1
|
Liu M, Fang M, Liu M, Jin S, Liu B, Wu L, Li Z. Knowledge mapping and research trends of brain-computer interface technology in rehabilitation: a bibliometric analysis. Front Hum Neurosci 2024; 18:1486167. [PMID: 39539351 PMCID: PMC11557533 DOI: 10.3389/fnhum.2024.1486167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Background Although the application of brain-computer interface (BCI) technology in rehabilitation has been extensively studied, a systematic and comprehensive bibliometric analysis of this area remains lacking. Thus, this study aims to analyze the research progress of BCI technology in rehabilitation through bibliometric methods. Methods The study retrieved relevant publications on BCI technology in rehabilitation from the Web of Science Core Collection (WoSCC) between January 1, 2004, and June 30, 2024. The search was conducted using thematic queries, and the document types included "original articles" and "review articles." Bibliometric analysis and knowledge mapping were performed using the Bibliometrix package in R software and CiteSpace software. Results During the study period, a total of 1,431 publications on BCI technology in rehabilitation were published by 4,932 authors from 1,281 institutions across 79 countries in 386 academic journals. The volume of research literature in this field has shown a steady upward trend. The United States of America (USA) and China are the primary contributors, with Eberhard Karls University of Tübingen being the most active research institution. The journal Frontiers in Neuroscience published the most articles, while the Journal of Neural Engineering was the most cited. Niels Birbaumer not only authored the most articles but also received the highest number of citations. The main research areas include neurology, sports medicine, and ophthalmology. The diverse applications of BCI technology in stroke and spinal cord injury rehabilitation, as well as the evaluation of BCI performance, are current research hotspots. Moreover, deep learning has demonstrated significant potential in BCI technology rehabilitation applications. Conclusion This bibliometric study provides an overview of the research landscape and developmental trends of BCI technology in rehabilitation, offering valuable reference points for researchers in formulating future research strategies.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Mingzhu Fang
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengya Liu
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shasha Jin
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Bin Liu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Liang Wu
- Department of Sports Rehabilitation, Beijing Xiaotangshan Hospital, Beijing, China
| | - Zhe Li
- Department of Rehabilitation Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Kazinczi C, Kocsis K, Boross K, Racsmány M, Klivényi P, Vécsei L, Must A. The effect of computerized cognitive training and transcranial direct current stimulation on working memory among post-stroke individuals: a systematic review with meta-analysis and meta-regression. BMC Neurol 2024; 24:314. [PMID: 39232643 PMCID: PMC11373461 DOI: 10.1186/s12883-024-03813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Working memory (WM) impairment is a common phenomenon after stroke; however, its management in rehabilitation is less researched. This systematic review and meta-analysis aimed to provide a quantitative synthesis of the impact of computerised cognitive training (CCT) and transcranial direct current stimulation (tDCS) on WM span in post-stroke individuals. METHODS The literature search in PubMed, Embase, Scopus, and Cochrane Library focused on randomized controlled trials testing the effect of CCT and tDCS on treated stroke patients as compared to untreated controls. Neuropsychological instruments such as Digit Span Forward/Backward and Visual Span Forward Tests defined the outcome of WM span. After extracting study characteristics and quality assessment using the Cochrane Risk of Bias Tool, we conducted a meta-analysis and meta-regression using standardised mean differences. RESULTS The search yielded 4142 articles, nine of which (N = 461) fulfilled the inclusion criteria. In the case of CCT, we found significant improvement in Digit Span Backward Test (Z = 2.65, P = 0.008; 95% CI [0.10, 0.67]) and Visual Span Forward Test performance (Z = 3.05, P = 0.002; 95% CI [0.15, 0.69]), while for tDCS, we could not find a sufficient number of studies for the analysis. Furthermore, no significant moderating factor was found in the meta-regression. CONCLUSIONS In conclusion, CCT appears to be a suitable choice to enhance WM span performance after stroke. However, further research is needed to investigate the effect of tDCS due to the limited number of studies. TRIAL REGISTRATION The meta-analysis was conducted according to PRISMA (Preferred Reporting of Systematic Reviews and Meta-Analyses) standards with a PROSPERO registration protocol (ID: CRD42023387182).
Collapse
Affiliation(s)
- Csaba Kazinczi
- Department of Neurology, University of Szeged, 6, Semmelweis Street, Szeged, 6725, Hungary.
