain; Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Eduardo Paz
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain; Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Mario Páramo
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain; Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Javier Costas
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain.
| |
Collapse
|
10
|
Factor SA, Burkhard PR, Caroff S, Friedman JH, Marras C, Tinazzi M, Comella CL. Recent developments in drug-induced movement disorders: a mixed picture. Lancet Neurol 2019; 18:880-890. [PMID: 31279747 DOI: 10.1016/s1474-4422(19)30152-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 01/14/2023]
Abstract
A large and ever-growing number of medications can induce various movement disorders. Drug-induced movement disorders are disabling but are often under-recognised and inappropriately managed. In particular, second generation antipsychotics, like first generation agents, are associated with potentially debilitating side-effects, most notably tardive syndromes and parkinsonism, as well as potentially fatal acute syndromes. Appropriate, evidence-based management is essential as these drugs are being prescribed to a growing population vulnerable to these side-effects, including children and elderly people. Prevention of the development of drug-induced movement disorders is an important consideration when prescribing medications that can induce movement disorders. Recent developments in diagnosis, such as the use of dopamine transporter imaging for drug-induced parkinsonism, and treatment, with the approval of valbenazine and deutetrabenazine, the first drugs indicated for tardive syndromes, have improved outcomes for many patients with drug-induced movement disorders. Future research should focus on development of safer antipsychotics and specific therapies for the different tardive syndromes and the treatment of drug-induced parkinsonism.
Collapse
Affiliation(s)
- Stewart A Factor
- Jean and Paul Amos Parkinson's Disease and Movement Disorders Program, Emory University School of Medicine, Atlanta, GA, USA.
| | - Pierre R Burkhard
- Department of Neurology, Faculty of Medicine, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Stanley Caroff
- Corporal Michael J Crescenz VA Medical Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H Friedman
- Butler Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Connie Marras
- Edmond J Safra Program in Parkinson's Research, University of Toronto, Toronto Western Hospital, Toronto, ON, Canada
| | - Michele Tinazzi
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Cynthia L Comella
- Department of Neurological Sciences, Rush Medical College, Chicago, IL, USA
| |
Collapse
|
11
|
Abstract
Tardive dyskinesia (TD) is a heterogeneous syndrome of involuntary hyperkinetic movements that is often persistent and occurs belatedly during treatment with antipsychotics. Recent approval of two dopamine-depleting analogs of tetrabenazine based on randomized controlled trials offers an evidence-based therapeutic approach to TD for the first time. These agents are optimally used within the context of a comprehensive approach to patient management that includes a practical screening and monitoring program, sensitive and specific criteria for the diagnosis of TD, awareness of the severity and impact of the disorder, informed discussions with patients and caregivers, and a rational basis for prescribing decisions about continued antipsychotic and adjunctive agents. Areas of limited or inconclusive data, bias and misunderstandings about key aspects, and neglect of training about TD in recent years contribute to barriers in providing effective care and promoting patient safety.
Collapse
Affiliation(s)
- Stanley N Caroff
- Corporal Michael J Crescenz VA Medical Center, and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,
| |
Collapse
|
12
|
Bakke M, Henriksen T, Biernat HB, Dalager T, Møller E. Interdisciplinary recognizing and managing of drug-induced tardive oromandibular dystonia: two case reports. Clin Case Rep 2018; 6:2150-2155. [PMID: 30455910 PMCID: PMC6230632 DOI: 10.1002/ccr3.1548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 12/02/2022] Open
Abstract
Tardive dystonia is a risk factor in medical antipsychotic treatment. It often begins with repetitive involuntary jaw and tongue movements resulting in impaired chewing and detrimental effect on the dentition. The orofacial dysfunction may go unrecognized in a neurological setting. The diagnosis may be difficult so we suggest interdisciplinary collaboration.
