1
|
Wójcicki M, Shymialevich D, Średnicka P, Emanowicz P, Ostrowska A, Cieślak H, Sokołowska B. Phenotypic Characterization and Genome Analysis of New Broad-Spectrum Virulent Salmophage, Salmonella Phage KKP_3822, for Biocontrol of Multidrug-Resistant Salmonella enterica Strains. Int J Mol Sci 2024; 25:12930. [PMID: 39684641 DOI: 10.3390/ijms252312930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/30/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Salmonella is one of the main foodborne pathogens. Irrational antibiotic management has led to an increase in the incidence of multidrug-resistant strains. Bacteriophages may be an alternative method of food biopreservation and contribute to reducing the number of food poisonings requiring pharmacotherapy. This study aimed to isolate a bacteriophage (phage) targeting indigenous multidrug-resistant (MDR) Salmonella strains, followed by their biological, morphological, and genomic characterization. In this study we isolated Salmonella phage KKP_3822, targeting MDR Salmonella Manchester strain KKP 1213. Salmonella phage KKP_3822 retained high activity in the temperature range from -20 °C to 40 °C and active acidity from pH 3 to 11. Temperatures of 70 °C and 80 °C and extreme pH values (2 and 12) significantly reduced the phage titer. Its activity decreased proportionally to the time of UV exposure. Genome analysis (linear dsDNA with a length of 114,843 bp) revealed the presence of 27 tRNA genes. Proteins encoded by the vB_Sen-IAFB3822 phage were divided into functional modules related to (i) phage structure/assembly, (ii) DNA replication/modification/regulation, (iii) phage lysis, and (iv) DNA packaging into the capsid. No genes associated with antibiotic resistance or integration into the host genome, markers of temperate bacteriophages, were annotated in the Salmonella phage KKP_3822 genome. Based on morphological features and whole-genome sequence analysis, the newly isolated Salmonella phage KKP_3822 shows the greatest similarity to representatives of tailed phages from the Caudoviricetes class, Demerecviridae family, and Epseptimavirus genus. Genome analysis confirmed the virulent nature of the Salmonella phage KKP_3822, making it a potential candidate for food biocontrol.
Collapse
Affiliation(s)
- Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Dziyana Shymialevich
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Paulina Średnicka
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Paulina Emanowicz
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Ciszewskiego 8 Str., 02-786 Warsaw, Poland
| | - Hanna Cieślak
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Str., 02-532 Warsaw, Poland
| |
Collapse
|
2
|
Medic BS, Tomic N, Lagopati N, Gazouli M, Pojskic L. Advances in Metal and Metal Oxide Nanomaterials for Topical Antimicrobial Applications: Insights and Future Perspectives. Molecules 2024; 29:5551. [PMID: 39683711 PMCID: PMC11643765 DOI: 10.3390/molecules29235551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Nanotechnology has seen significant growth in the past few decades, with the use of nanomaterials reaching a wide scale. Given that antimicrobial resistance is peaking, nanotechnology holds distinct potential in this area. This review discusses recent applications of metal and metal oxide nanoparticles as antibacterial, antifungal, and antiviral agents, particularly focusing on their topical applications and their role in chronic wound therapy. We explore their use in various forms, including coated, encapsulated, and incorporated in hydrogels or as complexes, proposing them as topical antimicrobials with promising properties. Some studies have shown that metal and metal oxide nanoparticles can exhibit cytotoxic and genotoxic effects, while others have found no such properties. These effects depend on factors such as nanoparticle size, shape, concentration, and other characteristics. It is essential to establish the dose or concentration associated with potential toxic effects and to investigate the severity of these effects to determine a threshold below which metal or metal oxide nanoparticles will not produce negative outcomes. Therefore, further research should focus on safety assessments, ensuring that metal and metal oxide nanoparticles can be safely used as therapeutics in biomedical sciences.