- Department of Clinical Psychology, Semmelweis University, 25, Üllői Street, Budapest, 1091, Hungary.
| | - Krisztián Kocsis
- Department of Radiology, University of Szeged, 2, Semmelweis Street, Szeged, 6725, Hungary
| | - Katalin Boross
- Department of Neurology, St. Borbala Hospital, 77, Dózsa György Street, Tatabánya, 2900, Hungary
| | - Mihály Racsmány
- University of Szeged, Institute of Psychology, 2, Egyetem Street, Szeged, 6722, Hungary
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, 2, Magyar Tudósok Boulevard, Budapest, 1117, Hungary
- Cognitive Medicine Research Group, Competence Centre for Neurocybernetics of the Life Sciences Cluster, Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, 13, Dugonics Square, Szeged, 6720, Hungary
| | - Péter Klivényi
- Department of Neurology, University of Szeged, 6, Semmelweis Street, Szeged, 6725, Hungary
| | - László Vécsei
- Department of Neurology, University of Szeged, 6, Semmelweis Street, Szeged, 6725, Hungary
- HUN-REN-SZTE Neuroscience Research Group, University of Szeged, 2, Szikra Street, Szeged, 6725, Hungary
| | - Anita Must
- WCG Clinical Endpoint Solutions, Princeton, NJ, USA
- Department of Psychiatry, Whanganui District Health Board, Whanganui, New Zealand
| |
Collapse
|
3
|
Adomaitis L, Grinbaum A. Neurotechnologies, Ethics, and the Limits of Free Will. Integr Psychol Behav Sci 2024; 58:894-907. [PMID: 38388982 DOI: 10.1007/s12124-024-09830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
This article delves into the implications of neurotechnologies for the philosophical debates surrounding free will and moral responsibility. Tracing the concept from ancient religious and philosophical roots, we discuss how recent neurotechnological advancements (e.g. optogenetics, fMRI and machine learning, predictive diagnostics, et al.) challenge traditional notions of autonomy. Although neurotechnologies aim to enhance autonomy in the strict sense - as self-determination - they risk reducing or changing the broader notion of autonomy, which involves personal authenticity. We also submit that, in a world with an altered or limited concept of free will, humans should still be held accountable for actions executed through their bodies. By examining the dynamic between choice and responsibility, we emphasize the shift in technology ethics, moral philosophy, and the broader legal landscape in response to the advancement of neurotechnologies. By bringing the neurotechnological innovations into the world, neuroscientists not only change the technological landscape but also partake in long-standing moral narratives about freedom, justice, and responsibility.
Collapse
|
4
|
Li X, He Y, Wang D, Rezaei MJ. Stroke rehabilitation: from diagnosis to therapy. Front Neurol 2024; 15:1402729. [PMID: 39193145 PMCID: PMC11347453 DOI: 10.3389/fneur.2024.1402729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/28/2024] [Indexed: 08/29/2024] Open
Abstract
Stroke remains a significant global health burden, necessitating comprehensive and innovative approaches in rehabilitation to optimize recovery outcomes. This paper provides a thorough exploration of rehabilitation strategies in stroke management, focusing on diagnostic methods, acute management, and diverse modalities encompassing physical, occupational, speech, and cognitive therapies. Emphasizing the importance of early identification of rehabilitation needs and leveraging technological advancements, including neurostimulation techniques and assistive technologies, this manuscript highlights the challenges and opportunities in stroke rehabilitation. Additionally, it discusses future directions, such as personalized rehabilitation approaches, neuroplasticity concepts, and advancements in assistive technologies, which hold promise in reshaping the landscape of stroke rehabilitation. By delineating these multifaceted aspects, this manuscript aims to provide insights and directions for optimizing stroke rehabilitation practices and enhancing the quality of life for stroke survivors.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanjin He
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dawu Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
5
|
Wang X, Ding Q, Li Y, Li T, Li Y, Yin J, Zhuang W. Repetitive transcranial magnetic stimulation impacts the executive function of patients with vascular cognitive impairment: a systematic review and meta-analysis. Front Neurol 2024; 15:1374395. [PMID: 38962482 PMCID: PMC11220282 DOI: 10.3389/fneur.2024.1374395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
Objective Executive dysfunction is a core symptom of vascular cognitive impairment (VCI), which seriously affects patients' prognosis. This paper aims to investigate the effectiveness of rTMS on executive function in VCI. Methods The databases selected for this study included Pubmed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang, China Science and Technology Journal Database (VIP), and China Biology Medicine Disc (CBM). The screening times were conducted from the time of library construction until August 23, 2023. The inclusion criteria for this meta-analysis were randomized controlled trials (RCTs) on rTMS for VCI, which include executive function scores. The primary metrics were executive subscale scores of the Cognitive Comprehensive Scale and total scores of the Executive Specificity Scale. The secondary metrics were subscale scores of the Executive Specificity Scale. The quality of each eligible study was assessed using the Cochrane Risk of Bias tool. Meta-analysis and bias analysis were performed using Stata (version 