1
|
Hashmi SA, Gundlapalli R, Zawar I. Mortality in older adults with epilepsy: An understudied entity. Epilepsia Open 2024. [PMID: 39527018 DOI: 10.1002/epi4.13098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Despite the recognition of Sudden Unexpected Death in Epilepsy (SUDEP) and other risks of premature mortality in people with epilepsy (PWE), mortality in older PWE remains an understudied entity. This review provides a comprehensive overview of the multifaceted causes of premature mortality in older adults with epilepsy and emphasizes the need for targeted interventions to reduce mortality and enhance the quality of life in this vulnerable population. It underscores the heightened prevalence of epilepsy among older adults and the interplay of intrinsic and extrinsic factors contributing to their mortality. Further, this paper delves into the nuances of diagnosing SUDEP in older adults and the underestimation of its incidence due to misclassification and lack of standardized protocols. Factors such as frailty, comorbidities, and the bidirectional relationship between epilepsy and conditions such as dementia and stroke further compound the mortality risks. Key factors, including status epilepticus, comorbid conditions (such as cardiovascular diseases, cerebrovascular events, and neurodegenerative disorders), and external causes like accidents, falls, and suicide, are discussed. It also examines the implications of anti-seizure medications, particularly polypharmacy, and their adverse effects on this population. Future directions include implementing enhanced diagnostic protocols, developing treatment plans, and integrating real-time monitoring technologies to reduce the risk of sudden death and multifaceted premature mortality in this patient population. Increasing awareness among healthcare providers and families about the risks and management of epilepsy in older adults, along with fostering collaborative research efforts, is essential to improve mortality outcomes. PLAIN LANGUAGE SUMMARY: There is a heightened risk of mortality in older people with epilepsy due to many causes unique to their population. Despite the risk, Sudden Unexpected Death in Epilepsy and early mortality in older adults with epilepsy are underestimated. Unique contributing factors include comorbid conditions like dementia, stroke, and frailty, adverse effects from polypharmacy, and increased risks of cardiovascular complications and external injuries such as falls and suicide. A careful consideration of all these factors can help mitigate the mortality in older adults with epilepsy.
Collapse
Affiliation(s)
- Syeda Amrah Hashmi
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | - Ifrah Zawar
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Eslamizade MJ, Saffarzadeh F, Khatami S, Davoudi S, Soleimani Z, Anajafi S, Khoshnazar A, Mehdizadeh M, Mohammadi-Yeganeh S, Janahmadi M. Deregulation of Melatonin Receptors and Differential Modulation of After-Hyperpolarization and Ih Currents Using Melatonin Treatment Due to Amyloid-β-Induced Neurotoxicity in the Hippocampus. Cell Biochem Funct 2024; 42:e4129. [PMID: 39344779 DOI: 10.1002/cbf.4129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Treatment with melatonin is routinely prescribed for its potent antioxidant and cognitive-promoting effects, nevertheless, it has yet to find neuromodulatory effects in normal and disease conditions. Therefore, to investigate its neuromodulatory mechanisms, melatonin was systemically administered over 10 consecutive days to both intracortical normal saline- and amyloid-β 1-42 (Aβ) peptide-injected rats. At the behavioral level, treatment with melatonin was associated with reduced efficacy in restoring Aβ-induced deficit in passive-avoidance memory. Whole-cell patch-clamp recordings from CA1 pyramidal neurons revealed that melatonin treatment reduced spontaneous and evoked intrinsic excitability in control rats while exerting a reduction of spontaneous, but not evoked activity, in the Aβ-injected group. Interestingly, treatment with melatonin enhances after-hyperpolarization in control, but not Aβ-injected rats. In contrast, our voltage-clamp study showed that Ih current is significantly enhanced by Aβ injection, and this effect is further strengthened by treatment with melatonin in Aβ-injected rats. Finally, we discovered that the transcription of melatonin receptors 1 (MT1) and 2 (MT2) is significantly upregulated in the hippocampi of Aβ-injected rats. Collectively, our study demonstrates that systemic treatment with melatonin has differential neuromodulation on CA1 neuronal excitability, at least in part, via differential effects on after-hyperpolarization and Ih currents due to Aβ-induced neurotoxicity.
