1
|
Güngör SA, Köse M, Tümer M, Türkeş C, Beydemir Ş. Synthesis, characterization and docking studies of benzenesulfonamide derivatives containing 1,2,3-triazole as potential ınhibitor of carbonic anhydrase I-II enzymes. J Biomol Struct Dyn 2023; 41:10919-10929. [PMID: 36576122 DOI: 10.1080/07391102.2022.2159531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022]
Abstract
Carbonic Anhydrases (CAs) are an important family of metalloenzymes that contain zinc (Zn2+) ions in their active site and catalyze the conversion of carbon dioxide to bicarbonate and proton and found in all living organisms. Sulfonamides are well-known inhibitors of CAs isoenzymes. In this study, a series of benzenesulfonamide derivatives (9a-h) containing 1,2,3-triazole-moiety were designed, synthesized and their structures were characterized by spectroscopic methods. In addition, molecular structures of compounds 5a, 5 b, 9e and 9f were elucidated by X-ray diffraction technique. To investigate drug similarity of 9a-h compounds, Lipinski's five rules (ADMET: absorption, distribution, metabolism, excretion and toxicity) were carried out by in silico studies. According to results, the compounds showed drug-like properties. Docking studies were applied to determine the scores, interactions and binding modes of compounds 9a-h against hCA I and hCA II enzymes. Compound 9c (-5.13 kcal/mol docking score) against hCA I enzyme and 9 h (-5.32 kcal/mol docking score) against hCA II enzyme showed potent inhibitory properties. The binding interactions of the compounds with the carbonic anhydrases were examined by docking studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Seyit Ali Güngör
- Chemistry Department, Faculty of Science, Kahramanmaras Sütcü Imam University, Kahramanmaras, Turkey
| | - Muhammet Köse
- Chemistry Department, Faculty of Science, Kahramanmaras Sütcü Imam University, Kahramanmaras, Turkey
| | - Mehmet Tümer
- Chemistry Department, Faculty of Science, Kahramanmaras Sütcü Imam University, Kahramanmaras, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
2
|
Bashore F, Annor-Gyamfi J, Du Y, Katis V, Nwogbo F, Flax RG, Frye SV, Pearce KH, Fu H, Willson TM, Drewry DH, Axtman AD. Fused Tetrahydroquinolines Are Interfering with Your Assay. J Med Chem 2023; 66:14434-14446. [PMID: 37874947 PMCID: PMC10641811 DOI: 10.1021/acs.jmedchem.3c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Tricyclic tetrahydroquinolines (THQs) have been repeatedly reported as hits across a diverse range of high-throughput screening (HTS) campaigns. The activities of these compounds, however, are likely due to reactive byproducts that interfere with the assay. As a lesser studied class of pan-assay interference compounds, the mechanism by which fused THQs react with protein targets remains largely unknown. During HTS follow-up, we characterized the behavior and stability of several fused tricyclic THQs. We synthesized key analogues to pinpoint the cyclopentene ring double bond as a source of reactivity of fused THQs. We found that these compounds degrade in solution under standard laboratory conditions in days. Importantly, these observations make it likely that fused THQs, which are ubiquitously found within small molecule screening libraries, are unlikely the intact parent compounds. We urge deprioritization of tricylic THQ hits in HTS follow-up and caution against the investment of resources to follow-up on these problematic compounds.
Collapse
Affiliation(s)
- Frances
M. Bashore
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joel Annor-Gyamfi
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yuhong Du
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
- Emory
Chemical Biology Discovery Center, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Vittorio Katis
- Alzheimer’s
Research UK Oxford Drug Discovery Institute, Centre for Medicines
Discovery, Nuffield Department of Medicine Research Building, Old
Road Campus, University of Oxford, Oxford OX3 7FZ, U.K.
| | - Felix Nwogbo
- UNC
Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal
Chemistry, Center for Integrative Chemical
Biology and Drug Discovery, Chapel
Hill, North Carolina 27599, United States
| | - Raymond G. Flax
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephen V. Frye
- UNC
Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal
Chemistry, Center for Integrative Chemical
Biology and Drug Discovery, Chapel
Hill, North Carolina 27599, United States
| | - Kenneth H. Pearce
- UNC
Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal
Chemistry, Center for Integrative Chemical
Biology and Drug Discovery, Chapel
Hill, North Carolina 27599, United States
| | - Haian Fu
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
- Emory
Chemical Biology Discovery Center, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Timothy M. Willson
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David H. Drewry
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC Lineberger
Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alison D. Axtman
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Aatkar A, Vuorinen A, Longfield OE, Gilbert K, Peltier-Heap R, Wagner CD, Zappacosta F, Rittinger K, Chung CW, House D, Tomkinson NCO, Bush JT. Efficient Ligand Discovery Using Sulfur(VI) Fluoride Reactive Fragments. ACS Chem Biol 2023; 18:1926-1937. [PMID: 37084287 PMCID: PMC10510102 DOI: 10.1021/acschembio.3c00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Sulfur(VI) fluorides (SFs) have emerged as valuable electrophiles for the design of "beyond-cysteine" covalent inhibitors and offer potential for expansion of the liganded proteome. Since SFs target a broad range of nucleophilic amino acids, they deliver an approach for the covalent modification of proteins without requirement for a proximal cysteine residue. Further to this, libraries of reactive fragments present an innovative approach for the discovery of ligands and tools for proteins of interest by leveraging a breadth of mass spectrometry analytical approaches. Herein, we report a screening approach that exploits the unique properties of SFs for this purpose. Libraries of SF-containing reactive fragments were synthesized, and a direct-to-biology workflow was taken to efficiently identify hit compounds for CAII and BCL6. The most promising hits were further characterized to establish the site(s) of covalent modification, modification kinetics, and target engagement in cells. Crystallography was used to gain a detailed molecular understanding of how these reactive fragments bind to their target. It is anticipated that this screening protocol can be used for the accelerated discovery of "beyond-cysteine" covalent inhibitors.
Collapse
Affiliation(s)
- Arron Aatkar
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Aini Vuorinen
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Oliver E. Longfield
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Katharine Gilbert
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Rachel Peltier-Heap
- GSK, South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Craig D. Wagner
- GSK, South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | | | | | - Chun-wa Chung
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - David House
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Nicholas C. O. Tomkinson
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Jacob T. Bush
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- The
Francis Crick Institute, London NW1 1AT, U.K.
| |
Collapse
|
4
|
Abdoli M, Luca VD, Capasso C, Supuran CT, Žalubovskis R. Investigation of carbonic anhydrase inhibitory potency of ( Z/E)-alkyl N'-benzyl- N-(arylsulfonyl)-carbamimidothioates. Future Med Chem 2023; 15:615-627. [PMID: 37140057 DOI: 10.4155/fmc-2022-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Aim: Among 15 human (h) carbonic anhydrase (CA; EC 4.2.1.1) isoforms, two (hCA IX and XII) play important roles in the growth and survival of tumor cells, making them therapeutic targets for cancer treatment. This study aimed to develop novel sulfonamide-based compounds as selective hCA IX and XII inhibitors. Materials & methods: A library of novel N-sulfonyl carbamimidothioates was obtained for CA inhibitory activity studies against four hCA isoforms. Results: None of the developed compounds displayed inhibitory potential against off-target isoforms hCA I and II. However, they effectively inhibited tumor-associated hCA IX and XII. Conclusion: The present study suggests potent lead compounds as selective hCA IX and XII inhibitors with anticancer activity.
