1
|
Huang Y, Peng X, Zhang H, Pan M, Su X, Li G, Zhang Q. Design, synthesis and biological evaluation of novel cyano-cinnamate derivatives as mitochondrial pyruvate carrier inhibitors. Bioorg Med Chem Lett 2024; 112:129923. [PMID: 39134097 DOI: 10.1016/j.bmcl.2024.129923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Mitochondrial pyruvate carrier (MPC) inhibitors promote the development of hair follicle stem cells without affecting normal cells, which is promising for the treatment of hair loss. Herein, a series of cyano-cinnamate derivatives of UK-5099 were designed and synthesized. All these new compounds have been tested for their ability to promote cellular lactate production in vitro. Compound 4i (LA content:0.322 μmol/106cell) showed better cellular lactate production activity than UK-5099 (LA content:0.185 μmol/106cell). Further compound 4i was also tested on shaved mice by topical treatment and promoted obvious hair growth on mice.
Collapse
Affiliation(s)
- Yilei Huang
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd., Shanghai 201203, China
| | - Xinyan Peng
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; Pharmaceutical department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China.
| | - Han Zhang
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd., Shanghai 201203, China
| | - Min Pan
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Xiaojing Su
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Gang Li
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Qingwei Zhang
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry Co. Ltd., Shanghai 201203, China.
| |
Collapse
|
2
|
Li S, Huang Y, Sun Y, Lu T, Dong Y, Yu S, Zhang X, Hu H. Panax notoginseng saponins loaded W/O microemulsion for alopecia therapy with panthenol as cosurfactant to reduce skin irritation. Int J Pharm 2024; 663:124585. [PMID: 39147248 DOI: 10.1016/j.ijpharm.2024.124585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The etiology of alopecia is so complex that current therapies with single-mechanism and attendant side-effects during long-term usage, are insufficient for treatment. Panax notoginseng saponins (PNS) is supposed to treat alopecia with multiple mechanisms, but difficult to penetrate skin efficiently due to water-solubility. Here, we designed water-in-oil microemulsion (PNS ME) using jojoba oil, fractioned coconut oil, RH 40 + Span 80 and cosurfactant D-panthenol, to help PNS penetrating the skin. Particularly, D-panthenol not only enlarges the microemulsion area, reduces the usage amounts of surfactants thus relieves skin irritation, but stimulates the migration of dermal papilla cells (DPCs), displaying cooperative effects on anti-alopecia. PNS ME penetrates through sebum-rich corneum via high-affinity lipid fusion, targets to hair follicles (HFs), where it resides in skin for sustained drug release, accelerates angiogenesis to build well-nourished environment for HFs, and facilitates the proliferation and migration of DPCs in vitro. PNS ME markedly improved hair density, skin pigmentation, new hair weight, skin thickness, and collagen generation of telogen effluvium mice. Moreover, PNS also took outstanding curative effects on androgenetic alopecia mice. Upon further exploration, PNS ME caused dramatic upregulations of β-catenin, VEGF and Ki67, suggesting it might function by triggering Wnt/β-catenin pathway, accelerating vessels formation, and activating the hair follicle stem cells. Notably, PNS ME indicated longer-term safety than minoxidil tincture. Together, PNS ME provides a comprehensive strategy for alopecia, especially it avoids defects by high-proportioned surfactants in traditional microemulsion, exhibiting milder and safer, which shows bright prospect of applying microemulsion in hair growth promotion.
Collapse
Affiliation(s)
- Shuxuan Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Yihua Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Yingying Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Tianli Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Yating Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Shihui Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China
| | - Xuefei Zhang
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong 666100, PR China.
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, University Town, Guangzhou 510006, PR China; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, University Town, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
He W, Kong S, Lin R, Xie Y, Zheng S, Yin Z, Huang X, Su L, Zhang X. Machine Learning Assists in the Design and Application of Microneedles. Biomimetics (Basel) 2024; 9:469. [PMID: 39194448 DOI: 10.3390/biomimetics9080469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Microneedles (MNs), characterized by their micron-sized sharp tips, can painlessly penetrate the skin and have shown significant potential in disease treatment and biosensing. With the development of artificial intelligence (AI), the design and application of MNs have experienced substantial innovation aided by machine learning (ML). This review begins with a brief introduction to the concept of ML and its current stage of development. Subsequently, the design principles and fabrication methods of MNs are explored, demonstrating the critical role of ML in optimizing their design and preparation. Integration between ML and the applications of MNs in therapy and sensing were further discussed. Finally, we outline the challenges and prospects of machine learning-assisted MN technology, aiming to advance its practical application and development in the field of smart diagnosis and treatment.
Collapse
Affiliation(s)
- Wenqing He
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Suixiu Kong
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Rumin Lin
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Yuanting Xie
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Zheng
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Ziyu Yin
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xin Huang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Lei Su
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Martínez-Pascual MA, Sacristán S, Toledano-Macías E, Naranjo P, Hernández-Bule ML. Effects of RF Electric Currents on Hair Follicle Growth and Differentiation: A Possible Treatment for Alopecia. Int J Mol Sci 2024; 25:7865. [PMID: 39063106 PMCID: PMC11277185 DOI: 10.3390/ijms25147865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Androgenic alopecia (AGA) is the most common type of alopecia and its treatments involve drugs that have various adverse effects and are not completely effective. Radiofrequency-based therapies (RF) are an alternative for AGA treatment. Although there is increasing clinical evidence of the effectiveness of RF for alopecia, its effects at the tissue and cellular level have not been studied in detail. The objective of this study was to analyze ex vivo the potential effect of RF currents used in capacitive resistive electrical transfer (CRET) therapy on AGA. Hair follicles (HFs) were donated by patients with AGA and treated with CRET. AGA-HFs were exposed in vitro to intermittent 448 kHz electric current in subthermal conditions. Cell proliferation (Ki67), apoptosis (TUNEL assay), differentiation (β-catenin), integrity (collagen and MMP9), thickness of the epidermis surrounding HF, proportion of bulge cells and melanoblasts in AGA-HF were analyzed by immunohistochemistry. CRET increased proliferation and decreased death of different populations of AGA-HF cells. In addition, the melanoblasts increased in bulge and the epidermis surrounding the hair follicle thickened. These results support the effectiveness of RF-based therapies for the treatment of alopecia. However, clinical trials are necessary to know the true effectiveness of CRET therapy and other RF therapies for AGA treatment.