Collapse
Affiliation(s)
- Mohammad J Eslamizade
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saffarzadeh
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Khatami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Davoudi
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Soleimani
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Anajafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amineh Khoshnazar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Moscovicz F, Taborda C, Fernández F, Borda N, Auzmendi J, Lazarowski A. Ironing out the Links: Ferroptosis in epilepsy and SUDEP. Epilepsy Behav 2024; 157:109890. [PMID: 38905915 DOI: 10.1016/j.yebeh.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/23/2024]
Abstract
Iron is a crucial element for almost all organisms because it plays a vital role in oxygen transport, enzymatic processes, and energy generation due to its electron transfer capabilities. However, its dysregulation can lead to a form of programmed cell death known as ferroptosis, which is characterized by cellular iron accumulation, reactive oxygen species (ROS) production, and unrestricted lipid peroxidation. Both iron and ferroptosis have been identified as key players in the pathogenesis of various neurodegenerative diseases. While in epilepsy this phenomenon remains relatively understudied, seizures can be considered hypoxic-ischemic episodes resulting in increased ROS production, lipid peroxidation, membrane disorganization, and cell death. All of this is accompanied by elevated intracellular free Fe2+ concentration and hemosiderin precipitation, as existing reports suggest a significant accumulation of iron in the brain and heart associated with epilepsy. Generalized tonic-clonic seizures (GTCS), a primary risk factor for Sudden Unexpected Death in Epilepsy (SUDEP), not only have an impact on the brain but also lead to cardiogenic dysfunctions associated with "Iron Overload and Cardiomyopathy" (IOC) and "Epileptic heart" characterized by electrical and mechanical dysfunction and a high risk of malignant bradycardia. In line with this phenomenon, studies conducted by our research group have demonstrated that recurrent seizures induce hypoxia in cardiomyocytes, resulting in P-glycoprotein (P-gp) overexpression, prolonged Q-T interval, severe bradycardia, and hemosiderin precipitation, correlating with an elevated spontaneous death ratio. In this article, we explore the intricate connections among ferroptosis, epilepsy, and SUDEP. By synthesizing current knowledge and drawing insights from recent publications, this study provides a comprehensive understanding of the molecular underpinnings. Furthermore, this review offers insights into potential therapeutic avenues and outlines future research directions.
Collapse
Affiliation(s)
- F Moscovicz
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina.
| | - C Taborda
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina
| | - F Fernández
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina
| | - N Borda
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina
| | - J Auzmendi
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina; National Council of Scientific and Technical Research (CONICET), Argentina.
| | - A Lazarowski
- University of Buenos Aires, Faculty of Pharmacy and Biochemistry, Institute of Phisiopatology and Clinical Biochemistry (INFIBIOC), Applied Neurobiology Lab, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Kalyvas AC, Dimitriou M, Ioannidis P, Grigoriadis N, Afrantou T. Alzheimer's Disease and Epilepsy: Exploring Shared Pathways and Promising Biomarkers for Future Treatments. J Clin Med 2024; 13:3879. [PMID: 38999445 PMCID: PMC11242231 DOI: 10.3390/jcm13133879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Background: Alzheimer's disease (AD) and epilepsy represent two complex neurological disorders with distinct clinical manifestations, yet recent research has highlighted their intricate interplay. This review examines the association between AD and epilepsy, with particular emphasis on late-onset epilepsy of unknown etiology, increasingly acknowledged as a prodrome of AD. It delves into epidemiology, pathogenic mechanisms, clinical features, diagnostic characteristics, treatment strategies, and emerging biomarkers to provide a comprehensive understanding of this relationship. Methods: A comprehensive literature search was conducted, identifying 128 relevant articles published between 2018 and 2024. Results: Findings underscore a bidirectional relationship between AD and epilepsy, indicating shared pathogenic pathways that extend beyond traditional amyloid-beta and Tau protein pathology. These pathways encompass neuroinflammation, synaptic dysfunction, structural and network alterations, as well as molecular mechanisms. Notably, epileptic activity in AD patients may exacerbate cognitive decline, necessitating prompt detection and treatment. Novel biomarkers, such as subclinical epileptiform activity detected via advanced electroencephalographic techniques, offer promise for early diagnosis and targeted interventions. Furthermore, emerging therapeutic approaches targeting shared pathogenic mechanisms hold potential for disease modification in both AD and epilepsy. Conclusions: This review highlights the importance of understanding the relationship between AD and epilepsy, providing insights into future research directions. Clinical data and diagnostic methods are also reviewed, enabling clinicians to implement more effective treatment strategies.