Collapse
Affiliation(s)
- Morteza Abdoli
- Institute of Technology of Organic Chemistry, Faculty of Materials Science & Applied Chemistry, Riga Technical University, Riga, LV-1048, Latvia
| | - Viviana De Luca
- Department of Biology, Agriculture & Food Sciences, Institute of Biosciences & Bioresources, Napoli, 80131, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture & Food Sciences, Institute of Biosciences & Bioresources, Napoli, 80131, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical & Nutraceutical Section, University of Florence, Florence, 50019, Italy
| | - Raivis Žalubovskis
- Institute of Technology of Organic Chemistry, Faculty of Materials Science & Applied Chemistry, Riga Technical University, Riga, LV-1048, Latvia
- Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia
| |
Collapse
|
5
|
Degotte G, Pendeville H, Di Chio C, Ettari R, Pirotte B, Frédérich M, Francotte P. Dimeric polyphenols to pave the way for new antimalarial drugs. RSC Med Chem 2023; 14:715-733. [PMID: 37122550 PMCID: PMC10131582 DOI: 10.1039/d2md00392a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Because of the threat of resistant Plasmodium sp., new orally active antimalarials are urgently needed. Inspired by the structure of ellagic acid, exhibiting potent in vivo and in vitro antiplasmodial effects, polyphenolic structures possessing a similar activity-safety profile were synthesized. Indeed, most exhibited a marked in vitro effect (IC50 < 4 μM) on resistant P. falciparum, without any detrimental effects reported during the toxicity assays (hemolysis, cytotoxicity, in vivo). In addition, they possessed a greater hydrosolubility (from 7 μM to 2.7 mM) compared to ellagic acid. Among them, 30 is the most promising for antimalarial purposes since it displayed a significant parasitaemia reduction after oral administration in mice (50 mg kg-1) compared to the orally ineffective ellagic acid. In conclusion, our investigations led to the identification of a promising scaffold, which could bring new insights for malaria treatment.
Collapse
Affiliation(s)
- Gilles Degotte
- Laboratory of Medicinal Chemistry, CIRM, Department of Pharmacy, University of Liège Quartier Hôpital - B36 Tower 4, +5, Avenue Hippocrate 15 4000 Liège Belgium
- Laboratory of Pharmacognosy, CIRM, Department of Pharmacy, University of Liège Quartier Hôpital - B36 Tower 4, +5, Avenue Hippocrate 15 4000 Liège Belgium
| | - Hélène Pendeville
- Platform Zebrafish facility & transgenics, GIGA, University of Liège Quartier Hôpital - B34, +2, Avenue de l'Hôpital 11 4000 Liège Belgium
| | - Carla Di Chio
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche e ambientali, Università degli Studi di Messina Viale Annunziata 98168 Messina Italy
| | - Roberta Ettari
- Dipartimento di Scienze chimiche, biologiche, farmaceutiche e ambientali, Università degli Studi di Messina Viale Annunziata 98168 Messina Italy
| | - Bernard Pirotte
- Laboratory of Medicinal Chemistry, CIRM, Department of Pharmacy, University of Liège Quartier Hôpital - B36 Tower 4, +5, Avenue Hippocrate 15 4000 Liège Belgium
| | - Michel Frédérich
- Laboratory of Pharmacognosy, CIRM, Department of Pharmacy, University of Liège Quartier Hôpital - B36 Tower 4, +5, Avenue Hippocrate 15 4000 Liège Belgium
| | - Pierre Francotte
- Laboratory of Medicinal Chemistry, CIRM, Department of Pharmacy, University of Liège Quartier Hôpital - B36 Tower 4, +5, Avenue Hippocrate 15 4000 Liège Belgium
| |
Collapse
|
6
|
Exploring the multi-target enzyme inhibition potential of new sulfonamido-thiazoline derivatives; Synthesis and computational studies. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Synthesis and Antimicrobial Activity of New Heteroaryl(aryl) Thiazole Derivatives Molecular Docking Studies. Antibiotics (Basel) 2022; 11:antibiotics11101337. [PMID: 36289995 PMCID: PMC9658463 DOI: 10.3390/antibiotics11101337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Herein, we report the design, synthesis, and evaluation of the antimicrobial activity of new heteroaryl (aryl) thiazole derivatives. The design was based on a molecular hybridization approach. The in vitro evaluation revealed that these compounds demonstrated moderate antibacterial activity. The best activity was achieved for compound 3, with MIC and MBC in the range of 0.23–0.7 and 0.47–0.94 mg/mL, respectively. Three compounds (2, 3, and 4) were tested against three resistant strains, namely methicillin resistant Staphylococcus aureus, P. aeruginosa, and E. coli, which showed higher potential than the reference drug ampicillin. Antifungal activity of the compounds was better with MIC and MFC in the range of 0.06–0.47 and 0.11–0.94 mg/mL, respectively. The best activity was observed for compound 9, with MIC at 0.06–0.23 mg/mL and MFC at 0.11–0.47 mg/mL. According to docking studies, the predicted inhibition of the E. coli MurB enzyme is a putative mechanism of the antibacterial activity of the compounds, while inhibition of 14a-lanosterol demethylase is probably the mechanism of their antifungal activity.
Collapse
|
8
|
Saleem A, Farooq U, Bukhari SM, Khan S, Zaidi A, Wani TA, Shaikh AJ, Sarwar R, Mahmud S, Israr M, Khan FA, Shahzad SA. Isoxazole Derivatives against Carbonic Anhydrase: Synthesis, Molecular Docking, MD Simulations, and Free Energy Calculations Coupled with In Vitro Studies. ACS OMEGA 2022; 7:30359-30368. [PMID: 36061660 PMCID: PMC9434621 DOI: 10.1021/acsomega.2c03600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/02/2022] [Indexed: 05/28/2023]
Abstract
Heterocyclic compounds with a five-membered ring as a core, particularly those containing more than one heteroatom, have a wide spectrum of biological functions, especially in enzyme inhibition. In this study, we present the synthesis of five-membered heterocyclic isoxazole derivatives via sonication of ethyl butyrylacetate with aromatic aldehyde in the presence of a SnII-Mont K10 catalyst. The synthesized compounds were characterized using sophisticated spectroscopic methods. In vitro testing of the compounds reveals three derivatives with significant inhibitory action against carbonic anhydrase (CA) enzyme. The compound AC2 revealed the most promising inhibitory activity against CA among the entire series, with an IC50 = 112.3 ± 1.6 μM (%inh = 79.5) followed by AC3 with an IC50 = 228.4 ± 2.3 μM (%inh = 68.7) compared to the standard with 18.6 ± 0.5 μM (%inh = 87.0). Molecular docking (MD) study coupled with extensive MD simulations (400 ns) and MMPBSA study fully supported the in vitro enzyme inhibition results, evident from the computed ΔG bind (AC2 = -13.53 and AC3 = -12.49 kcal/mol). The in vitro and in silico studies are also augmented by a fluorescence-based enzymatic assay in which compounds AC2 and AC3 showed significant fluorescence enhancement. Therefore, on the basis of the present study, it is inferred that AC2 and AC3 may serve as a new framework for designing effective CA inhibitors.