Collapse
Affiliation(s)
- María Antonia Martínez-Pascual
- Photobiology and Bioelectromagnetic Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (M.A.M.-P.); (E.T.-M.)
| | - Silvia Sacristán
- Aptamer Group, Histology Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain;
| | - Elena Toledano-Macías
- Photobiology and Bioelectromagnetic Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (M.A.M.-P.); (E.T.-M.)
| | - Pablo Naranjo
- Elite Laser Clinic, C/de Orense, 56, 28020 Madrid, Spain;
| | - María Luisa Hernández-Bule
- Photobiology and Bioelectromagnetic Laboratory, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (M.A.M.-P.); (E.T.-M.)
| |
Collapse
|
5
|
Sintos AML, Cabrera HS. Network Pharmacology Reveals Curcuma aeruginosa Roxb. Regulates MAPK and HIF-1 Pathways to Treat Androgenetic Alopecia. BIOLOGY 2024; 13:497. [PMID: 39056691 PMCID: PMC11274231 DOI: 10.3390/biology13070497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Androgenetic alopecia (AGA) is the most prevalent hair loss disorder worldwide, driven by excessive sensitivity or response to androgen. Herbal extracts, such as Curcuma aeruginosa Roxb., have shown promise in AGA treatment due to their anti-androgenic activities and hair growth effects. However, the precise mechanism of action remains unclear. Hence, this study aims to elucidate the active compounds, putative targets, and underlying mechanisms of C. aeruginosa for the therapy of AGA using network pharmacology and molecular docking. This study identified 66 bioactive compounds from C. aeruginosa, targeting 59 proteins associated with AGA. Eight hub genes were identified from the protein-protein interaction network, namely, CASP3, AKT1, AR, IL6, PPARG, STAT3, HIF1A, and MAPK3. Topological analysis of components-targets network revealed trans-verbenol, myrtenal, carvone, alpha-atlantone, and isoaromandendrene epoxide as the core components with potential significance in AGA treatment. The molecular docking verified the binding affinity between the hub genes and core compounds. Moreover, the enrichment analyses showed that C. aeruginosa is involved in hormone response and participates in HIF-1 and MAPK pathways to treat AGA. Overall, this study contributes to understanding the potential anti-AGA mechanism of C. aeruginosa by highlighting its multi-component interactions with several targets involved in AGA pathogenesis.
Collapse
Affiliation(s)
- Aaron Marbyn L. Sintos
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
| | - Heherson S. Cabrera
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
- Department of Biology, School of Health Sciences, Mapúa University, Makati 1200, Philippines
| |
Collapse
|
6
|
Tabatabaiei MR, Ghassemi M, Mohammadi Z, Toufani S, Farshad K, Sadeghzadeh Bazargan A. Sonographic comparison of subcutaneous fat layer thickness in the scalp area in patients with androgenetic alopecia compared to healthy individuals: Cross-sectional. Skin Res Technol 2024; 30:e13837. [PMID: 38965829 PMCID: PMC11224495 DOI: 10.1111/srt.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/08/2024] [Indexed: 07/06/2024]
Abstract
INTRODUCTION Androgenetic alopecia (AGA) is one of the most common alopecia among men and women worldwide. It is a nonscarring alopecia that has a characterized pattern. In female pattern AGA, the hairline is stable but general thinning occurs most notably in the frontal region. In male-pattern AGA, the hairline is receding and the thinning is most notable in the frontotemporal region. AGA has a complex pathogenesis and relation of subcutaneous fat in the scalp region and the miniaturization of terminal hair follicles is vague. In this study, subcutaneous fat in the frontal scalp an important region for AGA is compared to the occipital scalp that is spared in AGA. METHOD Our study is a cross-sectional study that has four groups. Male patient, female patient, male control, female control. Every group has 15 individuals. All of the people in the study are those referred to Rasoul Akram's dermatology clinic. The severity of alopecia is classified by Norwood scaling for male pattern AGA and Ludwig scaling for female pattern AGA. Subcutaneous tissue in the frontal and occipital regions is measured by ultrasonography. For evaluating the effect of aging on subcutaneous fat thickness, we subdivided any group into more than 40 years old and between 20 and 40 years old and compared these two subgroups. RESULTS The mean age of the three groups of male patient, female patient, and female control is 40 y/o and the mean age of male control is 41 y/o. The mean subcutaneous fat layer thickness in frontal region in male patients group is 6.0 mm (more than 40 y/o = 6.6 mm, between 20 and 40 y/o = 5.5 mm), in female patients group 5.1 mm (more than 40 y/o = 5.7 mm, between 20 and 40 y/o = 4.6 mm), in the male control group is 4.4 mm (more than 40 y/o = 4.7 mm, between 20 and 40 y/o = 4 mm) and in the female control group is 4.1 mm (more than 40 y/o = 4.5 mm, between 20 and 40 y/o = 3.6 mm). The mean subcutaneous fat layer thickness in the occipital region in the male patient's group is 6.4 mm (more than 40 y/o = 6.7 mm, between 20 and 40 y/o = 6 mm), in the female patient's group 6.1 mm (more than 40 y/o = 6.5 mm, between 20 and 40 y/o = 5.7 mm), in the male control group is 6.3 mm (more than 40 y/o = 6.8 mm, between 20 and 40 y/o = 5.7 mm) and in the female control group is 6.2 mm (more than 40 y/o = 6.6 mm, between 20 and 40 y/o = 5.8 mm). CONCLUSION This study demonstrates that the subcutaneous fat layer in the frontal region in both males and females is thicker in AGA patients than healthy group and the more severe the AGA, the thicker is subcutaneous layer in the frontal region. In the male patients group, the subcutaneous fat layer in the frontal region is thicker than in the female patients group but in the male and female control groups is not so different. The subcutaneous fat layer in the occipital region is thicker in older individuals in both patients and control groups but is not different when compared to AGA patients and control individuals.