16.0) and RevMan (version 5.3). Results A total of 20 high-quality clinical RCTs with 1,049 samples were included in this paper. The findings from the primary outcomes revealed that within the rTMS group, there were significantly higher scores observed for the executive sub-item on the cognitive composite scale (SMD = 0.93, 95% CI = 0.77-1.08, p < 0.00001, I 2 = 14%) and the total score on the executive specific scale (SMD = 0.69, 95% CI = 0.44-0.94, p < 0.00001, I 2 = 0%) compared to the control group. As for the secondary outcome measures, as shown by the Trail Making Test-A (time) (MD = -35.75, 95% CI = -68.37 to -3.12, p = 0.03, I 2 = 55%), the Stroop-C card (time) (SMD = -0.46, 95% CI = -0.86 to -0.06, p = 0.02, I 2 = 0%) and the Stroop-C card (correct number) (SMD = 0.49, 95% CI = 0.04-0.94, p = 0.03, I 2 = 0%), the experimental group shorts time and enhances accuracy of executive task in comparison to the control group. Subgroup analysis of the main outcome demonstrated that intermittent theta burst stimulation (iTBS), higher frequency, lower intensity, longer duration, and combined comprehensive therapy exhibited superior efficacy. Conclusion rTMS is effective in the treatment of the executive function of VCI. The present study has some limitations, so multi-center, large-sample, objective indicators and parameters are needed to further explore in the future.Systematic review registration:https://www.crd.york.ac.uk/prospero/, CRD42023459669.
Collapse
Affiliation(s)
- Xu Wang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qixin Ding
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuefang Li
- School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Tianshu Li
- Department of Rehabilitation Medicine, The First People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Yakun Li
- Department of Rehabilitation, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jialin Yin
- Department of Rehabilitation, Henan Provincial People's Hospital, Zhengzhou, China
| | - Weisheng Zhuang
- Department of Rehabilitation, School of Rehabilitation Medicine, Henan Provincial People's Hospital, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
6
|
Li H, Fu X, Lu L, Guo H, Yang W, Guo K, Huang Z. Upper limb intelligent feedback robot training significantly activates the cerebral cortex and promotes the functional connectivity of the cerebral cortex in patients with stroke: A functional near-infrared spectroscopy study. Front Neurol 2023; 14:1042254. [PMID: 36814999 PMCID: PMC9939650 DOI: 10.3389/fneur.2023.1042254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
Background Upper limb intelligence robots are widely used to improve the upper limb function of patients with stroke, but the treatment mechanism is still not clear. In this study, functional near-infrared spectroscopy (fNIRS) was used to evaluate the concentration changes of oxygenated hemoglobin (oxy-Hb) and deoxyhemoglobin (deoxy-Hb) in different brain regions and functional connectivity (FC) of the cerebral cortex in patients with stroke. Method Twenty post-stroke patients with upper limb dysfunction were included in the study. They all received three different types of shoulder joint training, namely, active intelligent feedback robot training (ACT), upper limb suspension training (SUS), and passive intelligent feedback robot training (PAS). During the training, activation of the cerebral cortex was detected by fNIRS to obtain the concentration changes of hemoglobin and FC of the cerebral cortex. The fNIRS signals were recorded over eight ROIs: bilateral prefrontal cortices (PFC), bilateral primary motor cortices (M1), bilateral primary somatosensory cortices (S1), and bilateral premotor and supplementary motor cortices (PM). For easy comparison, we defined the right hemisphere as the ipsilesional hemisphere and flipped the lesional right hemisphere in the Nirspark. Result Compared with the other two groups, stronger cerebral cortex activation was observed during ACT. One-way repeated measures ANOVA revealed significant differences in mean oxy-Hb changes among conditions in the four ROIs: contralesional PFC [F(2, 48) = 6,798, p < 0.01], ipsilesional M1 [F(2, 48) = 6.733, p < 0.01], ipsilesional S1 [F(2, 48) = 4,392, p < 0.05], and ipsilesional PM [F(2, 48) = 3.658, p < 0.05]. Oxy-Hb responses in the contralesional PFC region were stronger during ACT than during SUS (p < 0.01) and PAS (p < 0.05). Cortical activation in the ipsilesional M1 was significantly greater during ACT than during SUS (p < 0.01) and PAS (p < 0.05). Oxy-Hb responses in the ipsilesional S1 (p < 0.05) and ipsilesional PM (p < 0.05) were significantly higher during ACT than during PAS, and there is no significant difference in mean deoxy-Hb changes among conditions. Compared with SUS, the FC increased during ACT, which was characterized by the enhanced function of the ipsilesional cortex (p < 0.05), and there was no significant difference in FC between the ACT and PAS. Conclusion The study found that cortical activation during ACT was higher in the contralesional PFC, and ipsilesional M1 than during SUS, and showed tighter cortical FC between the cortices. The activation of the cerebral cortex of ACT was significantly higher than that of PAS, but there was no significant difference in FC. Our research helps to understand the difference in cerebral cortex activation between upper limb intelligent feedback robot rehabilitation and other rehabilitation training and provides an objective basis for the further application of upper limb intelligent feedback robots in the field of stroke rehabilitation.