Collapse
Affiliation(s)
- Afia Saleem
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Umar Farooq
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Syed Majid Bukhari
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Sara Khan
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Asma Zaidi
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Tanveer A. Wani
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahson Jabbar Shaikh
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Rizwana Sarwar
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Shafi Mahmud
- Division
of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Muhammad Israr
- Pakistan
Science Foundation, 1-Constitution Avenue, G-5/2, Islamabad 44000, Pakistan
| | - Farhan A. Khan
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| | - Sohail Anjum Shahzad
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, KPK, Pakistan
| |
Collapse
|
9
|
Abstract
In this study, aldose reductase (AR) was purified from sheep kidney using chromatographic methods and examined the interactions between some sulfonamides and the enzyme. According to results, sulfonamides display effective inhibitor features for sheep kidney AR with IC50 values in the range of 37.27-87.65 μM and Kis in the range of 25.72 ± 6.45 to 73.56 ± 17.49 μM. The sulfonamides displayed different inhibition mechanisms. It was found that studied all compounds displayed non-competitive inhibition type except for 5-chlorothiophene-2-sulfonamide (1). It showed competitive inhibition. Among these compounds, 2,5-dichlorothiophene-3-sulfonamide compound (2) was showed the most potent AR inhibitor (Ki: 25.72 ± 6.45). These compounds may be useful in the treatment of diabetic complications.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Zeynep Köksal
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
10
|
Başaran E, Çakmak R, Şentürk M, Taskin-Tok T. Biological activity and molecular docking studies of some N-phenylsulfonamides against cholinesterases and carbonic anhydrase isoenzymes. J Mol Recognit 2022; 35:e2982. [PMID: 35842829 DOI: 10.1002/jmr.2982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 11/07/2022]
Abstract
In this research, a series of N-phenylsulfonamide derivatives (1-12) were designed, synthesized and investigated for their inhibitory potencies against carbonic anhydrase isoenzymes I, II and IX (hCA I, hCA II, and hCA IX) and cholinesterases (ChE), namely, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). These compounds, whose inhibition potentials were evaluated for the first time, were characterized by spectroscopic techniques (1 H- and 13 C NMR and FT-IR). CA isoenzyme inhibitors are significant therapeutic targets, especially owing to their preventive/activation potential in the therapy processes of some diseases such as cancer, osteoporosis, and glaucoma. On the other hand, Cholinesterase inhibitors are valuable molecules with biological importance that can be employed in the therapy process of Alzheimer's patients. The results showed that the tested molecules had enzyme inhibition activities ranging from 9.7 to 93.7 nM against these five metabolic enzymes. Among the tested molecules, the methoxy and the hydroxyl group-containing compounds 10, 11, and 12 exhibited more enzyme inhibition activities when compared to standard compounds acetazolamide (AAZ), sulfapyridine, and sulfadiazine for CA isoenzymes and neostigmine for ChE, respectively. Of these three molecules, compound 12, which had a hydroxyl group in the para position in the aromatic ring, was determined to be the most active molecule against all enzymes. In silico work, molecular docking has also shown similar results and consistent with the experimental data in the study. As a result, we can say that some of the tested molecules might be used as promising inhibitor candidates for further studies on this topic.
Collapse
Affiliation(s)
- Eyüp Başaran
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences, Batman University, Batman, Turkey
| | - Reşit Çakmak
- Medical Laboratory Techniques Program, Vocational School of Health Services, Batman University, Batman, Turkey
| | - Murat Şentürk
- Department of Biochemistry, Pharmacy Faculty, Ağrı Ibrahim Çecen University, Ağrı, Turkey
| | - Tugba Taskin-Tok
- Gaziantep University, Faculty of Arts and Sciences, Department of Chemistry, Gaziantep, Turkey.,Gaziantep University, Institute of Health Sciences, Department of Bioinformatics and Computational Biology, Gaziantep, Turkey
| |
Collapse
|
11
|
Gawrońska M, Kowalik M, Duch J, Kazimierczuk K, Makowski M. Sulfonamides with hydroxyphenyl moiety: Synthesis, structure, physicochemical properties, and ability to form complexes with Rh(III) ion. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Angeli A, Kartsev V, Petrou A, Lichitsky B, Komogortsev A, Pinteala M, Geronikaki A, Supuran CT. Pyrazolo[4,3-c]pyridine Sulfonamides as Carbonic Anhydrase Inhibitors: Synthesis, Biological and In Silico Studies. Pharmaceuticals (Basel) 2022; 15:316. [PMID: 35337114 PMCID: PMC8955975 DOI: 10.3390/ph15030316] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the essential reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho-/physiological conditions. A series of chromene-based sulfonamides were synthesized and tested as possible CA inhibitors. On the other hand, in microorganisms, the β- and γ- classes are expressed in addition to the α- class, showing substantial structural differences to the human isoforms. In this scenario, not only human but also bacterial CAs are of particular interest as new antibacterial agents with an alternative mechanism of action for fighting the emerging problem of extensive drug resistance afflicting most countries worldwide. Pyrazolo[4,3-c]pyridine sulfonamides were synthesized using methods of organic chemistry. Their inhibitory activity, assessed against the cytosolic human isoforms hCA I and hCA II, the transmembrane hCA IX and XII, and β- and γ-CAs from three different bacterial strains, was evaluated by a stopped-flow CO2 hydrase assay. Several of the investigated derivatives showed interesting inhibition activity towards the cytosolic associate isoforms hCA I and hCA II, as well as the 3β- and 3γ-CAs. Furthermore, computational procedures were used to investigate the binding mode of this class of compounds within the active site of hCA IX. Four compounds (1f, 1g, 1h and 1k) were more potent than AAZ against hCA I. Furthermore, compound 1f also showed better activity than AAZ against the hCA II isoform. Moreover, ten compounds out of eleven appeared to be very potent against the γ-CA from E.coli, with a Ki much lower than that of the reference drug. Most of the compounds showed better activity than AAZ against hCA I as well as the γ-CA from E.coli and the β-CA from Burkholderia pseudomallei (BpsCAβ). Compounds 1f and 1k showed a good selectivity index against hCA I and hCA XII, while 1b was selective against all 3β-CA isoforms from E.coli, BpsCA, and VhCA and all 3γ-CA isoforms from E.coli, BpsCA and PgiCA.
Collapse
Affiliation(s)
- Andrea Angeli
- Sezione di Scienze Farmaceutiche, NeuroFarba Department, Universita degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, no. 41A, 700487 Iasi, Romania;
| | | | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Boris Lichitsky
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 119991 Moscow, Russia; (B.L.); (A.K.)
| | - Andrey Komogortsev
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 119991 Moscow, Russia; (B.L.); (A.K.)
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, no. 41A, 700487 Iasi, Romania;
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Claudiu T. Supuran
- Sezione di Scienze Farmaceutiche, NeuroFarba Department, Universita degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
13
|
Gillesa D, Bernarda P, Pierre F, Michel F. Potential of Caffeic Acid Derivatives as Antimalarial Leads. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220202160247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Background
Malaria remained one of the deadliest infectious diseases in 2021. Indeed, this infection, mostly caused by a protozoan called Plasmodium falciparum, is responsible for more than 200 million cases and around 400 000 related deaths annually, mainly in Africa. Despite the availability of efficient drugs, an increase of patients has occurred since 2015, which could be due to the development of resistances from the parasite, but also from its vectors, Anopheles mosquitoes. Consequently, it is necessary to search for new alternative treatments.
Methods:
Methods
Polyphenols, and more precisely small phenolic acids, could represent a good starting point for new antimalarials. Indeed, these molecules, including caffeic acid (1), possess several pharmacological activities and an interesting pharmacokinetic profile. Therefore, we have developed several small derivatives of this scaffold to define the potential pharmacophore responsible for the antiplasmodial properties
Results:
Results
A good to low activity on Plasmodium falciparum (IC50 = 16-241 µM) was observed, especially for the small ester derivatives (2-6). These molecules were good antiplasmodials compared to their mother compound (IC50 = 80 µM) and showed selectivity against human cells. These structures have also highlighted the need for catechol and carboxyl moieties in the anti-Plasmodium effect.