Collapse
Affiliation(s)
- Athanasios-Christos Kalyvas
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Maria Dimitriou
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Panagiotis Ioannidis
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| | - Theodora Afrantou
- 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, GR54636 Thessaloniki, Greece
| |
Collapse
|
5
|
Isop LM, Neculau AE, Necula RD, Kakucs C, Moga MA, Dima L. Metformin: The Winding Path from Understanding Its Molecular Mechanisms to Proving Therapeutic Benefits in Neurodegenerative Disorders. Pharmaceuticals (Basel) 2023; 16:1714. [PMID: 38139841 PMCID: PMC10748332 DOI: 10.3390/ph16121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Metformin, a widely prescribed medication for type 2 diabetes, has garnered increasing attention for its potential neuroprotective properties due to the growing demand for treatments for Alzheimer's, Parkinson's, and motor neuron diseases. This review synthesizes experimental and clinical studies on metformin's mechanisms of action and potential therapeutic benefits for neurodegenerative disorders. A comprehensive search of electronic databases, including PubMed, MEDLINE, Embase, and Cochrane library, focused on key phrases such as "metformin", "neuroprotection", and "neurodegenerative diseases", with data up to September 2023. Recent research on metformin's glucoregulatory mechanisms reveals new molecular targets, including the activation of the LKB1-AMPK signaling pathway, which is crucial for chronic administration of metformin. The pleiotropic impact may involve other stress kinases that are acutely activated. The precise role of respiratory chain complexes (I and IV), of the mitochondrial targets, or of the lysosomes in metformin effects remains to be established by further research. Research on extrahepatic targets like the gut and microbiota, as well as its antioxidant and immunomodulatory properties, is crucial for understanding neurodegenerative disorders. Experimental data on animal models shows promising results, but clinical studies are inconclusive. Understanding the molecular targets and mechanisms of its effects could help design clinical trials to explore and, hopefully, prove its therapeutic effects in neurodegenerative conditions.
Collapse
Affiliation(s)
- Laura Mihaela Isop
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Andrea Elena Neculau
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| | - Radu Dan Necula
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Cristian Kakucs
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Marius Alexandru Moga
- Department of Medical and Surgical Specialties, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania
| | - Lorena Dima
- Department of Fundamental, Prophylactic and Clinical Sciences, Faculty of Medicine, Transilvania University of Brasov, 500036 Brașov, Romania; (L.M.I.)
| |
Collapse
|
6
|
Bosco F, Guarnieri L, Rania V, Palma E, Citraro R, Corasaniti MT, Leo A, De Sarro G. Antiseizure Medications in Alzheimer's Disease from Preclinical to Clinical Evidence. Int J Mol Sci 2023; 24:12639. [PMID: 37628821 PMCID: PMC10454935 DOI: 10.3390/ijms241612639] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) and epilepsy are common neurological disorders in the elderly. A bi-directional link between these neurological diseases has been reported, with patients with either condition carrying almost a two-fold risk of contracting the other compared to healthy subjects. AD/epilepsy adversely affects patients' quality of life and represents a severe public health problem. Thus, identifying the relationship between epilepsy and AD represents an ongoing challenge and continuing need. Seizures in AD patients are often unrecognized because they are often nonconvulsive and sometimes mimic some behavioral symptoms of AD. Regarding this, it has been hypothesized that epileptogenesis and neurodegeneration share common underlying mechanisms. Targeted treatment to decrease epileptiform activity could represent a valuable strategy for delaying the neurodegenerative process and related cognitive impairment. Several preclinical studies have shown that some antiseizure medications (ASMs) targeting abnormal network hyperexcitability may change the natural progression of AD. However, to date, no guidelines are available for managing seizures in AD patients because of the paucity of randomized clinical trials sufficient for answering the correlated questions. Future AD clinical studies are mandatory to update clinicians about the symptomatic treatment of seizures in AD patients and recognize whether ASM therapy could change the natural progression of the disease, thereby rescuing cognitive performance.