Collapse
Affiliation(s)
- Hao Li
- Guangzhou Panyu Central Hospital, Guangzhou, China,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuefeng Fu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijun Lu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Guo
- Guangzhou Panyu Central Hospital, Guangzhou, China,Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen Yang
- Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Kaifeng Guo
- Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Zhen Huang
- Guangzhou Panyu Central Hospital, Guangzhou, China,*Correspondence: Zhen Huang ✉
| |
Collapse
|
7
|
Park JG. Update on Stroke Rehabilitation for Non-Motor Impairment. BRAIN & NEUROREHABILITATION 2022; 15:e13. [PMID: 36743206 PMCID: PMC9833475 DOI: 10.12786/bn.2022.15.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Various interventions exist to treat non-motor impairments caused by stroke. Adjuvant treatments such as non-invasive brain stimulation, virtual reality, computer-assisted training, neurostimulation, and biofeedback are being investigated and applied in the areas of cognitive dysfunction, language problems, visual disorders, dysphagia, mood disorders, and post-stroke pain. Most of these treatments have shown efficacy and symptom improvement, but further investigation is required to fully clarify their effects.
Collapse
Affiliation(s)
- Jin Gee Park
- Department of Physical Medicine and Rehabilitation, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| |
Collapse
|
8
|
Effect of transcranial direct-current stimulation on executive function and resting EEG after stroke: A pilot randomized controlled study. J Clin Neurosci 2022; 103:141-147. [PMID: 35872448 DOI: 10.1016/j.jocn.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/28/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The effects of transcranial direct current stimulation (tDCS) on post-stroke executive impairment (PSEI) remain controversial. Resting stateelectroencephalogram (EEG) can assist in the diagnosis and assessment of executive dysfunction. OBJECTIVES We aimed to use EEG to explore the effect of tDCS on executive function among stroke patients. METHODS Twenty-four patients with PSEI were randomly divided into experimental and control groups, which received real and sham stimulation, respectively. Anodal electrical stimulation was applied to the left dorsolateral prefrontal lobe (F3). The stimulation intensity was 2 mA for 20 min once daily for 7 days. Executive function was monitored using neuropsychological scales. RESULTS The experimental group outperformed the control group in clinical scale results, with significant differences in the following scores: symbol digital modalities test, TMT-A, TMT-B, and digital span test. In the left central zone, theta band power was significantly higher after anodal electrical stimulation than before. Analysis of the correlation between EEG power and psychometric scores revealed that the power change was positively correlated with the scores on the symbol digital modality test (r = 0.435, p < 0.05). CONCLUSION Anodal tDCS can enhance executive function in patients with PSEI, and tDCS-related improvements are related to the enhancement of theta power in the affected region.