Collapse
Affiliation(s)
- Belmina Saric Medic
- Laboratory for Human Genetics, Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (B.S.M.); (N.T.); (L.P.)
| | - Nikolina Tomic
- Laboratory for Human Genetics, Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (B.S.M.); (N.T.); (L.P.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
- 2nd Department of Radiology, Medical Physics Unit, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 1 Rimini Str., 12462 Athens, Greece
| | - Lejla Pojskic
- Laboratory for Human Genetics, Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (B.S.M.); (N.T.); (L.P.)
| |
Collapse
|
3
|
Nisar S, Shah AH, Nazir R. The clinical praxis of bacteriocins as natural anti-microbial therapeutics. Arch Microbiol 2024; 206:451. [PMID: 39476181 DOI: 10.1007/s00203-024-04152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 11/10/2024]
Abstract
In recent decades, the excessive use of antibiotics has resulted in a rise in antimicrobial drug resistance (ADR). Annually, a significant number of human lives are lost due to resistant infectious diseases, leading to around 700,000 deaths, and it is estimated that by 2050, there could be up to 10 million casualties. Apart from their possible application as preservatives in the food sector, bacteriocins are gaining acknowledgment as potential clinical treatments. Not only this, these antimicrobial peptides have revealed in modulating the host immune system producing anti-inflammatory and anti-modulatory responses. At the same time, due to the ever-increasing global threat of antibiotic resistance, bacteriocins have gained attraction among researchers due to their potential clinical applications. Bacteriocins as antimicrobial peptides, represent one of the most important natural defense mechanisms among bacterial species, particularly lactic acid bacteria (LAB), that can fight against infection-causing pathogens. In this review, we are highlighting the potential of bacteriocins as novel therapeutics for inhibiting a wide range of clinically relevant and multi-drug-resistant pathogens (MDR). We also highlight the effectiveness and potential applications of current bacteriocin treatments in combating antimicrobial resistance (AMR), thereby promoting human health.
Collapse
Affiliation(s)
- Safura Nisar
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| | - Ruqeya Nazir
- Centre of Research for Development (CORD), School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| |
Collapse
|
4
|
Hossain AKMZ, Chowdhury AMMA. Understanding the Evolution and Transmission Dynamics of Antibiotic Resistance Genes: A Comprehensive Review. J Basic Microbiol 2024; 64:e2400259. [PMID: 39113256 DOI: 10.1002/jobm.202400259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 10/05/2024]
Abstract
Antibiotic resistance poses a formidable challenge to global public health, necessitating comprehensive understanding and strategic interventions. This review explores the evolution and transmission dynamics of antibiotic resistance genes, with a focus on Bangladesh. The indiscriminate use of antibiotics, compounded by substandard formulations and clinical misdiagnosis, fuels the emergence and spread of resistance in the country. Studies reveal high resistance rates among common pathogens, emphasizing the urgent need for targeted interventions and rational antibiotic use. Molecular assessments uncover a diverse array of antibiotic resistance genes in environmental reservoirs, highlighting the complex interplay between human activities and resistance dissemination. Horizontal gene transfer mechanisms, particularly plasmid-mediated conjugation, facilitate the exchange of resistance determinants among bacterial populations, driving the evolution of multidrug-resistant strains. The review discusses clinical implications, emphasizing the interconnectedness of environmental and clinical settings in resistance dynamics. Furthermore, bioinformatic and experimental evidence elucidates novel mechanisms of resistance gene transfer, underscoring the dynamic nature of resistance evolution. In conclusion, combating antibiotic resistance requires a multifaceted approach, integrating surveillance, stewardship, and innovative research to preserve the efficacy of antimicrobial agents and safeguard public health.