Collapse
Affiliation(s)
- Francesca Bosco
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
| | - Lorenza Guarnieri
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
| | - Vincenzo Rania
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
| | - Ernesto Palma
- Department of Health Sciences, School of Pharmacy, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (E.P.); (M.T.C.)
| | - Rita Citraro
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
- System and Applied Pharmacology, University Magna Graecia (FAS@UMG) Research Center, Department of Health Sciences, School of Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Tiziana Corasaniti
- Department of Health Sciences, School of Pharmacy, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (E.P.); (M.T.C.)
| | - Antonio Leo
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
- System and Applied Pharmacology, University Magna Graecia (FAS@UMG) Research Center, Department of Health Sciences, School of Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.B.); (L.G.); (V.R.); (R.C.); (G.D.S.)
- System and Applied Pharmacology, University Magna Graecia (FAS@UMG) Research Center, Department of Health Sciences, School of Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
7
|
Leo A, Tallarico M, Sciaccaluga M, Citraro R, Costa C. Epilepsy and Alzheimer's Disease: Current Concepts and Treatment Perspective on Two Closely Related Pathologies. Curr Neuropharmacol 2022; 20:2029-2033. [PMID: 35524669 PMCID: PMC9886839 DOI: 10.2174/1570159x20666220507020635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 11/22/2022] Open
Abstract
The literature on epileptic seizures in Alzheimer's disease has significantly increased over the past decades. Remarkably, several studies suggest a bi-directional link between these two common neurological diseases, with either condition carrying a nearly 2-fold risk of contracting the other in comparison to healthy subjects. In this respect, evidence from both clinical and preclinical studies indicates that epileptogenesis and neurodegeneration possibly share common underlying mechanisms. However, the precise association between epileptogenesis and neurodegeneration still needs to be fully elucidated. Targeted intervention to reduce abnormal network hyperexcitability might constitute a therapeutic strategy to postpone the onset of later neurodegenerative changes and consequent cognitive decline by many years in patients. By virtue of this, an early diagnosis and treatment of seizures in patients with Alzheimer's disease should be pursued. To date, no guidelines are available for treating epileptic activity in this context, largely due to the paucity of studies sufficient to answer the related questions. Accordingly, clinical trials are mandatory, not only to inform clinicians about symptomatic management of seizures in Alzheimer's disease patients but also to detect if treatment with antiseizure medications could have disease-modifying effects. Moreover, it will be fundamental to expand the application of animal models of Alzheimer's disease to comorbid conditions, such as epilepsy both to reveal the mechanisms underlying seizure onset and to better define their role in cognitive decline. Such models could also be useful to identify pharmacological compounds having therapeutically effectiveness as well as reliable early biomarkers for seizures in Alzheimer's disease.
Collapse
Affiliation(s)
- Antonio Leo
- System and Applied Pharmacology@University Magna Grecia (FAS@UMG) Research Center, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy;
| | - Martina Tallarico
- System and Applied Pharmacology@University Magna Grecia (FAS@UMG) Research Center, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy;
| | - Miriam Sciaccaluga
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria Della Misericordia Hospital, Perugia, Italy
| | - Rita Citraro
- System and Applied Pharmacology@University Magna Grecia (FAS@UMG) Research Center, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy; ,Address correspondence to this author at the Department of Science of Health, School of Medicine and Surgery, University of Catanzaro, Viale Europa – Germaneto 88100 Catanzaro, Italy; Tel: +39 0961 3694191; Fax: +39 0961 3694192; E-mail:
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria Della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
8
|
Early death in a mouse model of Alzheimer's disease exacerbated by microglial loss of TAM receptor signaling. Proc Natl Acad Sci U S A 2022; 119:e2204306119. [PMID: 36191221 PMCID: PMC9564325 DOI: 10.1073/pnas.2204306119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recurrent seizure is a common comorbidity in early-stage Alzheimer's disease (AD) and may contribute to AD pathogenesis and cognitive decline. Similarly, many mouse models of Alzheimer's disease that overproduce amyloid beta are prone to epileptiform seizures that may result in early sudden death. We studied one such model, designated APP/PS1, and found that mutation of the TAM receptor tyrosine kinase (RTK) Mer or its ligand Gas6 greatly exacerbated early death. Lethality was tied to violent seizures that appeared to initiate in the dentate gyrus (DG) of the hippocampus, where Mer plays an essential role in the microglial phagocytosis of both apoptotic and newborn cells normally generated during adult neurogenesis. We found that newborn DG neurons and excitatory synapses between the DG and the cornu ammonis field 3 (CA3) field of the hippocampus were increased in TAM-deficient mice, and that premature death and adult neurogenesis in these mice were coincident. In contrast, the incidence of lethal seizures and the deposition of dense-core amyloid plaques were strongly anticorrelated. Together, these results argue that TAM-mediated phagocytosis sculpts synaptic connectivity in the hippocampus, and that seizure-inducing amyloid beta polymers are present prior to the formation of dense-core plaques.