Collapse
Affiliation(s)
- Mohammadreza Rafiei Tabatabaiei
- Department of DermatologyRasool Akram Medical Complex Clinical Research Development Center (RCRDC)School of MedicineIran University of Medical SciencesTehranIran
| | - Mohammadreza Ghassemi
- Department of DermatologyRasool Akram Medical Complex Clinical Research Development Center (RCRDC)School of MedicineIran University of Medical SciencesTehranIran
| | - Zahra Mohammadi
- Department of DermatologyRasool Akram Medical Complex Clinical Research Development Center (RCRDC)School of MedicineIran University of Medical SciencesTehranIran
| | - Shahin Toufani
- Faculty of MedicineIslamic Azad University of Medical Sciences, Sari BranchSariIran
| | - Karen Farshad
- Faculty of MedicineIslamic Azad University of Medical Sciences, Tehran BranchTehranIran
| | - Afsaneh Sadeghzadeh Bazargan
- Department of DermatologyRasool Akram Medical Complex Clinical Research Development Center (RCRDC)School of MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
7
|
Naeini SE, Bhandari B, Gouron J, Rogers HM, Chagas PS, Naeini GE, Chagas HIS, Khodadadi H, Salles ÉL, Seyyedi M, Yu JC, Grochowska BK, Wang LP, Baban B. Reprofiling synthetic glucocorticoid-induced leucine zipper fusion peptide as a novel and effective hair growth promoter. Arch Dermatol Res 2024; 316:190. [PMID: 38775976 DOI: 10.1007/s00403-024-02988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Hair is a biofilament with unique multi-dimensional values. In human, in addition to physiologic impacts, hair loss and hair related disorders can affect characteristic features, emotions, and social behaviors. Despite significant advancement, there is a dire need to explore alternative novel therapies with higher efficacy, less side effects and lower cost to promote hair growth to treat hair deficiency. Glucocorticoid-induced leucine zipper (GILZ) is a protein rapidly induced by glucocorticoids. Studies from our group and many others have suggested that a synthetic form of GILZ, TAT-GILZ, a fusion peptide of trans-activator of transcription and GILZ, can function as a potent regulator of inflammatory responses, re-establishing and maintaining the homeostasis. In this study, we investigate whether TAT-GILZ could promote and contribute to hair growth. For our pre-clinical model, we used 9-12 week-old male BALB/c and nude (athymic, nu/J) mice. We applied TAT-GILZ and/or TAT (vehicle) intradermally to depilated/hairless mice. Direct observation, histological examination, and Immunofluorescence imaging were used to assess the effects and compare different treatments. In addition, we tested two current treatment for hair loss/growth, finasteride and minoxidil, for optimal evaluation of TAT-GILZ in a comparative fashion. Our results showed, for the first time, that synthetic TAT-GILZ peptide accelerated hair growth on depilated dorsal skin of BALB/c and induced hair on the skin of athymic mice where hair growth was not expected. In addition, TAT-GILZ was able to enhance hair follicle stem cells and re-established the homeostasis by increasing counter inflammatory signals including higher regulatory T cells and glucocorticoid receptors. In conclusion, our novel findings suggest that reprofiling synthetic TAT-GILZ peptide could promote hair growth by increasing hair follicle stem cells and re-establishing homeostasis.
Collapse
Affiliation(s)
- Sahar Emami Naeini
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Bidhan Bhandari
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jules Gouron
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Hannah M Rogers
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Pablo Shimaoka Chagas
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Golnaz Emami Naeini
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Henrique Izumi Shimaoka Chagas
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Hesam Khodadadi
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Évila Lopes Salles
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Mohammad Seyyedi
- Piedmont Ear, Nose, Throat and Related Allergy, Atlanta, GA, USA
| | - Jack C Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | | | - Lei P Wang
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Babak Baban
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI), Augusta University, Augusta, GA, USA.
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
8
|
Feng W, Yang L, Li J, Chen Y, Yao B. A bibliometric analysis of trends in the application of platelet-rich plasma in cosmetics research between 2001 and 2022. J Cosmet Dermatol 2024; 23:780-793. [PMID: 37966031 DOI: 10.1111/jocd.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Several studies have been conducted on using platelet-rich plasma (PRP) to treat cosmetic issues. Nonetheless, no bibliometric analyses of publications in this field exist. Bibliometrics is an effective tool for methodically assessing the current state of research on a particular topic. This study examines the literature published in this field since 2000 and depicts the resulting network. METHODS The Web of Science Core Collection was searched for any publications mentioning the use of PRP in cosmetic or aesthetic therapy published between 2001 and 2022. The author, region, institution, journal, cited journal, and keywords were extracted, and the bibliometric analysis was carried out using CiteSpace and R studio. RESULTS There were a total of 306 items retrieved. The first publication in this field appeared in 2001, and the number of articles published increased over the next 21 years. Saedi Nazanin is the author with the most publications. The most prolific nations and institutions were the United States and the Fourth Military Medical University, respectively. Similarly, most articles and citations were found in the Journal of Cosmetic Dermatology and Plastic and Reconstructive Surgery. After performing a cluster analysis on the keywords of published publications, we discovered that most of the published literature focused on using PRP in rejuvenation, mechanism, and combination with MSCs. These topics are still at the frontier of future research. CONCLUSION Since the first study in this field was published in 2001, PRP used in cosmetic clinics has been studied. Although early effects have been observed, numerous challenges remain, including a lack of higher-quality clinical studies and explanations of PRP's mechanism. The bibliometric analysis conducted for the purpose of this article provides a summary of academic hotspots and research frontiers, as well as insights and pointers for future productive research.
Collapse
Affiliation(s)
- Wei Feng
- Department of Plastic & Reconstructive Surgery, Center for Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lichang Yang
- Department of Breast Oncoplastic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jingyu Li
- Department of Plastic & Reconstructive Surgery, Center for Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yan Chen
- Department of Plastic & Reconstructive Surgery, Center for Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Bin Yao
- Department of Orthopedics, Center for Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
9
|
Kumar S, Basu M, Ghosh P, Pal U, Ghosh MK. COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery. Genes Dis 2023; 10:1402-1428. [PMID: 37334160 PMCID: PMC10079314 DOI: 10.1016/j.gendis.2022.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes the complicated disease COVID-19. Clinicians are continuously facing huge problems in the treatment of patients, as COVID-19-specific drugs are not available, hence the principle of drug repurposing serves as a one-and-only hope. Globally, the repurposing of many drugs is underway; few of them are already approved by the regulatory bodies for their clinical use and most of them are in different phases of clinical trials. Here in this review, our main aim is to discuss in detail the up-to-date information on the target-based pharmacological classification of repurposed drugs, the potential mechanism of actions, and the current clinical trial status of various drugs which are under repurposing since early 2020. At last, we briefly proposed the probable pharmacological and therapeutic drug targets that may be preferred as a futuristic drug discovery approach in the development of effective medicines.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, West Bengal 743372, India
| | - Pratyasha Ghosh
- Department of Economics, Bethune College, University of Calcutta, Kolkata 700006, India
| | - Uttam Pal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
10
|
Feaster B, Onamusi T, Cooley JE, McMichael AJ. Oral minoxidil use in androgenetic alopecia and telogen effluvium. Arch Dermatol Res 2023; 315:201-205. [PMID: 35244759 DOI: 10.1007/s00403-022-02331-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/27/2022]
Abstract
While current studies have supported oral minoxidil as a novel, adjunctive therapy in non-scarring forms of alopecia, there continues to be limited data on oral minoxidil for these conditions. To assess oral minoxidil use in the treatment of androgenetic alopecia and telogen effluvium, a multi-center, retrospective analysis was conducted in 105 adult patients treated for androgenetic alopecia and/or telogen effluvium with oral minoxidil (dose range 0.625-2.5 mg) once daily for ≥ 52 weeks, case matched by age (± 5 years) and gender with 105 controls with androgenetic alopecia and/or telogen effluvium who were not treated with oral minoxidil. 80 women (76.2%) with a mean age of 57.5 ± 13.56 (range 24-80) and 25 men (23.8%) with a mean age of 40.4 ± 13.79 (range 19-63) were included. Efficacy was evaluated based on provider assessment of clinical response and clinical photographic evaluation using a 3-point scale (worsening, stabilization, and improvement). 52.4% of patients demonstrated clinical improvement and 42.9% demonstrated stabilization. There was a significant difference in clinical response between the patient and control group, p < 0.001. Retrospective study design. These results suggest that oral minoxidil can be an effective treatment in androgenetic alopecia and telogen effluvium.