Collapse
Affiliation(s)
- A K M Zakir Hossain
- Laboratory of Microbial and Cancer Genomics, Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | - A M Masudul Azad Chowdhury
- Laboratory of Microbial and Cancer Genomics, Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
5
|
Bhuller Y, Deonandan R, Krewski D. Relevance and feasibility of principles for health and environmental risk decision-making. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:189-211. [PMID: 38743482 DOI: 10.1080/10937404.2024.2338078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Globally, national regulatory authorities are both responsible and accountable for health and environmental decisions related to diverse products and risk decision contexts. These authorities provided regulatory oversight and expedited market authorizations of vaccines and other therapeutic products during the COVID-19 pandemic. Regulatory decisions regarding such products and situations depend upon well-established risk assessment and management steps. The underlying processes supporting such decisions were outlined in frameworks describing the complex interactions between factors including risk assessment and management steps as well as principles which help guide risk decision-making. In 2022, experts in risk science proposed a set of 10 guiding principles, further examining the intersection and utility of these principles using 10 diverse risk contexts, and inviting a broader discourse on the application of these principles in risk decision-making. To add to this information, Canadian regulatory practitioners responsible for evaluating health and environmental risks and establishing policies convened at a Health Canada workshop on Principles for Risk Decision-Making. This review reports the results derived from this interactive engagement and provides a first pragmatic analysis of the relevance, importance, and feasibility of such principles for health and environmental risk decision-making within the Canadian regulatory context.
Collapse
Affiliation(s)
- Yadvinder Bhuller
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Raywat Deonandan
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Alotaibi G. Prevalence, pandemic, preventions and policies to overcome antimicrobial resistance. Saudi J Biol Sci 2024; 31:104032. [PMID: 38854892 PMCID: PMC11157277 DOI: 10.1016/j.sjbs.2024.104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024] Open
Abstract
Antimicrobial resistance (AMR) is a growing concern in Asia, and it is essential to understand the prevalence, pandemic, prevention, and policies to overcome it. According to the World Health Organization (WHO), AMR is one of the main causes of death; in 2019, it was linked to 4.95 million fatalities and caused about 1.27 million deaths. A core package of actions has been provided by WHO to help countries prioritize their needs when creating, carrying out, and overseeing national action plans on antimicrobial resistance. Using a people-cantered approach to AMR, the interventions address the needs and obstacles that individuals and patients encounter when trying to obtain healthcare. The people-cantered core package of AMR treatments seeks to improve public and policymakers; awareness and comprehension of AMR by changing the narrative of AMR to emphasize the needs of people and systemic impairments. Additionally, it backs a more comprehensive and programmatic national response to AMR, which emphasizes the value of fair and inexpensive access to high-quality healthcare services for the avoidance, identification, and management of drug-resistant diseases. The report signals increasing resistance to antibiotics in bacterial infections in humans and the need for better data. In conclusion, the prevalence of AMR in Asia is a significant public health concern, and it is crucial to implement policies and interventions to overcome it.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmacology, College of Pharmacy, Shaqra University, Riyadh 11961, Saudi Arabia
| |
Collapse
|
7
|
Lubis AR, Sumon MAA, Dinh-Hung N, Dhar AK, Delamare-Deboutteville J, Kim DH, Shinn AP, Kanjanasopa D, Permpoonpattana P, Doan HV, Linh NV, Brown CL. Review of quorum-quenching probiotics: A promising non-antibiotic-based strategy for sustainable aquaculture. JOURNAL OF FISH DISEASES 2024; 47:e13941. [PMID: 38523339 DOI: 10.1111/jfd.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
The emergence of antibiotic-resistant bacteria (ARBs) and genes (ARGs) in aquaculture underscores the urgent need for alternative veterinary strategies to combat antimicrobial resistance (AMR). These measures are vital to reduce the likelihood of entering a post-antibiotic era. Identifying environmentally friendly biotechnological solutions to prevent and treat bacterial diseases is crucial for the sustainability of aquaculture and for minimizing the use of antimicrobials, especially antibiotics. The development of probiotics with quorum-quenching (QQ) capabilities presents a promising non-antibiotic strategy for sustainable aquaculture. Recent research has demonstrated the effectiveness of QQ probiotics (QQPs) against a range of significant fish pathogens in aquaculture. QQ disrupts microbial communication (quorum sensing, QS) by inhibiting the production, replication, and detection of signalling molecules, thereby reducing bacterial virulence factors. With their targeted anti-virulence approach, QQPs have substantial promise as a potential alternative to antibiotics. The application of QQPs in aquaculture, however, is still in its early stages and requires additional research. Key challenges include determining the optimal dosage and treatment regimens, understanding the long-term effects, and integrating QQPs with other disease control methods in diverse aquaculture systems. This review scrutinizes the current literature on antibiotic usage, AMR prevalence in aquaculture, QQ mechanisms and the application of QQPs as a sustainable alternative to antibiotics.