Conclusion:
Conclusion
None of the synthetic caffeate derivatives reported here seemed sufficiently effective to become a potential antimalarial (IC50 < 1 µM). However, the significant increase of their efficacy on the malarial agent and the selectivity to human cells, highlighted their potential as new leads for future developments
Collapse
Affiliation(s)
- Degotte Gillesa
- Laboratory of Medicinal Chemistry, CIRM, University of Liège, Liège, Belgium
- Laboratory of Pharmacognosy, CIRM, University of Liège, Liège, Belgium
| | - Pirotte Bernarda
- Laboratory of Medicinal Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Francotte Pierre
- Laboratory of Medicinal Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Frédérich Michel
- Laboratory of Pharmacognosy, CIRM, University of Liège, Liège, Belgium
| |
Collapse
|
14
|
Antitumor activity, X-Ray crystallography, in silico study of some-sulfamido-phosphonates. Identification of pharmacophore sites. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Rafiq K, Ur Rehman N, Halim SA, Khan M, Khan A, Al-Harrasi A. Design, Synthesis and Molecular Docking Study of Novel 3-Phenyl-β-Alanine-Based Oxadiazole Analogues as Potent Carbonic Anhydrase II Inhibitors. Molecules 2022; 27:molecules27030816. [PMID: 35164091 PMCID: PMC8838037 DOI: 10.3390/molecules27030816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Carbonic anhydrase-II (CA-II) is strongly related with gastric, glaucoma, tumors, malignant brain, renal and pancreatic carcinomas and is mainly involved in the regulation of the bicarbonate concentration in the eyes. With an aim to develop novel heterocyclic hybrids as potent enzyme inhibitors, we synthesized a series of twelve novel 3-phenyl-β-alanine 1,3,4-oxadiazole hybrids (4a-l), characterized by 1H- and 13C-NMR with the support of HRESIMS, and evaluated for their inhibitory activity against CA-II. The CA-II inhibition results clearly indicated that the 3-phenyl-β-alanine 1,3,4-oxadiazole derivatives 4a-l exhibited selective inhibition against CA-II. All the compounds (except 4d) exhibited good to moderate CA-II inhibitory activities with IC50 value in range of 12.1 to 53.6 µM. Among all the compounds, 4a (12.1 ± 0.86 µM), 4c (13.8 ± 0.64 µM), 4b (19.1 ± 0.88 µM) and 4h (20.7 ± 1.13 µM) are the most active hybrids against carbonic CA-II. Moreover, molecular docking was performed to understand the putative binding mode of the active compounds. The docking results indicates that these compounds block the biological activity of CA-II by nicely fitting at the entrance of the active site of CA-II. These compounds specifically mediating hydrogen bonding with Thr199, Thr200, Gln92 of CA-II.
Collapse
Affiliation(s)
- Kashif Rafiq
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Birkat Al Mauz, Nizwa 616, Oman; (K.R.); (S.A.H.); (M.K.); (A.K.)
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Birkat Al Mauz, Nizwa 616, Oman; (K.R.); (S.A.H.); (M.K.); (A.K.)
- Correspondence: (N.U.R.); (A.A.-H.); Tel.: +968-2544-6328 (A.A.-H.); Fax: +968-2544-6612 (A.A.-H.)
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Birkat Al Mauz, Nizwa 616, Oman; (K.R.); (S.A.H.); (M.K.); (A.K.)
| | - Majid Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Birkat Al Mauz, Nizwa 616, Oman; (K.R.); (S.A.H.); (M.K.); (A.K.)
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Birkat Al Mauz, Nizwa 616, Oman; (K.R.); (S.A.H.); (M.K.); (A.K.)
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Birkat Al Mauz, Nizwa 616, Oman; (K.R.); (S.A.H.); (M.K.); (A.K.)
- Correspondence: (N.U.R.); (A.A.-H.); Tel.: +968-2544-6328 (A.A.-H.); Fax: +968-2544-6612 (A.A.-H.)
| |
Collapse
|
16
|
Gümüş M, Babacan ŞN, Demir Y, Sert Y, Koca İ, Gülçin İ. Discovery of sulfadrug-pyrrole conjugates as carbonic anhydrase and acetylcholinesterase inhibitors. Arch Pharm (Weinheim) 2021; 355:e2100242. [PMID: 34609760 DOI: 10.1002/ardp.202100242] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/11/2023]
Abstract
Human carbonic anhydrase (hCA) isoenzymes are zinc ion-containing, widespread metalloenzymes and they classically play a role in pH homeostasis maintenance. CA inhibitors suppress the CA activity and their usage has been clinically established as antiglaucoma agents, antiepileptics, diuretics, and in some other disorders. Alzheimer's disease (AD) is a slowly progressive neurodegenerative disorder and a fatal disease of the brain. An advanced method to cure AD includes the strategy to design acetylcholinesterase (AChE) inhibitors. A novel series of pyrrole-3-one derivatives containing sulfa drugs (5a-i) were determined to be highly potent inhibitors for AChE and hCA I and hCA II (inhibitory constant [Ki ] values are in the range of 6.50 ± 1.02-37.46 ± 4.12 nM, 1.20 ± 0.19-44.21 ± 1.09 nM, and 8.93 ± 1.58-46.86 ± 8.41 nM for AChE, hCA I, and hCA II, respectively). The designed compounds often show a more effective inhibition than the chemicals used as the standard. Among these compounds, 5f was the most effective compound against hCA I, and compound 5e was the most effective compound against hCA II. It was determined that compound 5c was the most effective inhibitor for AChE.
Collapse
Affiliation(s)
- Mehmet Gümüş
- Department of Occupational Health and Safety, Akdagmadeni Health College, Yozgat Bozok University, Yozgat, Turkey
| | - Şemsi N Babacan
- Department of Occupational Health and Safety, Akdagmadeni Health College, Yozgat Bozok University, Yozgat, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Gole Vocational High School, Ardahan University, Ardahan, Turkey
| | - Yusuf Sert
- Department of Physics, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
17
|
Degotte G, Pirotte B, Frédérich M, Francotte P. Polyhydroxybenzoic acid derivatives as potential new antimalarial agents. Arch Pharm (Weinheim) 2021; 354:e2100190. [PMID: 34346088 DOI: 10.1002/ardp.202100190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 11/11/2022]
Abstract
With more than 200 million cases and 400,000 related deaths, malaria remains one of the deadliest infectious diseases of 2021. Unfortunately, despite the availability of efficient treatments, we have observed an increase in people infected with malaria since 2015 (from 211 million in 2015 to 229 million in 2019). This trend could partially be due to the development of resistance to all the current drugs. Therefore, there is an urgent need for new alternatives. We have, thus, selected common natural scaffolds, polyhydroxybenzoic acids, and synthesized a library of derivatives to better understand the structure-activity relationships explaining their antiplasmodial effect. Only gallic acid derivatives showed a noticeable potential for further developments. Indeed, they showed a selective inhibitory effect on Plasmodium (IC50 ~20 µM, SI > 5) often associated with interesting water solubility. Moreover, this has confirmed the critical importance of free phenolic functions (pyrogallol moiety) for the antimalarial effect. Methyl 4-benzoxy-3,5-dihydroxybenzoate (39) has, for the first time, been recognized as a potential lead for future research because of its marked inhibitory activity against Plasmodium falciparum and its significant hydrosolubility (3.72 mM).
Collapse
Affiliation(s)
- Gilles Degotte
- Department of Pharmacy, Laboratory of Medicinal Chemistry, CIRM, University of Liège, Liège, Belgium.,Department of Pharmacy, Laboratory of Pharmacognosy, CIRM, University of Liège, Liège, Belgium
| | - Bernard Pirotte
- Department of Pharmacy, Laboratory of Medicinal Chemistry, CIRM, University of Liège, Liège, Belgium
| | - Michel Frédérich
- Department of Pharmacy, Laboratory of Pharmacognosy, CIRM, University of Liège, Liège, Belgium
| | - Pierre Francotte
- Department of Pharmacy, Laboratory of Medicinal Chemistry, CIRM, University of Liège, Liège, Belgium
| |
Collapse
|
18
|
Triazolo Based-Thiadiazole Derivatives. Synthesis, Biological Evaluation and Molecular Docking Studies. Antibiotics (Basel) 2021; 10:antibiotics10070804. [PMID: 34356726 PMCID: PMC8300616 DOI: 10.3390/antibiotics10070804] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
The goal of this research is to investigate the antimicrobial activity of nineteen previously synthesized 3,6-disubstituted-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives. The compounds were tested against a panel of three Gram-positive and three Gram-negative bacteria, three resistant strains, and six fungi. Minimal inhibitory, bactericidal, and fungicidal concentrations were determined by a microdilution method. All of the compounds showed antibacterial activity that was more potent than both reference drugs, ampicillin and streptomycin, against all bacteria tested. Similarly, they were also more active against resistant bacterial strains. The antifungal activity of the compounds was up to 80-fold higher than ketoconazole and from 3 to 40 times higher than bifonazole, both of which were used as reference drugs. The most active compounds (2, 3, 6, 7, and 19) were tested for their inhibition of P. aeruginosa biofilm formation. Among them, compound 3 showed significantly higher antibiofilm activity and appeared to be equipotent with ampicillin. The prediction of the probable mechanism by docking on antibacterial targets revealed that E. coli MurB is the most suitable enzyme, while docking studies on antifungal targets indicated a probable involvement of CYP51 in the mechanism of antifungal activity. Finally, the toxicity testing in human cells confirmed their low toxicity both in cancerous cell line MCF7 and non-cancerous cell line HK-2.