Collapse
Affiliation(s)
- Brittany Feaster
- Department of Dermatology, Wake Forest School of Medicine, 4618 Country Club Road, Winston-Salem, NC, 27104, USA
| | - Toluwalashe Onamusi
- Department of Dermatology, Wake Forest School of Medicine, 4618 Country Club Road, Winston-Salem, NC, 27104, USA
| | | | - Amy J McMichael
- Department of Dermatology, Wake Forest School of Medicine, 4618 Country Club Road, Winston-Salem, NC, 27104, USA.
| |
Collapse
|
11
|
Fang T, Xu R, Sun S, He Y, Yan Y, Fu H, Luo H, Cao Y, Tao M. Caizhixuan hair tonic regulates both apoptosis and the PI3K/Akt pathway to treat androgenetic alopecia. PLoS One 2023; 18:e0282427. [PMID: 36827412 PMCID: PMC9956876 DOI: 10.1371/journal.pone.0282427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
PURPOSE Caizhixuan hair tonic (CZX) is a topical traditional Chinese medicine (TCM) preparation for the treatment of androgenetic alopecia (AGA). However, its active compounds and underlying mechanism for treating AGA are still unclear. The purpose of this study was to observe the effects of CZX on hair growth promotion in AGA mice and to explore the active components and mechanism. METHODS Testosterone propionate was administered subcutaneously to mice to establish an AGA mouse model. The therapeutic effects of CZX on AGA were evaluated by observing skin colour changes, hair growth time, and average hair length; calculating the hair growth score; and performing skin histopathological analysis. Following that, CZX chemical components were analysed by ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Network pharmacology was used to predict the major effects and possible mechanisms of CZX for the treatment of AGA. Furthermore, RT-qPCR and Western blotting were performed to assess the expression of key genes and proteins involved in PI3K/Akt and apoptosis pathways in order to validate CZX's predicted mechanism in AGA. RESULTS CZX promoted hair growth and improved the pathological morphology of hair follicles in the skin. In UPLC-Q-TOF/MS analysis, 69 components from CZX were isolated. Based on network pharmacology, CZX alleviated AGA by regulating PI3K/Akt and apoptosis pathways. According to RT-qPCR and Western blotting, CZX upregulated the expressions of PI3K, Akt, and Bcl-2, while downregulating that of Bax and caspase-3. CONCLUSIONS CZX promotes hair growth to treat AGA by regulating the PI3K/Akt and apoptosis pathways.
Collapse
Affiliation(s)
- Tingting Fang
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ruofei Xu
- Longyou County People’s Hospital, Longyou, Zhejiang, China
| | - Shaopeng Sun
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yineng He
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Yan
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongyang Fu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongbin Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Maocan Tao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China,* E-mail:
| |
Collapse
|
12
|
Dendrobium officinale Polysaccharide (DOP) Promotes Hair Regrowth in Testosterone-Induced Bald Mice. Aesthetic Plast Surg 2022; 47:833-841. [PMID: 36470987 DOI: 10.1007/s00266-022-03144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/08/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Androgenetic alopecia can affect up to 70% of males and 40% of females; however, certain therapeutic medications offer partial and transitory improvement but with major side effects. Dendrobium officinale polysaccharide (DOP) has been reported to improve androgen-related hair loss in mice, but the molecular mechanism remains unclear. OBJECTIVES To explore the effects of DOP on androgenetic alopecia. METHODS In this study, testosterone was subcutaneously administered to shave dorsa skin of mice to establish androgenetic alopecia; the effects of DOP in androgenetic alopecia were explored by DOP administration. RESULTS Testosterone treatment extended the time of skin growing dark and hair growing, decreased the mean numbers of follicles in skin tissues, decreased β-catenin and cyclin D1 levels, and elevated testosterone, DHT (dihydrotestosterone), and 5α-reductase levels. In contrast, DOP administration shortened skin growing dark and hair growing times, promoted follicle cell proliferation, increased follicle numbers, increased β-catenin and cyclin D1 levels, and decreased testosterone, DHT, and 5α-reductase levels. CONCLUSION DOP application significantly improved testosterone-induced hair follicle miniaturization and hair loss, possibly through affecting the Wnt signaling and hair follicle stem cell functions. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
13
|
Zhu B, Zhang L, Wang J, Tan G. Vitamin D supplementation for patients with alopecia areata: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e31089. [PMID: 36281137 PMCID: PMC10662846 DOI: 10.1097/md.0000000000031089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Several studies have reported an association between low Vitamin D (VD) levels and Alopecia areata (AA), and suggested VD preparations as a potential therapy. VD has immunomodulatory function closely associated with a variety of skin diseases, but there is no conclusive evidence to support VD supplementation for patients with AA. Therefore, we will conduct a meta-analysis to collect and evaluate the efficacy and safety of VD supplementation in the treatment of AA. METHODS We will search the following databases according to the developed strategy: Cochrane Library, PubMed, Web of Science, EMBASE, Scopus, Google scholar for Randomized controlled trials related to VD supplementation for AA. The retrieval time is from the establishment of each database to July 2022. Two reviewers will independently complete the literature search and screening, risk of bias assessment and data extraction. Severity of Alopecia Tool, Alopecia Density and Extent, Lesional area and senstivity (score) will be the primary results. RevMan V.5.3 will be used for data analysis and synthesis. For dichotomous outcomes and the continuous outcomes, we will calculate risk ratio with 95% Confidence intervals and mean differences or standardized mean differences with 95% Confidence intervals respectively. The reporting bias will be investigated using funnel plots, and the asymmetry of the funnel plots will be explained using the Harbord modified test or the Egger's regression test. RESULTS The results of the study expect to provide a high-quality, evidence-based recommendation on VD supplementation in the treatment of AA for clinicians. CONCLUSIONS The study will provide scientific and useful evidence for better use of VD supplementation in treating AA.