Collapse
|
9
|
Mane R, Wu Z, Wang D. Poststroke motor, cognitive and speech rehabilitation with brain-computer interface: a perspective review. Stroke Vasc Neurol 2022; 7:svn-2022-001506. [PMID: 35853669 PMCID: PMC9811566 DOI: 10.1136/svn-2022-001506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/17/2022] [Indexed: 01/17/2023] Open
Abstract
Brain-computer interface (BCI) technology translates brain activity into meaningful commands to establish a direct connection between the brain and the external world. Neuroscientific research in the past two decades has indicated a tremendous potential of BCI systems for the rehabilitation of patients suffering from poststroke impairments. By promoting the neuronal recovery of the damaged brain networks, BCI systems have achieved promising results for the recovery of poststroke motor, cognitive, and language impairments. Also, several assistive BCI systems that provide alternative means of communication and control to severely paralysed patients have been proposed to enhance patients' quality of life. In this article, we present a perspective review of the recent advances and challenges in the BCI systems used in the poststroke rehabilitation of motor, cognitive, and communication impairments.
Collapse
Affiliation(s)
| | | | - David Wang
- Neurovascular Division, Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
10
|
Lin Q, Zhang Y, Zhang Y, Zhuang W, Zhao B, Ke X, Peng T, You T, Jiang Y, Yilifate A, Huang W, Hou L, You Y, Huai Y, Qiu Y, Zheng Y, Ou H. The Frequency Effect of the Motor Imagery Brain Computer Interface Training on Cortical Response in Healthy Subjects: A Randomized Clinical Trial of Functional Near-Infrared Spectroscopy Study. Front Neurosci 2022; 16:810553. [PMID: 35431792 PMCID: PMC9008330 DOI: 10.3389/fnins.2022.810553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background The motor imagery brain computer interface (MI-BCI) is now available in a commercial product for clinical rehabilitation. However, MI-BCI is still a relatively new technology for commercial rehabilitation application and there is limited prior work on the frequency effect. The MI-BCI has become a commercial product for clinical neurological rehabilitation, such as rehabilitation for upper limb motor dysfunction after stroke. However, the formulation of clinical rehabilitation programs for MI-BCI is lack of scientific and standardized guidance, especially limited prior work on the frequency effect. Therefore, this study aims at clarifying how frequency effects on MI-BCI training for the plasticity of the central nervous system. Methods Sixteen young healthy subjects (aged 22.94 ± 3.86 years) were enrolled in this randomized clinical trial study. Subjects were randomly assigned to a high frequency group (HF group) and low frequency group (LF group). The HF group performed MI-BCI training once per day while the LF group performed once every other day. All subjects performed 10 sessions of MI-BCI training. functional near-infrared spectroscopy (fNIRS) measurement, Wolf Motor Function Test (WMFT) and brain computer interface (BCI) performance were assessed at baseline, mid-assessment (after completion of five BCI training sessions), and post-assessment (after completion of 10 BCI training sessions). Results The results from the two-way ANOVA of beta values indicated that GROUP, TIME, and GROUP × TIME interaction of the right primary sensorimotor cortex had significant main effects [GROUP: F(1,14) = 7.251, P = 0.010; TIME: F(2,13) = 3.317, P = 0.046; GROUP × TIME: F(2,13) = 5.676, P = 0.007]. The degree of activation was affected by training frequency, evaluation time point and interaction. The activation of left primary sensory motor cortex was also affected by group (frequency) (P = 0.003). Moreover, the TIME variable was only significantly different in the HF group, in which the beta value of the mid-assessment was higher than that of both the baseline assessment (P = 0.027) and post-assessment (P = 0.001), respectively. Nevertheless, there was no significant difference in the results of WMFT between HF group and LF group. Conclusion The major results showed that more cortical activation and better BCI performance were found in the HF group relative to the LF group. Moreover, the within-group results also showed more cortical activation after five sessions of BCI training and better BCI performance after 10 sessions in the HF group, but no similar effects were found in the LF group. This pilot study provided an essential reference for the formulation of clinical programs for MI-BCI training in improvement for upper limb dysfunction.