Collapse
|
19
|
Türkeş C, Akocak S, Işık M, Lolak N, Taslimi P, Durgun M, Gülçin İ, Budak Y, Beydemir Ş. Novel inhibitors with sulfamethazine backbone: synthesis and biological study of multi-target cholinesterases and α-glucosidase inhibitors. J Biomol Struct Dyn 2021; 40:8752-8764. [PMID: 33950796 DOI: 10.1080/07391102.2021.1916599] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The underlying cause of many metabolic diseases is abnormal changes in enzyme activity in metabolism. Inhibition of metabolic enzymes such as cholinesterases (ChEs; acetylcholinesterase, AChE and butyrylcholinesterase, BChE) and α-glucosidase (α-GLY) is one of the accepted approaches in the treatment of Alzheimer's disease (AD) and diabetes mellitus (DM). Here we reported an investigation of a new series of novel ureido-substituted derivatives with sulfamethazine backbone (2a-f) for the inhibition of AChE, BChE, and α-GLY. All the derivatives demonstrated activity in nanomolar levels as AChE, BChE, and α-GLY inhibitors with KI values in the range of 56.07-204.95 nM, 38.05-147.04 nM, and 12.80-79.22 nM, respectively. Among the many strong N-(4,6-dimethylpyrimidin-2-yl)-4-(3-substitutedphenylureido) benzenesulfonamide derivatives (2a-f) detected against ChEs, compound 2c, the 4-fluorophenylureido derivative, demonstrated the most potent inhibition profile towards AChE and BChE. A comprehensive ligand/receptor interaction prediction was performed in silico for the three metabolic enzymes providing molecular docking investigation using Glide XP, MM-GBSA, and ADME-Tox modules. The present research reinforces the rationale behind utilizing inhibitors with sulfamethazine backbone as innovative anticholinergic and antidiabetic agents with a new mechanism of action, submitting propositions for the rational design and synthesis of novel strong inhibitors targeting ChEs and α-GLY.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
| | - Mesut Işık
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mustafa Durgun
- Department of Chemistry, Faculty of Arts and Sciences, Harran University, Şanlıurfa, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, Turkey
| | - Yakup Budak
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpaşa University, Tokat, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,The Rectorate of Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
20
|
New amino acid clubbed Schiff bases inhibit carbonic anhydrase II, α-glucosidase, and urease enzymes: in silico and in vitro. Med Chem Res 2021. [DOI: 10.1007/s00044-020-02696-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Hernández-Ramírez DF, Olivares-Martínez E, Nuñez-Álvarez CA, Coss-Adame E, Valdovinos MA, López-Verdugo F, Furuzawa-Carballeda J, Torres-Villalobos G. Triosephosphate isomerase, carbonic anhydrase, and creatinine kinase-brain isoform are possible antigen targets in patients with achalasia. Neurogastroenterol Motil 2020; 32:e13804. [PMID: 31991059 DOI: 10.1111/nmo.13804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Idiopathic achalasia is an uncommon esophageal motor disorder. The disease involves interaction between inflammatory and autoimmune responses. However, the antigens related to the disease are still unknown. AIM To identify the possible antigen targets in muscle biopsies from lower esophageal sphincter (LES) of achalasia patients. METHODS Esophageal biopsies of patients with type I and type II achalasia and esophagogastric junction outflow obstruction (EGJOO) were analyzed. Lower esophageal sphincter muscle biopsy from a Healthy organ Donor (HD) was included as control for two-dimensional gel electrophoresis. Immunoblotting of muscle from LES lysate with sera of type I, type II achalasia, or type III achalasia, sera of EGJOO and sera of healthy subjects (HS) was performed. The target proteins of the serum were identified by mass spectrometry Matrix-assited laser desorption/ionization time-of-flight (MALDI-TOF). KEY RESULTS The proteomic map of muscle from LES tissue lysates of type I, and type II achalasia, EGJOO, and HD were analyzed and divided into three important regions. We found a difference in the concentration of certain spots. Further, we observed the serum reactivity of type I achalasia and type II achalasia against 45 and 25 kDa bands of type I achalasia tissue. Serum of type III achalasia and EGJOO mainly recognized 25 kDa band. Bands correspond to triosephosphate isomerase (TPI) (25 kDa), carbonic anhydrase (CA) (25 kDa) and creatinine kinase-brain (CKB) isoform (45 kDa). CONCLUSIONS AND INFERENCES We identify three antigen targets, TPI, CA, and CKB isoform, which are recognized by sera from patients with achalasia.
Collapse
Affiliation(s)
- Diego F Hernández-Ramírez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
| | - Elizabeth Olivares-Martínez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
| | - Carlos A Nuñez-Álvarez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
| | - Enrique Coss-Adame
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
| | - Miguel A Valdovinos
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
| | - Fidel López-Verdugo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
| | - Janette Furuzawa-Carballeda
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
| | - Gonzalo Torres-Villalobos
- Department of Experimental Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico.,Department of Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
| |
Collapse
|
22
|
Koca İ, Yiğitcan S, Gümüş M, Gökce H, Sert Y. A new series of sulfa drugs containing pyrazolyl acylthiourea moiety: Synthesis, experimental and theoretical spectral characterization and molecular docking studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Sağlık BN, Çevik UA, Osmaniye D, Levent S, Çavuşoğlu BK, Demir Y, Ilgın S, Özkay Y, Koparal AS, Beydemir Ş, Kaplancıklı ZA. Synthesis, molecular docking analysis and carbonic anhydrase I-II inhibitory evaluation of new sulfonamide derivatives. Bioorg Chem 2019; 91:103153. [DOI: 10.1016/j.bioorg.2019.103153] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/23/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022]
|
24
|
El-Kardocy A, Mustafa M, Ahmed ER, Mohamady S, Mostafa YA. Aryl azide-sulfonamide hybrids induce cellular apoptosis: synthesis and preliminary screening of their cytotoxicity in human HCT116 and A549 cancer cell lines. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02438-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Zhang H, Zhuo C, Zhou D, Zhang F, Chen M, Xu S, Chen Z. Association between the expression of carbonic anhydrase II and clinicopathological features of hepatocellular carcinoma. Oncol Lett 2019; 17:5721-5728. [PMID: 31186798 DOI: 10.3892/ol.2019.10242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 06/07/2018] [Indexed: 01/15/2023] Open
Abstract
The present study aimed to examine the molecular marker associated with the therapy and prognosis of hepatocellular carcinoma (HCC), and further investigate the association between its expression and the clinicopathological features of HCC. To select the core genes closely associated with HCC, differentially expressed genes (DEGs) were analyzed and screened from Gene Expression Omnibus datasets (GSE 36376) using a bioinformatics approach. Tumor and adjacent tissues were collected form 112 patients of HCC who were treated by radical resection. The expression levels of carbonic anhydrase II (CA2) in the tumor and adjacent tissues were determined using reverse transcription-quantitative polymerase chain reaction analysis and immunohistochemistry. The χ2 test was applied for observing the association between the expression of CA2 and clinicopathological features of patients with HCC. The effects of the expression of CA2 on the patients' overall survival (OS) and disease-free survival (DFS) were examined via Kaplan-Meier analysis. A total of 83 DEGs were screened and analyzed using gene network analysis, among which CA2 had direct interactions with more than one disease gene of HCC. The results of immunohistochemistry showed that CA2 was expressed at a lower level in the tumor tissues compared with the adjacent tissues (t=3.012, P=0.010). Single factor analysis revealed that the mRNA expression of CA2 was able to predict the recurrence of HCC, and was significantly associated with α-fetoprotein (AFP), microvascular invasion, tumor-node-metastasis (TNM) staging, and recurrence (P<0.05). The expression levels of AFP, CA2 and TNM staging were confirmed to be independent prognostic factors of HCC (P<0.05). Kaplan-Meier analysis demonstrated that the group with a high expression of CA2 showed increased DFS and OS, compared with the low expression group (P<0.05). These findings indicated that elevated CA2 increased DFS and OS of HCC, which suggested that CA2 may be a potential target for HCC therapy.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Fujian Provincial Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Changhua Zhuo