Collapse
Affiliation(s)
- Baohua Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Lan Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Jun Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Guiyuan Tan
- Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
14
|
Park CO, Kim HL, Park JW. Microneedle Transdermal Drug Delivery Systems for Allergen-Specific Immunotherapy, Skin Disease Treatment, and Vaccine Development. Yonsei Med J 2022; 63:881-891. [PMID: 36168240 PMCID: PMC9520048 DOI: 10.3349/ymj.2022.0092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 11/27/2022] Open
Abstract
Transdermal drug delivery systems (TDDSs) overcome the hurdle of an intact skin barrier by penetrating the skin to allow molecules through. These systems reduce side effects associated with conventional hypodermic needles. Here, we introduce novel microneedle (MN) TDDSs that enhance drug delivery by creating micron-sized pores across the skin. Many MN TDDSs designed to deliver a diverse array of therapeutics, including allergen-specific immunotherapy, skin disease treatments, and vaccines, are under pre-clinical and clinical trials. Although epicutaneous approaches are emerging as new options for treating food allergy in many clinical trials, MN TDDSs could provide a more efficient and convenient route to deliver macromolecules. Furthermore, MN TDDSs may allow for safe vaccine delivery without permanent scars. MN TDDSs are a major emerging strategy for delivering novel vaccines and treatments for diseases, including skin diseases, allergic diseases, and so on.
Collapse
Affiliation(s)
- Chang Ook Park
- Department of Dermatology, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Li Kim
- Department of Dermatology, Yonsei University College of Medicine, Seoul, Korea
| | - Jung-Won Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
15
|
Anudeep TC, Jeyaraman M, Muthu S, Rajendran RL, Gangadaran P, Mishra PC, Sharma S, Jha SK, Ahn BC. Advancing Regenerative Cellular Therapies in Non-Scarring Alopecia. Pharmaceutics 2022; 14:pharmaceutics14030612. [PMID: 35335987 PMCID: PMC8953616 DOI: 10.3390/pharmaceutics14030612] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Alopecia or baldness is a common diagnosis in clinical practice. Alopecia can be scarring or non-scarring, diffuse or patchy. The most prevalent type of alopecia is non-scarring alopecia, with the majority of cases being androgenetic alopecia (AGA) or alopecia areata (AA). AGA is traditionally treated with minoxidil and finasteride, while AA is treated with immune modulators; however, both treatments have significant downsides. These drawbacks compel us to explore regenerative therapies that are relatively devoid of adverse effects. A thorough literature review was conducted to explore the existing proven and experimental regenerative treatment modalities in non-scarring alopecia. Multiple treatment options compelled us to classify them into growth factor-rich and stem cell-rich. The growth factor-rich group included platelet-rich plasma, stem cell-conditioned medium, exosomes and placental extract whereas adult stem cells (adipose-derived stem cell-nano fat and stromal vascular fraction; bone marrow stem cell and hair follicle stem cells) and perinatal stem cells (umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs), Wharton jelly-derived MSCs (WJ-MSCs), amniotic fluid-derived MSCs (AF-MSCs), and placental MSCs) were grouped into the stem cell-rich group. Because of its regenerative and proliferative capabilities, MSC lies at the heart of regenerative cellular treatment for hair restoration. A literature review revealed that both adult and perinatal MSCs are successful as a mesotherapy for hair regrowth. However, there is a lack of standardization in terms of preparation, dose, and route of administration. To better understand the source and mode of action of regenerative cellular therapies in hair restoration, we have proposed the "À La Mode Classification". In addition, available evidence-based cellular treatments for hair regrowth have been thoroughly described.
Collapse
Affiliation(s)
- Talagavadi Channaiah Anudeep
- Department of Plastic Surgery, Topiwala National Medical College and BYL Nair Ch. Hospital, Mumbai 400008, India;
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; (M.J.); (S.M.); (S.K.J.)
- À La Mode Esthétique Studio, Mysuru 570011, India
- International Association of Stem Cell and Regenerative Medicine (IASRM), New Delhi 110092, India; (P.C.M.); (S.S.)
| | - Madhan Jeyaraman
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; (M.J.); (S.M.); (S.K.J.)
- International Association of Stem Cell and Regenerative Medicine (IASRM), New Delhi 110092, India; (P.C.M.); (S.S.)
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; (M.J.); (S.M.); (S.K.J.)
- International Association of Stem Cell and Regenerative Medicine (IASRM), New Delhi 110092, India; (P.C.M.); (S.S.)
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624304, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (P.G.); (B.-C.A.)
| | - Prabhu Chandra Mishra
- International Association of Stem Cell and Regenerative Medicine (IASRM), New Delhi 110092, India; (P.C.M.); (S.S.)
| | - Shilpa Sharma
- International Association of Stem Cell and Regenerative Medicine (IASRM), New Delhi 110092, India; (P.C.M.); (S.S.)
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; (M.J.); (S.M.); (S.K.J.)
- International Association of Stem Cell and Regenerative Medicine (IASRM), New Delhi 110092, India; (P.C.M.); (S.S.)
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (P.G.); (B.-C.A.)
| |
Collapse
|
16
|
Abstract
Pattern hair loss (PHL) is a condition that worsens with time and the only way it can be slowed down is with pharmacological intervention. Pharmacological treatments for PHL, from an evidenced-based perspective with respect to safety and efficacy, are limited to only two drugs, minoxidil and finasteride. However, there are a host of drugs being used, off-label with limited evidence. This article attempts to review the literature on this topic, and the authors add to this, with their experience of over two decades on incorporating pharmacologic treatments along with hair transplantation in their management of PHL.
