1
|
Liu J, Wang P, Zhang H, Guo Y, Tang M, Wang J, Wu N. Current research status of Raman spectroscopy in glioma detection. Photodiagnosis Photodyn Ther 2024; 50:104388. [PMID: 39461488 DOI: 10.1016/j.pdpdt.2024.104388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/05/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Glioma is the most common primary tumor of the nervous system. Conventional diagnostic methods for glioma often involve time-consuming or reliance on externally introduced materials. Consequently, there is an urgent need for rapid and reliable diagnostic techniques. Raman spectroscopy has emerged as a promising tool, offering rapid, accurate, and label-free analysis with high sensitivity and specificity in biomedical applications. In this review, the fundamental principles of Raman spectroscopy have been introduced, and then the progress of applying Raman spectroscopy in biomedical studies has been summarized, including the identification and typing of glioma. The challenges encountered in the clinical application of Raman spectroscopy for glioma have been discussed, and the prospects have also been envisioned.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China
| | - Pan Wang
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China
| | - Hua Zhang
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing 400714, China
| | - Yuansen Guo
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing 400714, China
| | - Mingjie Tang
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing 400714, China
| | - Junwei Wang
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China
| | - Nan Wu
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China.
| |
Collapse
|
2
|
Liu Y, Ding H, Cao J, Liu G, Chen Y, Huang Z. [ 68Ga]Ga-FAPI PET/CT in brain tumors: comparison with [ 18F]F-FDG PET/CT. Front Oncol 2024; 14:1436009. [PMID: 39309741 PMCID: PMC11412958 DOI: 10.3389/fonc.2024.1436009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Purpose To investigate the feasibility of [68Ga]Ga-FAPI PET/CT in brain tumor imaging and to compare it with [18F]F-FDG PET/CT. Methods 25 patients with MRI-suspected brain tumors were included in the study. They underwent whole body [18F]F-FDG PET/CT and [68Ga]Ga-FAPI PET/CT and brain scans. The target-to-background ratio (TBR) of brain tumors was calculated with the background of surrounding normal brain tissues uptake. The SUVmax and TBR of [18F]F-FDG PET/CT and [68Ga]Ga-FAPI PET/CT were compared. Additionally, the correlation between the uptake of the tracer by lesions with the greatest diameter of the lesion, the breadth of the oedema band, and the enhancement scores of the MRI enhancement scans was analyzed. Result [68Ga]Ga-FAPI PET/CT was superior to [18F]F-FDG PET/CT for lesion detection, especially for brain metastases. Among gliomas, only high-grade gliomas uptake [68Ga]Ga-FAPI. Compared with [18F]F-FDG PET/CT, [68Ga]Ga-FAPI PET/CT had a lower SUVmax but a significantly better TBR. On [68Ga]Ga-FAPI PET/CT, the TBR may be associated with brain tumor blood-brain barrier disruption. Conclusions [68Ga]Ga-FAPI PET/CT is a promising imaging tool for the assessment of brain tumors. Lack of physiological uptake of [68Ga]Ga-FAPI in normal brain parenchyma results in high TBR values, leading to better visualization of lesions and contributing to subsequent targeted therapy studies. Advances in knowledge Clinical utility of [68Ga]Ga-FAPI PET/CT in brain tumors remains unclear, and there aren't many similar studies in the literature. We evaluated the role of [68Ga]Ga-FAPI PET/CT in diagnosing brain tumors.