Collapse
Affiliation(s)
- Qiang Lin
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation, Guangzhou Key Laboratory of Enhanced Recovery After Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanni Zhang
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Yajie Zhang
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Wanqi Zhuang
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Biyi Zhao
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Ke
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Tingting Peng
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Tingting You
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Yongchun Jiang
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Anniwaer Yilifate
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Wei Huang
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Lingying Hou
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoyao You
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaping Huai
- Department of Rehabilitation Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yaxian Qiu
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
- Yaxian Qiu,
| | - Yuxin Zheng
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
- Yuxin Zheng,
| | - Haining Ou
- Department of Rehabilitation, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Fifth Clinical School, Guangzhou Medical University, Guangzhou, China
- Department of Rehabilitation, Guangzhou Key Laboratory of Enhanced Recovery After Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Haining Ou,
| |
Collapse
|
11
|
Gibson E, Koh CL, Eames S, Bennett S, Scott AM, Hoffmann TC. Occupational therapy for cognitive impairment in stroke patients. Cochrane Database Syst Rev 2022; 3:CD006430. [PMID: 35349186 PMCID: PMC8962963 DOI: 10.1002/14651858.cd006430.pub3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cognitive impairment is a frequent consequence of stroke and can impact on a person's ability to perform everyday activities. Occupational therapists use a range of interventions when working with people who have cognitive impairment poststroke. This is an update of a Cochrane Review published in 2010. OBJECTIVES To assess the impact of occupational therapy on activities of daily living (ADL), both basic and instrumental, global cognitive function, and specific cognitive abilities in people who have cognitive impairment following a stroke. SEARCH METHODS We searched the Cochrane Stroke Group Trials Register, CENTRAL, MEDLINE, Embase, four other databases (all last searched September 2020), trial registries, and reference lists. SELECTION CRITERIA We included randomised and quasi-randomised controlled trials that evaluated an intervention for adults with clinically defined stroke and confirmed cognitive impairment. The intervention needed either to be provided by an occupational therapist or considered within the scope of occupational therapy practice as defined in the review. We excluded studies focusing on apraxia or perceptual impairments or virtual reality interventions as these are covered by other Cochrane Reviews. The primary outcome was basic activities of daily living (BADL) such as dressing, feeding, and bathing. Secondary outcomes were instrumental ADL (IADL) (e.g. shopping and meal preparation), community integration and participation, global cognitive function and specific cognitive abilities (including attention, memory, executive function, or a combination of these), and subdomains of these abilities. We included both observed and self-reported outcome measures. DATA COLLECTION AND ANALYSIS Two review authors independently selected studies that met the inclusion criteria, extracted data, and assessed the certainty of the evidence. A third review author moderated disagreements if consensus was not reached. We contacted trial authors for additional information and data, where available. We assessed the certainty of key outcomes using GRADE. MAIN RESULTS: We included 24 trials from 11 countries involving 1142 (analysed) participants (two weeks to eight years since stroke onset). This update includes 23 new trials in addition to the one study included in the previous version. Most were parallel randomised controlled trials except for one cross-over trial and one with a two-by-two factorial design. Most studies had sample sizes under 50 participants. Twenty studies involved a remediation approach to cognitive rehabilitation, particularly using computer-based interventions. The other four involved a compensatory and adaptive approach. The length of interventions ranged from 10 days to 18 weeks, with a mean total length of 19 hours. Control groups mostly received usual rehabilitation or occupational therapy care, with a few receiving an attention control that was comparable to usual care; two had no intervention (i.e. a waiting list). Apart from high risk of performance bias for all but one of the studies, the risk of bias for other aspects was mostly low or unclear. For the primary outcome of BADL, meta-analysis found a small effect on completion of the intervention with a mean difference (MD) of 2.26 on the Functional Independence Measure (FIM) (95% confidence interval (CI) 0.17 to 4.22; P = 0.03, I2 = 0%; 6 studies, 336 participants; low-certainty evidence). Therefore, on average, BADL improved by 2.26 points on the FIM that ranges from 18 (total assist) to 126 (complete independence). On follow-up, there was insufficient evidence of an effect at three months (MD 10.00, 95% CI -0.54 to 20.55; P = 0.06, I2 = 53%; 2 studies, 73 participants; low-certainty