Collapse
Affiliation(s)
- Sandeep Suresh Sattur
- HAIRREVIVE- Centre for Hair Restoration & Skin Rejuvenation, Santacruz West, Mumbai, Maharashtra, India
| | - Indu Sandeep Sattur
- HAIRREVIVE- Centre for Hair Restoration & Skin Rejuvenation, Santacruz West, Mumbai, Maharashtra, India
| |
Collapse
|
17
|
Melo DF, Saceda-Corralo D, Tosti A, Weffort F, Carla Jorge M, de Barros CC, de Melo Carvalho R, Starace M. Frontal edema due to mesotherapy for androgenetic alopecia: A case series. Dermatol Ther 2021; 35:e15247. [PMID: 34877759 DOI: 10.1111/dth.15247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/27/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
Androgenetic alopecia (AGA) is the most common form of non-cicatricial alopecia in both genders. Currently approved drugs for the treatment of AGA include topical minoxidil in women and topical minoxidil and oral finasteride in men. Other routes of administration of approved drugs have been proposed to enhance therapeutic results for AGA, including intradermal injections, known as mesotherapy. Mesotherapy-or intradermotherapy-is a non-surgical procedure, consisting of multiple intradermal injections of pharmacological substances diluted in small doses. Although minimally invasive, mesotherapy may be related to mild side effects like burning, erythema and headaches, as a few reports indicate. Among the most serious adverse events, subcutaneous necrosis, scalp abscesses, and angioedema have been described. This multicenter retrospective, descriptive study aims to report 14 cases of frontal edema resulting from mesotherapy for AGA treatment. In our patients, the edema mostly arose in the first two sessions and lasted between 1 and 4 days, with a favorable outcome after a local cold compress. In all our cases of edema, lidocaine was the anesthetic used. Minoxidil and dutasteride might also play a role as causative agents. To the best of our knowledge, this is the largest case series focused on frontal edema after mesotherapy for AGA and gives clinicians helpful information for when performing this technique. Dermatologists should already consider and be conscious of this possible mesotherapy side effect, as it can be remarkably disruptive to affected patients.
Collapse
Affiliation(s)
- Daniel Fernandes Melo
- Department of Dermatology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - David Saceda-Corralo
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, Departamento de Medicina, Facultad de Medicina, Universidad de Alcalá, IRYCIS, Madrid, Spain
| | - Antonella Tosti
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, School of Medicine, University of Miami, Miami, Florida, USA
| | - Flavia Weffort
- Department of Dermatology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Machado Carla Jorge
- Department of Preventive and Social Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Claudia Carreira de Barros
- Department of Dermatology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Department of Dermatology, Santa Casa de Misericórdia of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel de Melo Carvalho
- Department of Dermatology, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Michela Starace
- Dermatology - IRCCS, Policlinico Sant'Orsola, Department of Specialized, Experimental and Diagnostic Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Alleviation of Androgenetic Alopecia with Aqueous Paeonia lactiflora and Poria cocos Extract Intake through Suppressing the Steroid Hormone and Inflammatory Pathway. Pharmaceuticals (Basel) 2021; 14:ph14111128. [PMID: 34832910 PMCID: PMC8621879 DOI: 10.3390/ph14111128] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 01/28/2023] Open
Abstract
Paeonia lactiflora Pallas (PL) and Poria cocos Wolf (PC) have been traditionally used to treat inflammatory diseases reported in Dongui Bogam and Shen Nong Ben Cao Jing, traditional medical books in Korean and China, respectively. We determined the efficacies and the molecular mechanisms of PL, PC, and PL + PC aqueous extracts on androgenetic alopecia (AGA) induced by testosterone propionate in C57BL/6 mice. The molecular mechanisms of PL and PC in AGA treatment were examined using experimental assays and network pharmacology. The AGA model was generated by topically applying 0.5% testosterone propionate in 70% ethanol solution to the backs of mice daily for 28 days while the normal-control (Normal-Con; no AGA induction) mice applied 70% ethanol. The 0.1% PL (AGA-PL), 0.1% PC (AGA-PC), 0.05% PL + 0.05% PC (AGA-MIX), and 0.1% cellulose (AGA-Con; control) were supplemented in a high-fat diet for 28 days in AGA-induced mice. Positive-control (AGA-Positive) were administered 2% finasteride daily on the backs of the AGA mice. Hair growth rates decreased in the order of AGA-PL, AGA-MIX, AGA-PC, AGA-Positive, and AGA-Con after 21 days of treatment (ED21). On ED28, skins were completely covered with hair in the AGA-PL and AGA-MIX groups. Serum testosterone concentrations were lower in the AGA-PL group than in the AGA-Con group and similar to concentrations in the Normal-Con group, whereas serum 17β-estradiol concentrations showed the opposite pattern with increasing aromatase mRNA expression (p < 0.05). In the dorsal skin, DKK1 and NR3C2 mRNA expressions were significantly lower, but TGF-β2, β-Catenin, and PPARG expressions were higher in the AGA-PL and AGA-PC groups than in the AGA-Con group (p < 0.05), whereas TNF-α and IL-6 mRNA expressions were lower in the AGA-PL, AGA-MIX, and Normal-Con groups than in the AGA-Con group (p < 0.05). The phosphorylation of Akt and GSK-3β in the dorsal skin was lower in AGA-Con than normal-Con, and PL and MIX ingestion suppressed their decrease similar to the Normal-Con. In conclusion, PL or PL + PC intake had beneficial effects on hair growth similar to Normal-Con. The promotion was related to lower serum testosterone concentrations and pro-inflammatory cytokine levels, and inhibition of the steroid hormone pathway, consistent with network pharmacology analysis findings.
Collapse
|
19
|
DuBois J, Bruce S, Stewart D, Kempers S, Harutunian C, Boodhoo T, Weitzenfeld A, Chang-Lin JE. Setipiprant for Androgenetic Alopecia in Males: Results from a Randomized, Double-Blind, Placebo-Controlled Phase 2a Trial. Clin Cosmet Investig Dermatol 2021; 14:1507-1517. [PMID: 34703265 PMCID: PMC8526366 DOI: 10.2147/ccid.s319676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/29/2021] [Indexed: 11/23/2022]
Abstract
Purpose To evaluate oral setipiprant versus placebo for scalp hair growth in men with androgenetic alopecia (AGA). Patients and Methods Males aged 18 to 49 years with AGA were enrolled in a double-blind, multicenter, 32-week, phase 2a trial; randomized to twice-daily (BID) 1000-mg (2×500 mg for a total daily dose of 2000 mg) setipiprant tablets or placebo for 24 weeks; and assessed at weeks 4, 8, 16, and 24, with a week 32 follow-up. The study initially included a finasteride 1-mg once-daily group, removed by protocol amendment. Changes from baseline to week 24 in target area hair count (TAHC) and blinded Subject Self-Assessment (SSA) of target area photographs were coprimary efficacy endpoints. Hair growth was also evaluated using blinded Investigator Global Assessment (IGA). Safety assessments included adverse events (AEs) and clinical laboratory tests. Analysis of covariance models were used to test statistical significance for TAHC, SSA, and IGA. Data were summarized without statistical analysis for finasteride. Results Randomized subjects (N=169) included 74 placebo, 83 setipiprant, and 12 finasteride subjects; 117 (69.2%) and 113 (66.9%) subjects completed week 24 and 32 visits, respectively. Treatment groups had similar baseline characteristics. Neither coprimary efficacy endpoint was met. At week 24, TAHC and SSA findings indicated no hair growth improvements with setipiprant versus placebo. Setipiprant also did not improve hair growth versus placebo per the IGA. Treatment-related AEs, all mild or moderate in severity, occurred in 12.3%, 25.9%, and 25.0% of the placebo, setipiprant, and finasteride groups, respectively. Two treatment-emergent serious AEs (TESAEs), cellulitis and multiple sclerosis, were reported in the placebo group, both unrelated to treatment. No TESAEs were reported with setipiprant or finasteride. Conclusion Setipiprant 1000 mg BID was safe and well tolerated but did not demonstrate efficacy versus placebo for scalp hair growth in men with AGA.