Collapse
Affiliation(s)
- Ya Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Haoyuan Ding
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianpeng Cao
- Department of Nuclear Medicine, Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, Sichuan, China
| | - Guangfu Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhanwen Huang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Yu P, Wang Y, Su F, Chen Y. Comparing [18F]FET PET and [18F]FDOPA PET for glioma recurrence diagnosis: a systematic review and meta-analysis. Front Oncol 2024; 13:1346951. [PMID: 38269019 PMCID: PMC10805829 DOI: 10.3389/fonc.2023.1346951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Purpose The purpose of our meta-analysis and systematic review was to evaluate and compare the diagnostic effectiveness of [18F]FET PET and [18F]FDOPA PET in detecting glioma recurrence. Methods Sensitivities and specificities were assessed using the DerSimonian and Laird methodology, and subsequently transformed using the Freeman-Tukey double inverse sine transformation. Confidence intervals were computed employing the Jackson method, while heterogeneity within and between groups was evaluated through the Cochrane Q and I² statistics. If substantial heterogeneity among the studies was observed (P < 0.10 or I² > 50%), we conducted meta-regression and sensitivity analyses. Publication bias was assessed through the test of a funnel plot and the application of Egger's test. For all statistical tests, except for assessing heterogeneity (P < 0.10), statistical significance was determined when the two-tailed P value fell below 0.05. Results Initially, 579 publications were identified, and ultimately, 22 studies, involving 1514 patients(1226 patients for [18F]FET PET and 288 patients for [18F]FDOPA PET), were included in the analysis. The sensitivity and specificity of [18F]FET PET were 0.84 (95% CI, 0.75-0.90) and 0.86 (95% CI, 0.80-0.91), respectively, while for [18F]FDOPA PET, the values were 0.95 (95% CI, 0.86-1.00) for sensitivity and 0.90 (95% CI, 0.77-0.98) for specificity. A statistically significant difference in sensitivity existed between these two radiotracers (P=0.04), while no significant difference was observed in specificity (P=0.58). Conclusion It seems that [18F]FDOPA PET demonstrates superior sensitivity and similar specificity to [18F] FET PET. Nevertheless, it's crucial to emphasize that [18F]FDOPA PET results were obtained from studies with limited sample sizes. Further larger prospective studies, especially head-to-head comparisons, are needed in this issue. Systematic Review Registration identifier CRD42023463476.
Collapse
Affiliation(s)
| | | | | | - Yan Chen
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Alizadeh M, Broomand Lomer N, Azami M, Khalafi M, Shobeiri P, Arab Bafrani M, Sotoudeh H. Radiomics: The New Promise for Differentiating Progression, Recurrence, Pseudoprogression, and Radionecrosis in Glioma and Glioblastoma Multiforme. Cancers (Basel) 2023; 15:4429. [PMID: 37760399 PMCID: PMC10526457 DOI: 10.3390/cancers15184429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma and glioblastoma multiform (GBM) remain among the most debilitating and life-threatening brain tumors. Despite advances in diagnosing approaches, patient follow-up after treatment (surgery and chemoradiation) is still challenging for differentiation between tumor progression/recurrence, pseudoprogression, and radionecrosis. Radiomics emerges as a promising tool in initial diagnosis, grading, and survival prediction in patients with glioma and can help differentiate these post-treatment scenarios. Preliminary published studies are promising about the role of radiomics in post-treatment glioma/GBM. However, this field faces significant challenges, including a lack of evidence-based solid data, scattering publication, heterogeneity of studies, and small sample sizes. The present review explores radiomics's capabilities in following patients with glioma/GBM status post-treatment and to differentiate tumor progression, recurrence, pseudoprogression, and radionecrosis.
Collapse
Affiliation(s)
- Mohammadreza Alizadeh
- Physiology Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran;
| | - Nima Broomand Lomer
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht 41937-13111, Iran;
| | - Mobin Azami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj 66186-34683, Iran;
| | - Mohammad Khalafi
- Radiology Department, Tabriz University of Medical Sciences, Tabriz 51656-65931, Iran;
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences, Tehran 14167-53955, Iran; (P.S.); (M.A.B.)
| | - Melika Arab Bafrani
- School of Medicine, Tehran University of Medical Sciences, Tehran 14167-53955, Iran; (P.S.); (M.A.B.)