Collapse
Affiliation(s)
- Merete Bakke
- Department of Odontology Faculty of Medical and Health Sciences University of Copenhagen Copenhagen Denmark
| | - Tove Henriksen
- Department of Neurology and Clinical Neurophysiology (Dystonia Clinic) Bispebjerg University Hospital University of Copenhagen Copenhagen Denmark
| | - Heidi Bryde Biernat
- Department of Neurology and Clinical Neurophysiology (Dystonia Clinic) Bispebjerg University Hospital University of Copenhagen Copenhagen Denmark
| | - Torben Dalager
- Department of Neurology and Clinical Neurophysiology (Dystonia Clinic) Bispebjerg University Hospital University of Copenhagen Copenhagen Denmark
| | - Eigild Møller
- Department of Neurology and Clinical Neurophysiology (Dystonia Clinic) Bispebjerg University Hospital University of Copenhagen Copenhagen Denmark
| |
Collapse
|
13
|
Caroff SN, Ungvari GS, Cunningham Owens DG. Historical perspectives on tardive dyskinesia. J Neurol Sci 2018; 389:4-9. [PMID: 29454494 DOI: 10.1016/j.jns.2018.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/26/2017] [Accepted: 02/02/2018] [Indexed: 11/27/2022]
Abstract
Tardive dyskinesia (TD) is a persistent hyperkinetic movement disorder associated with dopamine receptor blocking agents including antipsychotic medications. Although uncertainty and concern about this drug side effect have vacillated since its initial recognition 60 years ago, recent commercial interest in developing effective treatments has rekindled scientific and clinical interest after a protracted period of neglect. Although substantial research has advanced knowledge of the clinical features and epidemiology of TD, many fundamental questions raised by early investigators remain unresolved. In this paper, we review the early clinical reports that led to the acceptance of TD as an iatrogenic disorder and the lingering controversies that emerged thereafter. Continued research on TD as a serious adverse reaction to treatment may not only enhance patient outcomes and recovery efforts but may also provide insights into both the mechanism of action of antipsychotic drugs and the nosology and pathophysiology of idiopathic psychomotor disorders.
Collapse
Affiliation(s)
- Stanley N Caroff
- Corporal Michael J. Cresencz Veterans Affairs Medical Center and the Perelman School of Medicine at the University of Pennsylvania, University Avenue, Philadelphia, PA 19104, USA.
| | - Gabor S Ungvari
- University of Notre Dame Australia/Marian Centre, 200 Cambridge Street, Perth 6014, Australia.
| | | |
Collapse
|
14
|
Stegmayer K, Walther S, van Harten P. Tardive Dyskinesia Associated with Atypical Antipsychotics: Prevalence, Mechanisms and Management Strategies. CNS Drugs 2018; 32:135-147. [PMID: 29427000 DOI: 10.1007/s40263-018-0494-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
All antipsychotics, including the atypical antipsychotics (AAPs), may cause tardive dyskinesia (TD), a potentially irreversible movement disorder, the pathophysiology of which is currently unknown. The prevention and treatment of TD remain major challenges for clinicians. We conducted a PubMed search to review the prevalence and etiology of and management strategies for TD associated with AAPs. TD prevalence rates varied substantially between studies, with an estimated prevalence of around 20% in patients using AAPs. The risk of TD is lower with AAPs than with typical antipsychotics (TAPs) but remains a problem because AAPs are increasingly being prescribed. Important risk factors associated with TD include the duration of antipsychotic use, age, and ethnicity other than Caucasian. Theories about the etiology of TD include supersensitivity of the dopamine receptors and oxidative stress, but other neurotransmitters and factors are probably involved. Studies concerning the management of TD have considerable methodological limitations. Thus, recommendations for the management of TD are based on a few trials and clinical experience, and no general guidelines for the management of TD can be established. The best management strategy remains prevention. Caution is required when prescribing antipsychotics, and regular screening is needed for early detection of TD. Other strategies may include reducing the AAP dosage, switching to clozapine, or administering vesicular monoamine transporter (VMAT)-2 inhibitors. In severe cases, local injections of botulinum toxin or deep brain stimulation may be considered. More clinical trials in larger samples are needed to gather valid information on the effect of interventions targeting TD.
Collapse
Affiliation(s)
- Katharina Stegmayer
- University Hospital of Psychiatry, Bolligenstrasse 111, 3060, Bern, Switzerland.
| | - Sebastian Walther
- University Hospital of Psychiatry, Bolligenstrasse 111, 3060, Bern, Switzerland
| | - Peter van Harten
- Psychiatric Centre GGz Centraal, Innova, Amersfoort, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|