Collapse
Affiliation(s)
| | | | - Daniel Stewart
- Midwest Center for Dermatology & Cosmetic Surgery, Clinton Township, MI, USA
| | | | | | - Terry Boodhoo
- Allergan Aesthetics, an AbbVie Company, Irvine, CA, USA
| | | | | |
Collapse
|
20
|
Giatti S, Di Domizio A, Diviccaro S, Falvo E, Caruso D, Contini A, Melcangi RC. Three-Dimensional Proteome-Wide Scale Screening for the 5-Alpha Reductase Inhibitor Finasteride: Identification of a Novel Off-Target. J Med Chem 2021; 64:4553-4566. [PMID: 33843213 PMCID: PMC8154553 DOI: 10.1021/acs.jmedchem.0c02039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Finasteride, a 5-alpha reductase (5α-R) inhibitor, is a widely used drug for treating androgen-dependent conditions. However, its use is associated with sexual, psychological, and physical complaints, suggesting that other mechanisms, in addition to 5α-R inhibition, may be involved. Here, a multidisciplinary approach has been used to identify potential finasteride off-target proteins. SPILLO-PBSS software suggests an additional inhibitory activity of finasteride on phenylethanolamine N-methyltransferase (PNMT), the limiting enzyme in formation of the stress hormone epinephrine. The interaction of finasteride with PNMT was supported by docking and molecular dynamics analysis and by in vitro assay, confirming the inhibitory nature of the binding. Finally, this inhibition was also confirmed in an in vivo rat model. Literature data indicate that PNMT activity perturbation may be correlated with sexual and psychological side effects. Therefore, results here obtained suggest that the binding of finasteride to PNMT might have a role in producing the side effects exerted by finasteride treatment.
Collapse
Affiliation(s)
- Silvia Giatti
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Alessandro Di Domizio
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
- SPILLOproject, via Stradivari
17, Paderno Dugnano, 20037 Milano, Italy
| | - Silvia Diviccaro
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Eva Falvo
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Donatella Caruso
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| | - Alessandro Contini
- Dipartimento
Di Scienze Farmaceutiche, Università
degli Studi di Milano, 20133 Milano, Italy
| | - Roberto Cosimo Melcangi
- Department
of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
21
|
Kifle ZD, Ayele AG, Enyew EF. Drug Repurposing Approach, Potential Drugs, and Novel Drug Targets for COVID-19 Treatment. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2021; 2021:6631721. [PMID: 33953756 PMCID: PMC8063850 DOI: 10.1155/2021/6631721] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/23/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022]
Abstract
Novel coronavirus first appeared in Wuhan, China, in December 2019, and it speedily expanded globally. Some medications which are used to treat other diseases seem to be effective in treating COVID-19 even without explicit support. The existing drugs that are summarized in this review primarily focused on therapeutic agents that possessed activity against other RNA viruses such as MERS-CoV and SARS-CoV. Drug repurposing or repositioning is a promising field in drug discovery that identifies new therapeutic opportunities for existing drugs such as corticosteroids, RNA-dependent RNA polymerase inhibitors, interferons, protease inhibitors, ivermectin, melatonin, teicoplanin, and some others. A search for new drug/drug targets is underway. Thus, blocking coronavirus structural protein, targeting viral enzyme, dipeptidyl peptidase 4, and membrane fusion blocker (angiotensin-converting enzyme 2 and CD147 inhibitor) are major sites based on molecular targets for the management of COVID-19 infection. The possible impact of biologics for the management of COVID19 is promising and includes a wide variety of options such as cytokines, nucleic acid-based therapies targeting virus gene expression, bioengineered and vectored antibodies, and various types of vaccines. This review demonstrates that the available data are not sufficient to suggest any treatment for the eradication of COVID-19 to be used at the clinical level. This article aims to review the roles of existing drugs and drug targets for COVID-19 treatment.
Collapse
Affiliation(s)
- Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Akeberegn Gorems Ayele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Engidaw Fentahun Enyew
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Sciences, Gondar, Ethiopia
| |
Collapse
|
22
|
Yang D, Chen M, Sun Y, Jin Y, Lu C, Pan X, Quan G, Wu C. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomater 2021; 121:119-133. [PMID: 33285323 DOI: 10.1016/j.actbio.2020.12.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Transdermal drug delivery is an attractive route for dermatological disease therapy because it can directly target the lesion site on the skin, reduce adverse reactions associated with systemic administration, and improve patient compliance. However, the stratum corneum, as the main skin barrier, severely limits transdermal drug penetration, with compromised bioavailability. Microneedles (MNs), which are leveraged to markedly improve the penetration of therapeutic agents by piercing the stratum corneum and creating hundreds of reversible microchannels in a minimally invasive manner, have been envisioned as a milestone for effective transdermal drug delivery, especially for superficial disease therapy. Here, the emergence of versatile MNs for the transdermal delivery of various drugs is reviewed, particularly focusing on the application of MNs for the treatment of diverse skin diseases, including superficial tumors, scars, psoriasis, herpes, acne, and alopecia. Additionally, the promises and challenges of the widespread translation of MN-mediated transdermal drug delivery in the dermatology field are summarized.
Collapse
|
23
|
Advanced Medical Therapies in the Management of Non-Scarring Alopecia: Areata and Androgenic Alopecia. Int J Mol Sci 2020; 21:ijms21218390. [PMID: 33182308 PMCID: PMC7664905 DOI: 10.3390/ijms21218390] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022] Open
Abstract
Alopecia is a challenging condition for both physicians and patients. Several topical, intralesional, oral, and surgical treatments have been developed in recent decades, but some of those therapies only provide partial improvement. Advanced medical therapies are medical products based on genes, cells, and/or tissue engineering products that have properties in regenerating, repairing, or replacing human tissue. In recent years, numerous applications have been described for advanced medical therapies. With this background, those therapies may have a role in the treatment of various types of alopecia such as alopecia areata and androgenic alopecia. The aim of this review is to provide dermatologists an overview of the different advanced medical therapies that have been applied in the treatment of alopecia, by reviewing clinical and basic research studies as well as ongoing clinical trials.