Collapse
Affiliation(s)
- Anisa Rilla Lubis
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Md Afsar Ahmed Sumon
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nguyen Dinh-Hung
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | | | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | | | - Duangkhaetita Kanjanasopa
- Agricultural Science and Technology Program, Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Surat Thani, Thailand
| | - Patima Permpoonpattana
- Agricultural Science and Technology Program, Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Surat Thani, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Christopher L Brown
- FAO World Fisheries University Pilot Programme, Pukyong National University, Busan, South Korea
| |
Collapse
|
8
|
Luo Y, Bi Y, Xu Z, Shan L, He J, Wang K, Zhou Z, Yu L, Jiang X, Yang J, Yu L, Gao R, Wei J, Du X, Liu Y, Fang C. Exploring possible benefits of Litsea cubeba Pers. extract on growth, meat quality, and gut flora in white-feather broilers. Front Vet Sci 2024; 10:1335208. [PMID: 38288379 PMCID: PMC10823429 DOI: 10.3389/fvets.2023.1335208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
White-feather broiler chickens are the dominant species in global poultry meat production. Yet there is growing concern about their health, quality, and growth efficiency. While feed additives, often antibiotics or synthetic chemicals, are used to maintain the health of the animals, drug resistance limits their use. Litsea cubeba (Lour.) Pers., a traditional Chinese herb with antibiotic-like benefits but without the risk of drug resistance, has not yet been explored as an additive to broiler diets. In the present study, broilers of the AA+ hybrid strain were randomly divided into three groups of 16: a control group (regular feed), a low-dose group (1.25 g/kg added L. cubeba extract), and a high-dose group (2.50 g/kg added L. cubeba extract). After 35 days, we found that the extract had no effect on growth. However, gut flora analysis revealed that both doses of the extract had a positive influence on amino acid content and minor unsaturated fatty acids, thus improving the flavor and nutritional value of the meat. These findings suggest that L. cubeba extract, at either dose, could serve as a sustainable alternative to antibiotics, thus reducing the risk of drug resistance while improving meat quality, nutrition, and flavor.
Collapse
Affiliation(s)
- Yankai Luo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
| | - Yuchen Bi
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ziyun Xu
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Linxian Shan
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun He
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kedan Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Zhengjiang Zhou
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Tea, Yunnan Agricultural University, Kunming, China
| | - Lihui Yu
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xingjiao Jiang
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jiangrui Yang
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Lijun Yu
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Rui Gao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Jingran Wei
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Xiaocui Du
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
| | - Yan Liu
- The International College, Yunnan Agricultural University, Kunming, China
| | - Chongye Fang
- Yunnan Research Center for Advanced Tea Processing, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
9
|
Kosznik-Kwaśnicka K, Topka G, Mantej J, Grabowski Ł, Necel A, Węgrzyn G, Węgrzyn A. Propagation, Purification, and Characterization of Bacteriophages for Phage Therapy. Methods Mol Biol 2024; 2738:357-400. [PMID: 37966610 DOI: 10.1007/978-1-0716-3549-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Phage therapy is an alternative approach to combat bacterial infections. In this approach, bacteriophages are used as antimicrobial agents due to their properties to infect specific bacterial cells, to propagate inside their hosts, and to lyse host cell to release progeny phages. However, to introduce bacteriophages to clinical or veterinary practice, it is necessary to construct a large library of precisely characterized phages. Therefore, in this chapter, methods for propagation, purification, and microbiological characterization of bacteriophages are presented in the light of their potential use in phage therapy. Isolation of newly discovered bacteriophages from different habitats is also described as it is a preliminary assessment of their efficacy in combating bacterial biofilms and in the treatment of bacterial infections in a simple insect model-Galleria mellonella.