Collapse
|
9
|
A review on role of metformin as a potential drug for epilepsy treatment and modulation of epileptogenesis. Seizure 2022; 101:253-261. [PMID: 36116284 DOI: 10.1016/j.seizure.2022.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Available anti-seizure medications (ASMs) target the symptomatology of the disease rather than any significant disease/epileptogenesis modifying actions. There are critical concerns of drug resistance and seizure recurrence during epilepsy management. So, drug repurposing is evolving as a paradigm change in the quest for novel epilepsy treatment strategies. Metformin, a well-known anti-diabetic drug has shown multiple pieces of evidence of its potential antiepileptic action. OBJECTIVE This review elucidates various mechanisms underlying the beneficial role of metformin in seizure control and modulation of the epileptogenesis process. METHODS Preclinical and clinical evidence involving metformin's role in epilepsy and special conditions like tuberous sclerosis have been reviewed in this paper. The putative mechanisms of epileptogenesis modulation through the use of metformin are also summarised. RESULTS This review found the efficacy of metformin in different seizure models including genetic knockout model, chemical induced, and kindling models. Only one clinical study of metformin in tuberous sclerosis has shown a reduction in seizure frequency and tumor volume compared to placebo. The suggested mechanisms of metformin relevant to epileptogenesis modulation mainly encompass AMPK activation, mTOR inhibition, protection against blood-brain-barrier disruption, inhibition of neuronal apoptosis, and reduction of oxidative stress. In addition to seizure protection, metformin has a potential role in attenuating adverse effects associated with epilepsy and ASMs such as cognition and memory impairment. CONCLUSION Metformin has shown promising utility in epilepsy management and epileptogenesis modulation. The evidence in this review substantiates the need for a robust clinical trial to explore the efficacy and safety of metformin in persons with epilepsy.
Collapse
|
10
|
Mechanisms Involved in Epileptogenesis in Alzheimer's Disease and Their Therapeutic Implications. Int J Mol Sci 2022; 23:ijms23084307. [PMID: 35457126 PMCID: PMC9030029 DOI: 10.3390/ijms23084307] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Epilepsy and Alzheimer's disease (AD) incidence increases with age. There are reciprocal relationships between epilepsy and AD. Epilepsy is a risk factor for AD and, in turn, AD is an independent risk factor for developing epilepsy in old age, and abnormal AD biomarkers in PET and/or CSF are frequently found in late-onset epilepsies of unknown etiology. Accordingly, epilepsy and AD share pathophysiological processes, including neuronal hyperexcitability and an early excitatory-inhibitory dysregulation, leading to dysfunction in the inhibitory GABAergic and excitatory glutamatergic systems. Moreover, both β-amyloid and tau protein aggregates, the anatomopathological hallmarks of AD, have proepileptic effects. Finally, these aggregates have been found in the resection material of refractory temporal lobe epilepsies, suggesting that epilepsy leads to amyloid and tau aggregates. Some epileptic syndromes, such as medial temporal lobe epilepsy, share structural and functional neuroimaging findings with AD, leading to overlapping symptomatology, such as episodic memory deficits and toxic synergistic effects. In this respect, the existence of epileptiform activity and electroclinical seizures in AD appears to accelerate the progression of cognitive decline, and the presence of cognitive decline is much more prevalent in epileptic patients than in elderly patients without epilepsy. Notwithstanding their clinical significance, the diagnosis of clinical seizures in AD is a challenge. Most are focal and manifest with an altered level of consciousness without motor symptoms, and are often interpreted as cognitive fluctuations. Finally, despite the frequent association of epilepsy and AD dementia, there is a lack of clinical trials to guide the use of antiseizure medications (ASMs). There is also a potential role for ASMs to be used as disease-modifying drugs in AD.