Collapse
|
24
|
Cadegiani FA. Repurposing existing drugs for COVID-19: an endocrinology perspective. BMC Endocr Disord 2020; 20:149. [PMID: 32993622 PMCID: PMC7523486 DOI: 10.1186/s12902-020-00626-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Coronavirus Disease 2019 (COVID-19) is a multi-systemic infection caused by the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), that has become a pandemic. Although its prevailing symptoms include anosmia, ageusia, dry couch, fever, shortness of brief, arthralgia, myalgia, and fatigue, regional and methodological assessments vary, leading to heterogeneous clinical descriptions of COVID-19. Aging, uncontrolled diabetes, hypertension, obesity, and exposure to androgens have been correlated with worse prognosis in COVID-19. Abnormalities in the renin-angiotensin-aldosterone system (RAAS), angiotensin-converting enzyme-2 (ACE2) and the androgen-driven transmembrane serine protease 2 (TMPRSS2) have been elicited as key modulators of SARS-CoV-2. MAIN TEXT While safe and effective therapies for COVID-19 lack, the current moment of pandemic urges for therapeutic options. Existing drugs should be preferred over novel ones for clinical testing due to four inherent characteristics: 1. Well-established long-term safety profile, known risks and contraindications; 2. More accurate predictions of clinical effects; 3. Familiarity of clinical management; and 4. Affordable costs for public health systems. In the context of the key modulators of SARS-CoV-2 infectivity, endocrine targets have become central as candidates for COVID-19. The only endocrine or endocrine-related drug class with already existing emerging evidence for COVID-19 is the glucocorticoids, particularly for the use of dexamethasone for severely affected patients. Other drugs that are more likely to present clinical effects despite the lack of specific evidence for COVID-19 include anti-androgens (spironolactone, eplerenone, finasteride and dutasteride), statins, N-acetyl cysteine (NAC), ACE inhibitors (ACEi), angiotensin receptor blockers (ARB), and direct TMPRSS-2 inhibitors (nafamostat and camostat). Several other candidates show less consistent plausibility. In common, except for dexamethasone, all candidates have no evidence for COVID-19, and clinical trials are needed. CONCLUSION While dexamethasone may reduce mortality in severely ill patients with COVID-19, in the absence of evidence of any specific drug for mild-to-moderate COVID-19, researchers should consider testing existing drugs due to their favorable safety, familiarity, and cost profile. However, except for dexamethasone in severe COVID-19, drug treatments for COVID-19 patients must be restricted to clinical research studies until efficacy has been extensively proven, with favorable outcomes in terms of reduction in hospitalization, mechanical ventilation, and death.
Collapse
Affiliation(s)
- Flavio A Cadegiani
- Adrenal and Hypertension Unit, Division of Endocrinology and Metabolism, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Pedro de Toledo 781 - 13th floor, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
25
|
Alsalhi W, Alalola A, Randolph M, Gwillim E, Tosti A. Novel drug delivery approaches for the management of hair loss. Expert Opin Drug Deliv 2020; 17:287-295. [DOI: 10.1080/17425247.2020.1723543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Waleed Alsalhi
- Department of Dermatology, College of Medicine, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Ammar Alalola
- Department of Dermatology, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Michael Randolph
- Department of Dermatology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eran Gwillim
- Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Antonella Tosti
- Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
26
|
Reply to: "Very-low-dose oral minoxidil in male androgenetic alopecia: A study with quantitative trichoscopic documentation". J Am Acad Dermatol 2020; 82:e23-e24. [PMID: 31520659 DOI: 10.1016/j.jaad.2019.08.085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 11/22/2022]
|
27
|
Induction of Hair Keratins Expression by an Annurca Apple-Based Nutraceutical Formulation in Human Follicular Cells. Nutrients 2019; 11:nu11123041. [PMID: 31847069 PMCID: PMC6950555 DOI: 10.3390/nu11123041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022] Open
Abstract
Hair disorders may considerably impact the social and psychological well-being of an individual. Recent advances in the understanding the biology of hair have encouraged the research and development of novel and safer natural hair growth agents. In this context, we have previously demonstrated—at both preclinical and clinical level—that an Annurca apple-based dietary supplement (AMS), acting as a nutraceutical, is endowed with an intense hair-inductive activity (trichogenicity), at once increasing hair tropism and keratin content. Herein, in the framework of preclinical investigations, new experiments in primary human models of follicular keratinocytes and dermal papilla cells have been performed to give an insight around AMS biological effects on specific hair keratins expression. As well as confirming the biocompatibility and the antioxidant proprieties of our nutraceutical formulation, we have proven an engagement of trichokeratins production underlying its biological effects on human follicular cells. Annurca apples are particularly rich in oligomeric procyanidins, natural polyphenols belonging to the broader class of bioflavonoids believed to exert many beneficial health effects. To our knowledge, none of the current available remedies for hair loss has hitherto shown to stimulate the production of hair keratins so clearly.
Collapse
|
28
|
Plachouri KM, Georgiou S. Mesotherapy: Safety profile and management of complications. J Cosmet Dermatol 2019; 18:1601-1605. [PMID: 31444843 DOI: 10.1111/jocd.13115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/20/2019] [Accepted: 08/01/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND Mesotherapy is a procedure that involves the injection of active substances into the dermis and subcutaneous tissue in order to treat several local medical and cosmetic conditions. Despite being considered as a relatively safe method, a series of adverse reactions can occur due to its wide application and lack of standardization processes. OBJECTIVES The aim of this paper is to summarize all the mesotherapy-related complications published so far, and to provide an insight into their management. PATIENT/METHODS Articles derived from the databases, PubMed, EMBASE, and SCOPUS, and published between 1992 and 2018, were analyzed for this review. The study was conducted according to the PRISMA guidelines. RESULTS In this literature, there is a number of case series and isolated case reports describing various side effects of different severities. The therapeutic management of these complications is-in most cases-individualized. CONCLUSIONS Larger systematic studies are needed in order to adequately evaluate the safety profile of mesotherapy, and in order to determine standardized therapy parameters, so as to minimize the risk of potential adverse reactions.
Collapse
Affiliation(s)
| | - Sophia Georgiou
- Dermatology Department, University of Patras, Patras, Greece
| |
Collapse
|