Collapse
Affiliation(s)
| | | | | | - Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdansk, Poland
| | - Agnieszka Necel
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Alicja Węgrzyn
- Phage Therapy Laboratory, University Center for Applied and Interdisciplinary Research, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
10
|
Plunder S, Burkard M, Helling T, Lauer UM, Hoelzle LE, Marongiu L. Determination of Optimal Phage Load and Administration Time for Antibacterial Treatment. Curr Protoc 2024; 4:e954. [PMID: 38217512 DOI: 10.1002/cpz1.954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Using phages as antibacterials is becoming a customary practice in Western countries. Nonetheless, successful treatments must consider the growth rate of the bacterial host and the degradation of the virions. Therefore, successful treatments require administering the right amount of phage (viral load, Vφ) at the right moment (administration time, Tφ). The present protocols implement a machine learning approach to determine the best combination of Vφ and Tφ to obtain the elimination of the target bacterium from a system. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: One bacterium, one phage Alternate Protocol 1: One bacterium, one phage (wrapping function) Alternate Protocol 2: One bacterium, one phage (wrapping function, alternative growing model) Basic Protocol 2: Two bacteria, one phage Alternate Protocol 3: Two bacteria, one phage (launch from terminal).
Collapse
Affiliation(s)
- Steffen Plunder
- Department of Mathematics, University of Vienna, Vienna, Austria
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Thomas Helling
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Ludwig E Hoelzle
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
11
|
Hussein EOS, Suliman GM, Al-Owaimer AN, Al-Baadani HH, Al-Garadi MA, Ba-Awadh HA, Qaid MM, Swelum AA. Effect of water supplementation of Magic oil at different growing periods on growth performance, carcass traits, blood biochemistry, and ileal histomorphology of broiler chickens. Poult Sci 2023; 102:102775. [PMID: 37269792 PMCID: PMC10242640 DOI: 10.1016/j.psj.2023.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 06/05/2023] Open
Abstract
Natural antibiotic substitutes have recently been used as growth promoters and to combat pathogens. Therefore, this study aimed to assess the effects of adding Magic oil (nano-emulsified plant oil) at different growing periods on growth performance, histomorphology of the ileum, carcass traits, and blood biochemistry of broiler chickens. A total of 432-day-old Ross 308 chicks were randomly assigned to 1 of 6 water supplementation treatment groups based on growing periods, with 4 groups of Magic oil programs compared to probiotic (Albovit) as a positive control and nonsupplemented group as a negative control, with 9 replicates each with 8 birds (4♂ and 4♀). The periods of adding Magic oil Magic oil were 35, 20, 23, and 19 d for T1, T2, T3, and T4, respectively. Birds' performance was evaluated during 0 to 4, 4 to 14, 21 to 30, 30 to 35, and overall days old. Carcass parameters, blood chemistry, and ileal histomorphology were examined on d 35. The findings showed that birds in the T4 group of the Magic oil supplementation program (from 1 to 4 and 21 to 35 d of age) consumed 1.82% and 4.20% more food, gained 3.08% and 6.21% more, and converted feed to meat 1.39% and 2.07% more than Albovit and negative control, respectively, during the experiment (1-35). Magic oil particularly T1 (Magic oil is supplemented throughout the growing period) and T4 programs improved intestinal histology compared to the negative control. There were no changes (P > 0.05) between treatments in carcass parameters and blood biochemistry. In conclusion, water supplementation with Magic oil for broilers improves intestinal morphometrics and growth performance similar to or better than probiotic, especially during brooding and overall periods. Further studies are needed to evaluate the effect of adding both nano-emulsified plant oil and probiotics on different parameters.