Collapse
|
11
|
Wu J, Zhu S, Zhao C, Xu X. Comprehensive investigation of molecular signatures and pathways linking Alzheimer's disease and Epilepsy via bioinformatic approaches. Curr Alzheimer Res 2022; 19:146-160. [PMID: 35114922 DOI: 10.2174/1567205019666220202120638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Accepted: 12/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Epileptic activity is frequent in patients with Alzheimer's disease (AD), and this may accelerate AD progression; however, the relationship between AD and epilepsy remains unclear. OBJECTIVE We aimed to investigate the molecular pathways and genes linking AD and epilepsy using bioinformatics approaches. METHODS Gene expression profiles of AD (GSE1297) and epilepsy (GSE28674) were derived from the Gene Expression Omnibus (GEO) database. The top 50% expression variants were subjected to weighted gene co-expression network analysis (WGCNA) to identify key modules associated with these diseases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for the key modules were performed, and the intersected terms of functional enrichment and common genes within the key modules were selected. The overlapping genes were subjected to analyses of protein-protein interaction (PPI) network, transcription factor (TF)-mRNA network, microRNA (miRNA)-mRNA network, and drug prediction. RESULTS We identified 229 and 1187 genes in the AD-associated purple and epilepsy-associated blue modules, respectively. Six shared functional terms between the two modules included "calcium ion binding" and "calcium signaling pathway." According to 17 common genes discovered, 130 TF-mRNA pairs and 56 miRNA-mRNA pairs were established. The topological analyses of the constructed regulatory networks suggested that TF - FOXC1 and miRNA - hsa-mir-335-5p might be vital co-regulators of gene expression in AD and epilepsy. In addition, CXCR4 was identified as a hub gene, becoming the putative target for 20 drugs. CONCLUSION Our study provided novel insights into the molecular connection between AD and epilepsy, which might be beneficial for exploring shared mechanisms and designing disease-modifying therapies.
Collapse
Affiliation(s)
- Jiao Wu
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
- Department of Neurology, The People's Hospital of China Medical University, Shenyang, China
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, China
| | - Shu Zhu
- Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang, China
| | - Chenyang Zhao
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| | - Xiaoxue Xu
- Department of Neurology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Larner AJ, Marson AG. Epileptic Seizures in Alzheimer's Disease: What Are the Implications of SANAD II? J Alzheimers Dis 2021; 85:527-529. [PMID: 34842191 DOI: 10.3233/jad-215154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Epileptic seizures are increasingly recognized as part of the clinical phenotype of patients with Alzheimer's disease (AD). However, the evidence based on which to make treatment decisions for such patients is slim, there being no clear recommendation based on systematic review of the few existing studies of anti-seizure drugs in AD patients. Here the authors examine the potential implications for the treatment of seizures in AD of the results of the recently published SANAD II pragmatic study, which examined the effectiveness of levetiracetam, zonisamide, or lamotrigine in newly diagnosed focal epilepsy, and of valproate and levetiracetam in generalized and unclassifiable epilepsy.
Collapse
Affiliation(s)
- Andrew J Larner
- Walton Centre for Neurology and Neurosurgery, Liverpool, United Kingdom
| | - Anthony G Marson
- Walton Centre for Neurology and Neurosurgery, Liverpool, United Kingdom
| |
Collapse
|
13
|
Price BR, Johnson LA, Norris CM. Reactive astrocytes: The nexus of pathological and clinical hallmarks of Alzheimer's disease. Ageing Res Rev 2021; 68:101335. [PMID: 33812051 PMCID: PMC8168445 DOI: 10.1016/j.arr.2021.101335] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023]
Abstract
Astrocyte reactivity is a hallmark of neuroinflammation that arises with Alzheimer’s disease (AD) and nearly every other neurodegenerative condition. While astrocytes certainly contribute to classic inflammatory processes (e.g. cytokine release, waste clearance, and tissue repair), newly emerging technologies for measuring and targeting cell specific activities in the brain have uncovered essential roles for astrocytes in synapse function, brain metabolism, neurovascular coupling, and sleep/wake patterns. In this review, we use a holistic approach to incorporate, and expand upon, classic neuroinflammatory concepts to consider how astrocyte dysfunction/reactivity modulates multiple pathological and clinical hallmarks of AD. Our ever-evolving understanding of astrocyte signaling in neurodegeneration is not only revealing new drug targets and treatments for dementia but is suggesting we reimagine AD pathophysiological mechanisms.