- Department of Gastrointestinal Surgical Oncology, Fujian Provincial Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Dong Zhou
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Fujian Provincial Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Fan Zhang
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Fujian Provincial Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Minyong Chen
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Fujian Provincial Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Shaohua Xu
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Fujian Provincial Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Zhaoshuo Chen
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Fujian Provincial Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| |
Collapse
|
26
|
The inhibition effects of some sulfonamides on human serum paraoxonase-1 (hPON1). Pharmacol Rep 2019; 71:545-549. [DOI: 10.1016/j.pharep.2019.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/17/2023]
|
27
|
Kocyigit UM, Budak Y, Gürdere MB, Dürü N, Taslimi P, Gülçin İ, Ceylan M. Synthesis and investigation of anticancer, antibacterial activities and carbonic anhydrase, acetylcholinesterase inhibition profiles of novel (3aR,4S,7R,7aS)-2-[4-[1-acetyl-5-(aryl/heteroaryl)-4,5-dihydro-1H-pyrazol-3-yl]phenyl]-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-diones. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-2350-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
28
|
Acidity of arylsulfonamides as function of quantum chemical parameters of sulfonamide nitrogen. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2449-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Köksal Z, Alım Z, Bayrak S, Gülçin İ, Özdemir H. Investigation of the effects of some sulfonamides on acetylcholinesterase and carbonic anhydrase enzymes. J Biochem Mol Toxicol 2019; 33:e22300. [DOI: 10.1002/jbt.22300] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Zeynep Köksal
- Department of ChemistryFaculty of Sciences, Istanbul Medeniyet UniversityIstanbul Turkey
| | - Zuhal Alım
- Department of ChemistryFaculty of Science and Arts, Kırşehir Ahi Evran UniversityKırsehir Turkey
| | - Songül Bayrak
- Department of ChemistryFaculty of Sciences, Atatürk UniversityErzurum Turkey
| | - İlhami Gülçin
- Department of ChemistryFaculty of Sciences, Atatürk UniversityErzurum Turkey
| | - Hasan Özdemir
- Department of ChemistryFaculty of Sciences, Atatürk UniversityErzurum Turkey
| |
Collapse
|
30
|
Ahmed A, Channar PA, Saeed A, Kalesse M, Kazi MA, Larik FA, Abbas Q, Hassan M, Raza H, Seo SY. Synthesis of sulfonamide, amide and amine hybrid pharmacophore, an entry of new class of carbonic anhydrase II inhibitors and evaluation of chemo-informatics and binding analysis. Bioorg Chem 2019; 86:624-630. [PMID: 30807935 DOI: 10.1016/j.bioorg.2019.01.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/12/2019] [Accepted: 01/27/2019] [Indexed: 11/16/2022]
Abstract
Selective inhibition of carbonic anhydrase (CA) enzyme is an active area of research for medicinal chemists. In the current account, a hybrid pharmacophore approach was employed to design sulfonamide, amide and amine containing new series of potent carbonic anhydrase II inhibitors. The aromatic fragment associated with pharmacophore was altered suitably in order to find effective inhibitors of CA-II. All the derivatives 4a-4m showed better inhibition compared to the standard acetazolamide. In particular, compound 4l exhibited significant inhibition with IC50 value of 0.01796 ± 0.00036 µM. The chemo-informatics analysis justified that all the designed compounds possess <10 HBA and <5 HBD. The ligands-protein binding analyses showed that 4l confined in the active binding pocket with three hydrogen bonds observed with His63, Asn66 and Thr197 residues.
Collapse
Affiliation(s)
- Attique Ahmed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | | | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan.
| | - Markus Kalesse
- Institut für Organische Chemie, Schneiderberg 1 B, 30167 Hannover, Germany
| | - Mehar Ali Kazi
- Institute of Biochemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Fayaz Ali Larik
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan.
| | - Qamar Abbas
- Department of Physiology, University of Sindh, Jamshoro 76080, Pakistan
| | - Mubashir Hassan
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro, Gongju, Chungnam 32588, Republic of Korea
| | - Hussain Raza
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro, Gongju, Chungnam 32588, Republic of Korea
| | - Sung-Yum Seo
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro, Gongju, Chungnam 32588, Republic of Korea
| |
Collapse
|
31
|
Mentese A, Erkut N, Demir S, Yaman SO, Sumer A, Erdem M, Alver A, Sonmez M. Serum carbonic anhydrase I and II autoantibodies in patients with chronic lymphocytic leukaemia. Cent Eur J Immunol 2018; 43:276-280. [PMID: 30588172 PMCID: PMC6305617 DOI: 10.5114/ceji.2018.80046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/18/2016] [Indexed: 01/09/2023] Open
Abstract
Cancer is the second most important cause of mortality, and millions of people either have or have had the disease. Leukaemia is one of the most common forms of cancer. Autoantibodies that have developed against the organism's self-antigens are detected in the sera of subjects with cancer. In recent years carbonic anhydrase (CA) autoantibodies have been determined in some autoimmune diseases and carcinomas, but the mechanisms underlying this immune response have not yet been fully explained. The purpose of this study was to determine CA I and II autoantibodies in subjects with chronic lymphocytic leukaemia (CLL) and to provide a novel perspective regarding the autoimmune basis of the disease. Autoantibody levels were investigated using enzyme-linked immunosorbent assay (ELISA) in serum samples from 37 patients with CLL and 37 healthy peers. Anti-CA I titres in the CLL group were significantly higher compared with the control group (p = 0.0001). However, there was no significant difference between CLL and control groups in terms of anti-CA II titres (p = 0.278). The prevalences of CA I and II autoantibodies in patients with CLL in this study were 27% and 24.3%, respectively. Our results suggest that these autoantibodies may be involved in the pathogenesis of CLL. More extensive studies are now needed to reveal the entire mechanism.
Collapse
Affiliation(s)
- Ahmet Mentese
- Program of Medical Laboratory Techniques, Vocational School of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Nergiz Erkut
- Department of Haematology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Serap Ozer Yaman
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Aysegul Sumer
- Department of Nursing, School of Health Services, Recep Tayyip Erdog¡an University, Rize, Turkey
| | - Mehmet Erdem
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mehmet Sonmez
- Department of Haematology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
32
|
Zengin M, Genc H, Taslimi P, Kestane A, Guclu E, Ogutlu A, Karabay O, Gulçin İ. Novel thymol bearing oxypropanolamine derivatives as potent some metabolic enzyme inhibitors - Their antidiabetic, anticholinergic and antibacterial potentials. Bioorg Chem 2018; 81:119-126. [PMID: 30118983 DOI: 10.1016/j.bioorg.2018.08.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 02/04/2023]
Abstract
A series of classical and newly synthesized thymol bearing oxypropanolamine compounds were synthesized and characterized. Their in vitro antibacterial activity on A. baumannii, P. aeruginosa, E. coli and S. aureus strains were investigated with agar well diffusion method. The results were compared with commercially available drug active compounds. As well as 3a, 3b and 3c have the most significant antibacterial effect among all the tested compounds; approximately all of them have more antibacterial activity than the reference drugs. These novel thymol bearing oxypropanolamine derivatives were effective inhibitors of the α-glycosidase, cytosolic carbonic anhydrase I and II isoforms (hCA I and II), and acetylcholinesterase enzymes (AChE) with Ki values in the range of 463.85-851.05 µM for α-glycosidase, 1.11-17.34 µM for hCA I, 2.97-17.83 µM for hCA II, and 13.58-31.45 µM for AChE, respectively.