Collapse
Affiliation(s)
- Elsayed O S Hussein
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Gamaleldin M Suliman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdullah N Al-Owaimer
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hani H Al-Baadani
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Maged A Al-Garadi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hani A Ba-Awadh
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed M Qaid
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
12
|
Bwire GM, Kibwana UO, Nkinda L, Maganda BA, Mganga M, Nshau AB, Williams O, Midega J, Nyankesha E, Scherpbier RW. Implementation research for promoting access and rational use of antibiotics for children: lessons learnt from Tanzania. JAC Antimicrob Resist 2023; 5:dlad045. [PMID: 37090916 PMCID: PMC10116604 DOI: 10.1093/jacamr/dlad045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Implementation research (IR) has proved to be a potential catalyst in facilitating the uptake of evidence-based innovations into routine practices and thereby maximizing public health outcomes. IR not only focuses on the effectiveness of the innovations but also identifies and addresses the barriers and facilitators to maximize their uptake into routine practices. This article describes the processes undertaken to implement a research project aimed at promoting access and rational use of antibiotics for children (PARAC). It also provides an overview of the lessons learnt during its implementation in Tanzanian hospital and community settings.
Collapse
Affiliation(s)
| | - Upendo O Kibwana
- Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Lilian Nkinda
- Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Betty A Maganda
- Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Mathew Mganga
- President’s Office-Regional Administration and Local Government, P.O. Box 1923, Dodoma, Tanzania
| | - Arapha Bashir Nshau
- Pharmacy Council, NHIF Building, 1st Floor, UDOM Road, P.O. Box 1277, Dodoma, Tanzania
| | | | - Janet Midega
- Wellcome Trust, 215 Euston Road, London NW1 2BE, UK
| | - Elevanie Nyankesha
- United Nations Children’s Fund, New York Headquarter office, 3 United Nations Plaza, New York, NY 10017, USA
| | - Robert W Scherpbier
- United Nations Children’s Fund, Bâtiment BIT, Route des Morillons 4, CH-1211, Geneva 22, Switzerland
| |
Collapse
|
13
|
Sun Y, Chen X, Shi S, Tian T, Liu Z, Luo E, Lin Y. Tetrahedral Framework Nucleic Acids: A Novel Strategy for Antibiotic Treating Drug-Resistant Infections. Biomacromolecules 2023; 24:1052-1060. [PMID: 36723425 PMCID: PMC10069167 DOI: 10.1021/acs.biomac.2c01525] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Antibiotic multiresistance (AMR) has emerged as a major threat to human health as millions of people die from AMR-related problems every year. As has been witnessed during the global COVID-19 pandemic, the significantly increased demand for antibiotics has aggravated the issue of AMR. Therefore, there is an urgent need to find ways to alleviate it. Tetrahedral framework nucleic acids (tFNAs) are novel nanomaterials that are often used as drug delivery platforms because of their structural diversity. This study formed a tFNAs-antibiotic compound (TAC) which has a strong growth inhibitory effect on Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) in vitro owing to the increased absorption of antibiotics by bacteria and improved drug movement across cell membranes. We established a mouse model of systemic peritonitis and local wound infections. The TAC exhibited good biosafety and improved the survival rate of severely infected mice, promoting the healing of local infections. In addition to the better transport of antibiotics to the target, the TAC may also enhance immunity by regulating the differentiation of M1 and M2 macrophages, providing a new option for the treatment of infections.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - En Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.,Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
14
|
Pang Y, Yao L, Xu J, Wang Z, Lee TY. Integrating transformer and imbalanced multi-label learning to identify antimicrobial peptides and their functional activities. Bioinformatics 2022; 38:5368-5374. [PMID: 36326438 PMCID: PMC9750108 DOI: 10.1093/bioinformatics/btac711] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/08/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