Collapse
Affiliation(s)
- Brittani R Price
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA, 02111, USA
| | - Lance A Johnson
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St., Lexington, KY, 40356, USA; Department of Physiology, University of Kentucky, College of Medicine, UK Medical Center MN 150, Lexington, KY, 40536, USA
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone St., Lexington, KY, 40356, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, College of Medicine, UK Medical Center MN 150, Lexington, KY, 40536, USA.
| |
Collapse
|
14
|
Maciejewska K, Czarnecka K, Szymański P. A review of the mechanisms underlying selected comorbidities in Alzheimer's disease. Pharmacol Rep 2021; 73:1565-1581. [PMID: 34121170 PMCID: PMC8599320 DOI: 10.1007/s43440-021-00293-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the central nervous system (CNS) leading to mental deterioration and devastation, and eventually a fatal outcome. AD affects mostly the elderly. AD is frequently accompanied by hypercholesterolemia, hypertension, atherosclerosis, and diabetes mellitus, and these are significant risk factors of AD. Other conditions triggered by the progression of AD include psychosis, sleep disorders, epilepsy, and depression. One important comorbidity is Down’s syndrome, which directly contributes to the severity and rapid progression of AD. The development of new therapeutic strategies for AD includes the repurposing of drugs currently used for the treatment of comorbidities. A better understanding of the influence of comorbidities on the pathogenesis of AD, and the medications used in its treatment, might allow better control of disease progression, and more effective pharmacotherapy.
Collapse
Affiliation(s)
- Karolina Maciejewska
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
| | - Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St, 01-163, Warsaw, Poland
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151, Lodz, Poland.
- Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, 4 Kozielska St, 01-163, Warsaw, Poland.
| |
Collapse
|
15
|
Figueiro MG, Leggett S. Intermittent Light Exposures in Humans: A Case for Dual Entrainment in the Treatment of Alzheimer's Disease. Front Neurol 2021; 12:625698. [PMID: 33767659 PMCID: PMC7985540 DOI: 10.3389/fneur.2021.625698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
Circadian sleep disorders are common among American adults and can become especially acute among older adults, especially those living with Alzheimer's disease (AD) and mild cognitive impairment (MCI), leading to the exacerbation of symptoms and contributing to the development and advancement of the diseases. This review explores the connections between circadian sleep disorders, cognition, and neurodegenerative disease, offering insights on rapidly developing therapeutic interventions employing intermittent light stimuli for improving sleep and cognition in persons with AD and MCI. Light therapy has the potential to affect sleep and cognition via at least two pathways: (1) a regular and robust light-dark pattern reaching the retina that promotes circadian phase shifting, which can promote entrainment and (2) 40 Hz flickering light that promotes gamma-wave entrainment. While this is a new area of research, preliminary evidence shows the potential of dual circadian and gamma-wave entrainment as an important therapy not only for those with AD, but for others with cognitive impairment.
Collapse
Affiliation(s)
- Mariana G. Figueiro
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Sagan Leggett
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
16
|
Mbizvo GK, Ziso B, Larner AJ. Epilepsy and prion diseases: A narrative review. Epilepsy Behav 2021; 115:107630. [PMID: 33309427 DOI: 10.1016/j.yebeh.2020.107630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022]
Abstract
Epileptic seizures have been described as one feature of prion diseases, but are an unusual clinical presentation. The aim of this narrative Review was to summarize current knowledge of epileptic seizures in the various forms of prion diseases, from a clinical perspective. Examination of the published literature identified no systematic studies; the evidence base is largely anecdotal, consisting mainly of case studies and small case series. Hence, uncertainty prevails as to seizure frequency, semiology, treatment, and pathogenesis in prion diseases. Seizures probably occur in around 10% of sporadic cases but less frequently in iatrogenic and familial forms, with the possible exception of the E200K mutation. The literature suggests a predominance of focal motor and nonconvulsive status epilepticus. Electroencephalographic accompaniments include periodic lateralized or generalized periodic epileptiform discharges (PLEDs, GPEDs), sometimes predating the more typical periodic sharp wave complexes. There are no convincing accounts of successful antiepileptic drug therapy. The underlying mechanisms of epileptogenesis in prion diseases may include loss of cellular prion protein function (PrPc) and aggregation of abnormally folded prion protein (PrPSc). The need for systematic studies and clinical trials to expand the evidence base surrounding epilepsy and prion diseases is evident.