Collapse
Affiliation(s)
- Mustafa Zengin
- Sakarya University, Faculty of Science and Arts, Department of Chemistry, 54187 Serdivan Sakarya, Turkey
| | - Hayriye Genc
- Sakarya University, Faculty of Science and Arts, Department of Chemistry, 54187 Serdivan Sakarya, Turkey
| | - Parham Taslimi
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey.
| | - Ali Kestane
- Sakarya University, Faculty of Science and Arts, Department of Chemistry, 54187 Serdivan Sakarya, Turkey
| | - Ertugrul Guclu
- Sakarya University, Faculty of Medicine, Infectious Diseases and Clinical Microbiology Department, 54290 Adapazarı Sakarya, Turkey
| | - Aziz Ogutlu
- Sakarya University, Faculty of Medicine, Infectious Diseases and Clinical Microbiology Department, 54290 Adapazarı Sakarya, Turkey
| | - Oguz Karabay
- Sakarya University, Faculty of Medicine, Infectious Diseases and Clinical Microbiology Department, 54290 Adapazarı Sakarya, Turkey
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
33
|
Kocyigit UM, Taslimi P, Gulçin İ. Characterization and inhibition effects of some metal ions on carbonic anhydrase enzyme from Kangal Akkaraman sheep. J Biochem Mol Toxicol 2018; 32:e22172. [DOI: 10.1002/jbt.22172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/15/2018] [Accepted: 06/15/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Umit M. Kocyigit
- Vocational School of Health Services; Cumhuriyet University; Sivas 58140 Turkey
| | - Parham Taslimi
- Department of Chemistry, Faculty of Science; Atatürk University; Erzurum 25240 Turkey
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Science; Atatürk University; Erzurum 25240 Turkey
| |
Collapse
|
34
|
Affiliation(s)
- İlhami Gulçin
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, Turkey
| | - Parham Taslimi
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum, Turkey
| |
Collapse
|
35
|
Türkan F, Huyut Z, Taslimi P, Gülçin İ. Thein vivoeffects of cefazolin, cefuroxime, and cefoperazon on the carbonic anhydrase in different rat tissues. J Biochem Mol Toxicol 2018; 32:e22041. [DOI: 10.1002/jbt.22041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/14/2018] [Accepted: 01/20/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Fikret Türkan
- Health Services Vocational School; Igdır University; Igdır Turkey
| | - Zübeyir Huyut
- Department of Biochemistry, Medical Faculty; Van Yuzuncu Yıl University; Van Turkey
| | - Parham Taslimi
- Department of Chemistry, Faculty of Sciences; Ataturk University; Erzurum Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Sciences; Ataturk University; Erzurum Turkey
| |
Collapse
|
36
|
Budak Y, Kocyigit UM, Gürdere MB, Özcan K, Taslimi P, Gülçin İ, Ceylan M. Synthesis and investigation of antibacterial activities and carbonic anhydrase and acetyl cholinesterase inhibition profiles of novel 4,5-dihydropyrazol and pyrazolyl-thiazole derivatives containing methanoisoindol-1,3-dion unit. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1373406] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yakup Budak
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, Tokat, Turkiye
| | - Umit M. Kocyigit
- Vocational School of Health Services, Cumhuriyet University, Sivas, Turkey
| | - Meliha Burcu Gürdere
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, Tokat, Turkiye
| | - Kezban Özcan
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, Tokat, Turkiye
| | - Parham Taslimi
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Mustafa Ceylan
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, Tokat, Turkiye
| |
Collapse
|
37
|
Öztaskın N, Taslimi P, Maraş A, Gülcin İ, Göksu S. Novel antioxidant bromophenols with acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase inhibitory actions. Bioorg Chem 2017; 74:104-114. [DOI: 10.1016/j.bioorg.2017.07.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
|
38
|
Altundas A, Gül B, Çankaya M, Atasever A, Gülçin İ. Synthesis of 2-amino-3-cyanopyridine derivatives and investigation of their carbonic anhydrase inhibition effects. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 08/20/2017] [Accepted: 08/25/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Aliye Altundas
- Department of Chemistry, Faculty of Science and Arts; Gazi University; Ankara 06500 Turkey
| | - Berna Gül
- Department of Chemistry, Faculty of Science and Arts; Gazi University; Ankara 06500 Turkey
| | - Murat Çankaya
- Department of Biology, Faculty of Science and Arts; Erzincan University; Erzincan 24100 Turkey
| | - Ali Atasever
- Department of Food Science, Ispir H. Polat Vocational School; Atatürk University; Erzurum 25900 Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science; Atatürk University; Erzurum 25240 Turkey
| |
Collapse
|
39
|
Alim Z, Kilic D, Koksal Z, Beydemir S, Ozdemir H. Assessment of the inhibitory effects and molecular docking of some sulfonamides on human serum paraoxonase 1. J Biochem Mol Toxicol 2017; 31. [DOI: 10.1002/jbt.21950] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/29/2017] [Accepted: 06/14/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Zuhal Alim
- Department of Chemistry; Faculty of Science and Arts, Ahi Evran University; Kırşehir 40000 Turkey
| | - Deryanur Kilic
- Department of Chemistry; Faculty of Sciences, Ataturk University; Erzurum 25240 Turkey
- Department of Chemistry; Faculty of Science and Arts Aksaray University; Aksaray 68000 Turkey
| | - Zeynep Koksal
- Department of Chemistry; Faculty of Sciences, Istanbul Medeniyet University; Istanbul 34730 Turkey
| | - Sukru Beydemir
- Department of Biochemistry; Faculty of Pharmacy, Anadolu University; Eskişehir 26470 Turkey
| | - Hasan Ozdemir
- Department of Chemistry; Faculty of Sciences, Ataturk University; Erzurum 25240 Turkey
| |
Collapse
|
40
|
Köksal Z, Kalin R, Camadan Y, Usanmaz H, Almaz Z, Gülçin İ, Gokcen T, Gören AC, Ozdemir H. Secondary Sulfonamides as Effective Lactoperoxidase Inhibitors. Molecules 2017; 22:molecules22060793. [PMID: 28538675 PMCID: PMC6152724 DOI: 10.3390/molecules22060793] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/27/2017] [Accepted: 05/09/2017] [Indexed: 01/26/2023] Open
Abstract
Secondary sulfonamides (4a–8h) incorporating acetoxybenzamide, triacetoxybenzamide, hydroxybenzamide, and trihydroxybenzamide and possessing thiazole, pyrimidine, pyridine, isoxazole and thiadiazole groups were synthesized. Lactoperoxidase (LPO, E.C.1.11.1.7), as a natural antibacterial agent, is a peroxidase enzyme secreted from salivary, mammary, and other mucosal glands. In the present study, the in vitro inhibitory effects of some secondary sulfonamide derivatives (4a–8h) were examined against LPO. The obtained results reveal that secondary sulfonamide derivatives (4a–8h) are effective LPO inhibitors. The Ki values of secondary sulfonamide derivatives (4a–8h) were found in the range of 1.096 × 10−3 to 1203.83 µM against LPO. However, the most effective inhibition was found for N-(sulfathiazole)-3,4,5-triacetoxybenzamide (6a), with Ki values of 1.096 × 10−3 ± 0.471 × 10−3 µM as non-competitive inhibition.