MOTIVATION Antimicrobial peptides (AMPs) have the potential to inhibit multiple types of pathogens and to heal infections. Computational strategies can assist in characterizing novel AMPs from proteome or collections of synthetic sequences and discovering their functional abilities toward different microbial targets without intensive labor. RESULTS Here, we present a deep learning-based method for computer-aided novel AMP discovery that utilizes the transformer neural network architecture with knowledge from natural language processing to extract peptide sequence information. We implemented the method for two AMP-related tasks: the first is to discriminate AMPs from other peptides, and the second task is identifying AMPs functional activities related to seven different targets (gram-negative bacteria, gram-positive bacteria, fungi, viruses, cancer cells, parasites and mammalian cell inhibition), which is a multi-label problem. In addition, asymmetric loss was adopted to resolve the intrinsic imbalance of dataset, particularly for the multi-label scenarios. The evaluation showed that our proposed scheme achieves the best performance for the first task (96.85% balanced accuracy) and has a more unbiased prediction for the second task (79.83% balanced accuracy averaged across all functional activities) when compared with that of strategies without imbalanced learning or deep learning. AVAILABILITY AND IMPLEMENTATION The source code and data of this study are available at https://github.com/BiOmicsLab/TransImbAMP. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Jingyi Xu
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Zhuo Wang
- To whom correspondence should be addressed. or
| | | |
Collapse
|
15
|
Pan S, Yan J, Xu X, Chen Y, Chen X, Li F, Xing H. Current Development and Future Application Prospects of Plants-Derived Polyphenol Bioactive Substance Curcumin as a Novel Feed Additive in Livestock and Poultry. Int J Mol Sci 2022; 23:ijms231911905. [PMID: 36233207 PMCID: PMC9570258 DOI: 10.3390/ijms231911905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Curcumin (CUR) is a kind of natural orange-yellow phenolic compound mainly extracted from the stems and roots of turmeric plants and other species in the genus Curcuma, furthermore, it is also the most important active ingredient exerting pharmacological functions in turmeric. In recent years, CUR has been frequently reported and has attracted widespread attention from scholars all over the world due to its numerous biological functions and good application prospects, such as anti-inflammatory, anticancer, antioxidant and providing lipid-lowering effects, etc. In addition, adding a certain dose of CUR to livestock and poultry feed is important for animal growth and development, which plays a key role in animal metabolism, reproduction, immunity and clinical health care. This review aims to summarize, based on the published papers and our own observations, the physical and chemical properties and the biological functions of the plant-derived bioactive ingredient CUR, especially regarding the latest research progress in regulating intestinal health as well as its current development and future application prospects in livestock and poultry as a novel feed additive, so as to provide theoretical and practical references for the further study of the application of CUR as a novel feed additive and a potential new antibiotic substitute, thereby improving the research field of plant-derived bioactive ingredients and promoting the healthy development of livestock and poultry.
Collapse
Affiliation(s)
- Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Department of Animal Science, Washington State University, Pullman, WA 99163, USA
- Correspondence: ; Tel.: +86-5148-7979-274; Fax: +86-514-8797-2218
| | - Jie Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xingyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yongfang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xinyu Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Fei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
16
|
Treating urinary tract infections in public sector primary healthcare facilities in Cape Town, South Africa: A pharmaceutical perspective. S Afr Med J 2022. [DOI: 10.7196/samj.2022.v112i7.16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background. Antibiotic resistance is a global healthcare burden complicating the management of infections. Urinary tract infections (UTIs) are commonly treated in primary care. Managing UTIs appropriately in primary care can combat antibiotic resistance. The treatment practices for UTIs in primary care in Western Cape Province, South Africa, are not well described.Objectives. To describe treatment of UTIs in adults in primary care in the Cape Town metropole public sector of the Western Cape. Method. A retrospective multicentre medical records review of patients diagnosed with UTIs was conducted during 1 October 2020 - 28 February 2021. Six public sector primary healthcare facilities were included in the study through random selection from three of the four substructures in the Cape Town metropole. Medical records of adult patients diagnosed with UTIs, through clinical diagnosis or microbiological testing, were identified via a selective sampling process. Data were collected from medical records using a standardised data collection tool.