| | - Houman Sotoudeh
- Department of Radiology and Neurology, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Xiaoxue T, Yinzhong W, Meng Q, Lu X, Lei J. Diagnostic value of PET with different radiotracers and MRI for recurrent glioma: a Bayesian network meta-analysis. BMJ Open 2023; 13:e062555. [PMID: 36863738 PMCID: PMC9990663 DOI: 10.1136/bmjopen-2022-062555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 01/09/2023] [Indexed: 03/04/2023] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the diagnostic accuracy of 6 different imaging modalities for differentiating glioma recurrence from postradiotherapy changes by performing a network meta-analysis (NMA) using direct comparison studies with 2 or more imaging techniques. DATA SOURCES PubMed, Scopus, EMBASE, the Web of Science and the Cochrane Library were searched from inception to August 2021. The Confidence In Network Meta-Analysis (CINeMA) tool was used to evaluate the quality of the included studies with the criterion for study inclusion being direct comparison using 2 or more imaging modalities. DATA EXTRACTION AND SYNTHESIS The consistency was evaluated by examining the agreement between direct and indirect effects. NMA was performed and the surface under the the cumulative ranking curve (SUCRA) values was obtained to calculate the probability of each imaging modality being the most effective diagnostic method. The CINeMA tool was used to evaluate the quality of the included studies. MAIN OUTCOMES AND MEASURES Direct comparison, inconsistency test, NMA and SUCRA values. RESULTS A total of 8853 potentially relevant articles were retrieved and 15 articles met the inclusion criteria. 18F-FET showed the highest SUCRA values for sensitivity, specificity, positive predictive value and accuracy, followed by 18F-FDOPA. The quality of the included evidence is classified as moderate. CONCLUSION AND RELEVANCE This review indicates that 18F-FET and 18F-FDOPA may have greater diagnostic value for glioma recurrence relative to other imaging modalities (Grading of Recommendations, Assessment, Development and Evaluations B). PROSPERO REGISTRATION NUMBER CRD42021293075.
Collapse
Affiliation(s)
- Tian Xiaoxue
- Department of Nuclear Medicine, the Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wang Yinzhong
- Department of Radiology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Qi Meng
- Department of Radiology, No.2 Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xingru Lu
- Department of Radiology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Junqiang Lei
- Department of Radiology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Soni N, Ora M, Jena A, Rana P, Mangla R, Ellika S, Almast J, Puri S, Meyers SP. Amino Acid Tracer PET MRI in Glioma Management: What a Neuroradiologist Needs to Know. AJNR Am J Neuroradiol 2023; 44:236-246. [PMID: 36657945 PMCID: PMC10187808 DOI: 10.3174/ajnr.a7762] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 01/21/2023]
Abstract
PET with amino acid tracers provides additional insight beyond MR imaging into the biology of gliomas that can be used for initial diagnosis, delineation of tumor margins, planning of surgical and radiation therapy, assessment of residual tumor, and evaluation of posttreatment response. Hybrid PET MR imaging allows the simultaneous acquisition of various PET and MR imaging parameters in a single investigation with reduced scanning time and improved anatomic localization. This review aimed to provide neuroradiologists with a concise overview of the various amino acid tracers and a practical understanding of the clinical applications of amino acid PET MR imaging in glioma management. Future perspectives in newer advances, novel radiotracers, radiomics, and cost-effectiveness are also outlined.