Collapse
Affiliation(s)
- Zeynep Köksal
- Department of Chemistry, Faculty of Sciences, İstanbul Medeniyet University, 34730 İstanbul, Turkey.
| | - Ramazan Kalin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey.
- Department of Basic Science, Faculty of Science, Erzurum Technical University, 25240 Erzurum, Turkey.
| | - Yasemin Camadan
- Pharmacy Services Program, Vocational School of Health Services, Artvin Coruh University, 08000 Artvin, Turkey.
| | - Hande Usanmaz
- Department of Bioengineering, Faculty of Engineering and Architecture, Sinop University, 57000 Sinop, Turkey.
| | - Züleyha Almaz
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Muş Alparslan University, 49250 Muş, Turkey.
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey.
| | - Taner Gokcen
- TUBITAK UME, Chemistry Group Laboratories, P.O. Box: 54, 41470 Gebze Kocaeli, Turkey.
- Department of Organic Chemistry, Faculty of Science, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Ahmet Ceyhan Gören
- TUBITAK UME, Chemistry Group Laboratories, P.O. Box: 54, 41470 Gebze Kocaeli, Turkey.
| | - Hasan Ozdemir
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey.
| |
Collapse
|
41
|
Aktaş A, Taslimi P, Gülçin İ, Gök Y. Novel NHC Precursors: Synthesis, Characterization, and Carbonic Anhydrase and Acetylcholinesterase Inhibitory Properties. Arch Pharm (Weinheim) 2017; 350. [DOI: 10.1002/ardp.201700045] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Aydın Aktaş
- Faculty of Arts and Sciences, Department of Chemistry; Inönü University; Malatya Turkey
| | - Parham Taslimi
- Faculty of Sciences, Department of Chemistry; Atatürk University; Erzurum Turkey
| | - İlhami Gülçin
- Faculty of Sciences, Department of Chemistry; Atatürk University; Erzurum Turkey
| | - Yetkin Gök
- Faculty of Arts and Sciences, Department of Chemistry; Inönü University; Malatya Turkey
| |
Collapse
|
42
|
Menteşe A, Erkut N, Demir S, Özer Yaman S, Sümer A, Doğramacı Ş, Alver A, Sönmez M. Autoantibodies Against Carbonic Anhydrase I and II in Patients with Acute Myeloid Leukemia. Turk J Haematol 2017; 34:307-313. [PMID: 28270370 PMCID: PMC5774362 DOI: 10.4274/tjh.2016.0341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Cancer, one of the principal causes of death, is a global social health problem. Autoantibodies developed against the organism's self-antigens are detected in the sera of subjects with cancer. In recent years carbonic anhydrase (CA) I and II autoantibodies have been shown in some autoimmune diseases and carcinomas, but the mechanisms underlying this immune response have not yet been explained. The aim of this study was to evaluate CA I and II autoantibodies in patients with acute myeloid leukemia (AML) and to provide a novel perspective regarding the autoimmune basis of the disease. MATERIALS AND METHODS Anti-CA I and II antibody levels were investigated using ELISA in serum samples from 30 patients with AML and 30 healthy peers. RESULTS Anti-CA I and II antibody titers in the AML group were significantly higher compared with the control group (p=0.0001 and 0.018, respectively). A strong positive correlation was also determined between titers of anti-CA I and II antibodies (r=0.613, p=0.0001). CONCLUSION Our results suggest that these autoantibodies may be involved in the pathogenesis of AML. More extensive studies are now needed to reveal the entire mechanism.
Collapse
Affiliation(s)
- Ahmet Menteşe
- Karadeniz Technical University Vocational School of Health Sciences, Program of Medical Laboratory Techniques, Trabzon, Turkey
| | - Nergiz Erkut
- Karadeniz Technical University Faculty of Medicine, Department of Hematology, Trabzon, Turkey
| | - Selim Demir
- Karadeniz Technical University Faculty of Health Sciences, Department of Nutrition and Dietetics, Trabzon, Turkey
| | - Serap Özer Yaman
- Karadeniz Technical University Faculty of Medicine, Department of Medical Biochemistry, Trabzon, Turkey
| | - Ayşegül Sümer
- Recep Tayyip Erdoğan University Faculty of Health Services, Department of Nursing, Rize, Turkey
| | - Şeniz Doğramacı
- Karadeniz Technical University Faculty of Medicine, Department of Medical Biochemistry, Trabzon, Turkey
| | - Ahmet Alver
- Karadeniz Technical University Faculty of Medicine, Department of Medical Biochemistry, Trabzon, Turkey.,Recep Tayyip Erdoğan University Faculty of Medicine, Department of Medical Biochemistry, Rize, Turkey
| | - Mehmet Sönmez
- Karadeniz Technical University Faculty of Medicine, Department of Hematology, Trabzon, Turkey
| |
Collapse
|
43
|
Taslimi P, Sujayev A, Mamedova S, Kalın P, Gulçin İ, Sadeghian N, Beydemir S, Kufrevioglu OI, Alwasel SH, Farzaliyev V, Mamedov S. Synthesis and bioactivity of several new hetaryl sulfonamides. J Enzyme Inhib Med Chem 2017; 32:137-145. [PMID: 28100082 PMCID: PMC6009868 DOI: 10.1080/14756366.2016.1238367] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
1-(4-Methylsulfonyl)-2-thione-4-aryl-5-Z-6-methyl and oxyalkyl-imidazoles were synthesized from different tetrahydropyrimidinethiones and aryl sulfonyl chloride. These compunds were tested for metal chelating effects and to determine the phrase in which inhibition occured between two physiologically pertinent compunds and carbonic anhydrase (CA) isozymes I and II (hCA I and II), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE). AChE was detected in high concentrations in the brain and red blood cells. BChE is another enzymes that is abundant available in the liver and released into the blood in a soluble form. Newly synthesized hetaryl sulfonamides exhibited impressive inhibition profiles with Ki values in the range of 1.42-6.58 nM against hCA I, 1.72-7.41 nM against hCA II, 0.20-1.14 nM against AChE and 1.55-5.92 nM against BChE. Moreover, acetazolamide showed Ki values of 43.69 ± 6.44 nM against hCA I and 31.67 ± 8.39 nM against hCA II. Additionally, tacrine showed Ki values of 25.75 ± 3.39 nM and 37.82 ± 2.08 against AChE and BChE, respectively.
Collapse
Affiliation(s)
- Parham Taslimi
- a Department of Chemistry, Faculty of Sciences , Ataturk University , Erzurum , Turkey
| | - Afsun Sujayev
- b Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives , Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences , Baku , Azerbaijan
| | - Sevgi Mamedova
- b Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives , Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences , Baku , Azerbaijan
| | - Pınar Kalın
- a Department of Chemistry, Faculty of Sciences , Ataturk University , Erzurum , Turkey
| | - İlhami Gulçin
- a Department of Chemistry, Faculty of Sciences , Ataturk University , Erzurum , Turkey.,c Department of Zoology, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Nastaran Sadeghian
- a Department of Chemistry, Faculty of Sciences , Ataturk University , Erzurum , Turkey
| | - Sukru Beydemir
- d Department of Biochemistry, Faculty of Pharmacy , Anadolu University , Eskisehir , Turkey
| | - O Irfan Kufrevioglu
- a Department of Chemistry, Faculty of Sciences , Ataturk University , Erzurum , Turkey
| | - Saleh H Alwasel
- c Department of Zoology, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Vagif Farzaliyev
- b Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives , Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences , Baku , Azerbaijan
| | - Sabir Mamedov
- b Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives , Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences , Baku , Azerbaijan
| |
Collapse
|