evidence), but evidence of an effect at six months (MD 11.38, 95% CI 1.62 to 21.14, I2 = 12%; 2 studies, 73 participants; low-certainty evidence). These differences are below 22 points which is the established minimal clinically important difference (MCID) for the FIM for people with stroke. For IADL, the evidence is very uncertain about an effect (standardised mean difference (SMD) 0.94, 95% CI 0.41 to 1.47; P = 0.0005, I2 = 98%; 2 studies, 88 participants). For community integration, we found insufficient evidence of an effect (SMD 0.09, 95% CI -0.35 to 0.54; P = 0.68, I2 = 0%; 2 studies, 78 participants). There was an improvement of clinical importance in global cognitive functional performance after the intervention (SMD 0.35, 95% CI 0.16 to 0.54; P = 0.0004, I2 = 0%; 9 studies, 432 participants; low-certainty evidence), equating to 1.63 points on the Montreal Cognitive Assessment (MoCA) (95% CI 0.75 to 2.52), which exceeds the anchor-based MCID of the MoCA for stroke rehabilitation patients of 1.22. We found some effect for attention overall (SMD -0.31, 95% CI -0.47 to -0.15; P = 0.0002, I2 = 20%; 13 studies, 620 participants; low-certainty evidence), equating to a difference of 17.31 seconds (95% CI 8.38 to 26.24), and for executive functional performance overall (SMD 0.49, 95% CI 0.31 to 0.66; P < 0.00001, I2 = 74%; 11 studies, 550 participants; very low-certainty evidence), equating to 1.41 points on the Frontal Assessment Battery (range: 0-18). Of the cognitive subdomains, we found evidence of effect of possible clinical importance, immediately after intervention, for sustained visual attention (moderate certainty) equating to 15.63 seconds, for working memory (low certainty) equating to 59.9 seconds, and thinking flexibly (low certainty), compared to control. AUTHORS' CONCLUSIONS The effectiveness of occupational therapy for cognitive impairment poststroke remains unclear. Occupational therapy may result in little to no clinical difference in BADL immediately after intervention and at three and six months' follow-up. Occupational therapy may slightly improve global cognitive performance of a clinically important difference immediately after intervention, likely improves sustained visual attention slightly, and may slightly increase working memory and flexible thinking after intervention. There is evidence of low or very low certainty or insufficient evidence for effect on other cognitive domains, IADL, and community integration and participation. Given the low certainty of much of the evidence in our review, more research is needed to support or refute the effectiveness of occupational therapy for cognitive impairment after stroke. Future trials need improved methodology to address issues including risk of bias and to better report the outcome measures and interventions used.
Collapse
Affiliation(s)
- Elizabeth Gibson
- Institute for Evidence-Based Healthcare, Bond University, Gold Coast, Australia
| | - Chia-Lin Koh
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Sally Eames
- Community and Oral Health Innovation and Research Centre, Metro North Hospital and Health Service, Brisbane, Australia
| | - Sally Bennett
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Anna Mae Scott
- Institute for Evidence-Based Healthcare, Bond University, Gold Coast, Australia
| | - Tammy C Hoffmann
- Institute for Evidence-Based Healthcare, Bond University, Gold Coast, Australia
| |
Collapse
|
12
|
Different combinations of high-frequency rTMS and cognitive training improve the cognitive function of cerebral ischemic rats. Brain Res Bull 2021; 175:16-25. [PMID: 34280480 DOI: 10.1016/j.brainresbull.2021.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/26/2021] [Accepted: 07/14/2021] [Indexed: 01/26/2023]
Abstract
Poststroke cognitive impairment (PSCI) occurs frequently after stroke, but lacks effective treatments. Previous studies have revealed that high-frequency repetitive transcranial magnetic stimulation (rTMS) has a beneficial effect on PSCI and is often used with other cognitive training methods to improve its effect. This study aimed to evaluate the effect of different combinations of rTMS and cognitive training (rTMS-COG) on PSCI and identify the optimal combination protocol. A cerebral infarction rat model was established by transient middle cerebral artery occlusion (tMCAO). The Morris water maze test was conducted to assess the cognitive function of rats. RNA sequencing and bioinformatics analysis were employed to study the underlying mechanisms. rTMS, COG and rTMS-COG all had beneficial effects on PSCI, while cognitive training immediately after rTMS (rTMS-COG0h) achieved a better effect than cognitive training 1 h and 4 h after rTMS, rTMS and COG. We identified 179 differentially expressed genes (DEGs), including 24 upregulated and 155 downregulated genes, between the rTMS-COG0h and rTMS groups. GO analysis revealed that the major categories associated with the DEGs were antigen procession and presentation, regulation of protein phosphorylation and axoneme assembly. KEGG analysis showed that the DEGs were enriched in processes related to phagosome, circadian entrainment, dopaminergic synapse, apelin signaling pathway, long-term depression, neuroactive ligand-receptor interaction, axon guidance and glucagon signaling pathway. PPI analysis identified Calb2, Rsph1, Ccdc114, Acta2, Ttll9, Dnah1, Dlx2, Dlx1, Ccdc40 and Ccdc113 as related genes. These findings prompt exploration of the potential mechanisms and key genes involved in the effect of rTMS-COG0h on PSCI.
Collapse
|