Collapse
Affiliation(s)
- N Soni
- From the University of Rochester Medical Center (N.S., S.E., J.A., S.P., S.M.), Rochester, New York
| | - M Ora
- Sanjay Gandhi Postgraduate Institute of Medical Sciences (M.O.), Lucknow, Uttar Pradesh, India
| | - A Jena
- Indraprastha Apollo Hospital (A.J., P.R.), New Delhi, India
| | - P Rana
- Indraprastha Apollo Hospital (A.J., P.R.), New Delhi, India
| | - R Mangla
- Upstate University Hospital (R.M.), Syracuse, New York
| | - S Ellika
- From the University of Rochester Medical Center (N.S., S.E., J.A., S.P., S.M.), Rochester, New York
| | - J Almast
- From the University of Rochester Medical Center (N.S., S.E., J.A., S.P., S.M.), Rochester, New York
| | - S Puri
- From the University of Rochester Medical Center (N.S., S.E., J.A., S.P., S.M.), Rochester, New York
| | - S P Meyers
- From the University of Rochester Medical Center (N.S., S.E., J.A., S.P., S.M.), Rochester, New York
| |
Collapse
|
7
|
Cicone F, Galldiks N, Papa A, Langen KJ, Cascini GL, Minniti G. Repeated amino acid PET imaging for longitudinal monitoring of brain tumors. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00504-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Mottaghy FM, Hertel F, Beheshti M. Will we successfully avoid the garbage in garbage out problem in imaging data mining? An overview on current concepts and future directions in molecular imaging. Methods 2021; 188:1-3. [PMID: 33592236 DOI: 10.1016/j.ymeth.2021.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- F M Mottaghy
- Department of Nuclear Medicine, University Hospital, RWTH University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Germany; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands.
| | - F Hertel
- Department of Nuclear Medicine, University Hospital, RWTH University, Aachen, Germany
| | - M Beheshti
- Division of Molecular Imaging and Theranostics, University Hospital, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
9
|
Stegmayr C, Stoffels G, Filß C, Heinzel A, Lohmann P, Willuweit A, Ermert J, Coenen HH, Mottaghy FM, Galldiks N, Langen KJ. Current trends in the use of O-(2-[ 18F]fluoroethyl)-L-tyrosine ([ 18F]FET) in neurooncology. Nucl Med Biol 2021; 92:78-84. [PMID: 32113820 DOI: 10.1016/j.nucmedbio.2020.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/16/2020] [Indexed: 12/14/2022]
Abstract
The diagnostic potential of PET using the amino acid analogue O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) in brain tumor diagnostics has been proven in many studies during the last two decades and is still the subject of multiple studies every year. In addition to standard magnetic resonance imaging (MRI), positron emission tomography (PET) using [18F]FET provides important diagnostic data concerning brain tumor delineation, therapy planning, treatment monitoring, and improved differentiation between treatment-related changes and tumor recurrence. The pharmacokinetics, uptake mechanisms and metabolism have been well described in various preclinical studies. The accumulation of [18F]FET in most benign lesions and healthy brain tissue has been shown to be low, thus providing a high contrast between tumor tissue and benign tissue alterations. Based on logistic advantages of F-18 labelling and convincing clinical results, [18F]FET has widely replaced short lived amino acid tracers such as L-[11C]methyl-methionine ([11C]MET) in many centers across Western Europe. This review summarizes the basic knowledge on [18F]FET and its contribution to the care of patients with brain tumors. In particular, recent studies about specificity, possible pitfalls, and the utility of [18F]FET PET in tumor grading and prognostication regarding the revised WHO classification of brain tumors are addressed.
Collapse
Affiliation(s)
- Carina Stegmayr
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Christian Filß
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Nuclear Medicine, RWTH University Hospital, Aachen, Germany
| | - Alexander Heinzel
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Nuclear Medicine, RWTH University Hospital, Aachen, Germany; Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Johannes Ermert
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Heinz H Coenen
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany
| | - Felix M Mottaghy
- Dept. of Nuclear Medicine, RWTH University Hospital, Aachen, Germany; Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Germany; Center of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Duesseldorf, Germany; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Duesseldorf, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Nuclear Medicine, RWTH University Hospital, Aachen, Germany; Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Germany; Center of Integrated Oncology (CIO), University of Aachen, Bonn, Cologne and Duesseldorf, Germany.
| |
Collapse
|