Collapse
Affiliation(s)
- Gashirai K Mbizvo
- Cognitive Function Clinic, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom.
| | - Besa Ziso
- Cognitive Function Clinic, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Andrew J Larner
- Cognitive Function Clinic, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
17
|
Adan G, Mitchell JW, Ziso B, Larner AJ. Diagnosis and Management of Seizures in Neurodegenerative Diseases. Curr Treat Options Neurol 2021. [DOI: 10.1007/s11940-020-00656-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Toniolo S, Sen A, Husain M. Modulation of Brain Hyperexcitability: Potential New Therapeutic Approaches in Alzheimer's Disease. Int J Mol Sci 2020; 21:E9318. [PMID: 33297460 PMCID: PMC7730926 DOI: 10.3390/ijms21239318] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
People with Alzheimer's disease (AD) have significantly higher rates of subclinical and overt epileptiform activity. In animal models, oligomeric Aβ amyloid is able to induce neuronal hyperexcitability even in the early phases of the disease. Such aberrant activity subsequently leads to downstream accumulation of toxic proteins, and ultimately to further neurodegeneration and neuronal silencing mediated by concomitant tau accumulation. Several neurotransmitters participate in the initial hyperexcitable state, with increased synaptic glutamatergic tone and decreased GABAergic inhibition. These changes appear to activate excitotoxic pathways and, ultimately, cause reduced long-term potentiation, increased long-term depression, and increased GABAergic inhibitory remodelling at the network level. Brain hyperexcitability has therefore been identified as a potential target for therapeutic interventions aimed at enhancing cognition, and, possibly, disease modification in the longer term. Clinical trials are ongoing to evaluate the potential efficacy in targeting hyperexcitability in AD, with levetiracetam showing some encouraging effects. Newer compounds and techniques, such as gene editing via viral vectors or brain stimulation, also show promise. Diagnostic challenges include identifying best biomarkers for measuring sub-clinical epileptiform discharges. Determining the timing of any intervention is critical and future trials will need to carefully stratify participants with respect to the phase of disease pathology.
Collapse
Affiliation(s)
- Sofia Toniolo
- Cognitive Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK;
- Wellcome Trust Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6AE, UK
| | - Arjune Sen
- Oxford Epilepsy Research Group, Nuffield Department Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DU, UK;
| | - Masud Husain
- Cognitive Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK;
- Wellcome Trust Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6AE, UK
| |
Collapse
|
19
|
Paudel YN, Angelopoulou E, Jones NC, O’Brien TJ, Kwan P, Piperi C, Othman I, Shaikh MF. Tau Related Pathways as a Connecting Link between Epilepsy and Alzheimer's Disease. ACS Chem Neurosci 2019; 10:4199-4212. [PMID: 31532186 DOI: 10.1021/acschemneuro.9b00460] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Emerging findings point toward an important interconnection between epilepsy and Alzheimer's disease (AD) pathogenesis. Patients with epilepsy (PWE) commonly exhibit cognitive impairment similar to AD patients, who in turn are at a higher risk of developing epilepsy compared to age-matched controls. To date, no disease-modifying treatment strategy is available for either epilepsy or AD, reflecting an immediate need for exploring common molecular targets, which can delineate a possible mechanistic link between epilepsy and AD. This review attempts to disentangle the interconnectivity between epilepsy and AD pathogenesis via the crucial contribution of Tau protein. Tau protein is a microtubule-associated protein (MAP) that has been implicated in the pathophysiology of both epilepsy and AD. Hyperphosphorylation of Tau contributes to the different forms of human epilepsy and inhibition of the same exerted seizure inhibitions and altered disease progression in a range of animal models. Moreover, Tau-protein-mediated therapy has demonstrated promising outcomes in experimental models of AD. In this review, we discuss how Tau-related mechanisms might present a link between the cause of seizures in epilepsy and cognitive disruption in AD. Untangling this interconnection might be instrumental in designing novel therapies that can minimize epileptic seizures and cognitive deficits in patients with epilepsy and AD.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 10679, Greece
| | - Nigel C. Jones
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Terence J. O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 10679, Greece
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne 3800, Australia
| |
Collapse
|