Results. A total of 401 UTI episodes occurred in 383 patients during the study period. The majority of UTI episodes (84.3%) occurred in females, complicated UTIs (74.1%) were more common than uncomplicated UTIs, and nitrofurantoin (57.1%) was frequently prescribed, followed by ciprofloxacin (39.7%). Compliance with urine microscopy recommendations was low (6.7%), and antibiotics were appropriately selected in 75.0% of uncomplicated and 70.0% of complicated UTI episodes.
Conclusion. Interventions are required to improve compliance with treatment recommendations as per the standard treatment guidelines, especially when selecting the appropriate antibiotic, duration of therapy and urine microscopy.
Collapse
|
17
|
Chandra P, V R, M S, Cs S, Mk U. Multidrug-resistant Acinetobacter baumannii infections: looming threat in the Indian clinical setting. Expert Rev Anti Infect Ther 2021; 20:721-732. [PMID: 34878345 DOI: 10.1080/14787210.2022.2016393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The recent increase in multidrug-resistant strains of A. baumannii has increased the incidences of ventilator-associated pneumoniae, catheter-associated urinary tract infections, and central line-associated blood stream infections, together increasing hospital stay, treatment cost, and mortality. Resistance genes blaOXA and blaNDM are dominant in India. Carbapenem-resistant A. baumannii (CRAB) International clone-2 (IC-2) are rising in India. High dependency on carbapenems and last-resort combination of tigecycline and polymyxins have aggravated outcomes. Despite nursing barriers, ward closure, environmental disinfections etc for detecting and controlling transmission, MDR isolates and CRAB nosocomial outbreaks continue. Treatment cost overruns by AMR adversely affect 80% of Indians without insurance cover. AREA COVERED This narrative review will cover epidemiology, resistance pattern, genetic diversity, device-related infection, cost, and mortality due to multidrug-resistant and CRAB in India. A comprehensive literature search in PubMed and Google Scholar using appropriate keywords at different time points yielded relevant articles. EXPERT OPINION It is challenging to enforce policies to control MDR A. baumannii in India. Government and hospitals should enforce stringent infection control measures, surveillance, and antimicrobial stewardship to prevent further spread and emergence of more virulent and resistant strains. Knowledge on antibiotic resistance mechanisms can help design novel antibiotics that can evade, resistance.
Collapse
Affiliation(s)
- Prashant Chandra
- Department of Pharmacy Practice, Centre for Pharmaceutical care, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Rajesh V
- Department of Pharmacy Practice, Centre for Pharmaceutical care, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.,Department of Pharmacy Practice, Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Nitte University, Mangaluru, India
| | - Surulivelrajan M
- Department of Pharmacy Practice, Centre for Pharmaceutical care, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shastry Cs
- Department of Pharmacy Practice, Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Nitte University, Mangaluru, India
| | - Unnikrishnan Mk
- Department of Pharmacy Practice, Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Nitte University, Mangaluru, India
| |
Collapse
|
18
|
Amiss AS, Henriques ST, Lawrence N. Antimicrobial peptides provide wider coverage for targeting drug‐resistant bacterial pathogens. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anna S. Amiss
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
- School of Biomedical Sciences Queensland University of Technology, Translational Research Institute Brisbane Queensland Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| |
Collapse
|