1
|
Nasuhipur F, Ghasemi Z, Poupon M, Dušek M. POCl 3 mediated one-pot deoxygenative aromatization and electrophilic chlorination of dihydroxy-2-methyl-4-oxo-indeno[1,2- b]pyrroles. RSC Adv 2023; 13:17812-17816. [PMID: 37323449 PMCID: PMC10261912 DOI: 10.1039/d3ra02515b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
A class of indenopyrroles is presented by the treatment of known dihydroxy-2-methyl-4-oxoindeno[1,2-b]pyrroles with phosphorus oxychloride (POCl3). The elimination of vicinal hydroxyl groups at the 3a and 8b positions, formation of a π bond, and electrophilic chlorination of the methyl group attached to C2 resulted in the fused aromatic pyrrole structures. Benzylic substitution of various nucleophiles such as H2O, EtOH, and NaN3 with a chlorine atom gave diverse 4-oxoindeno[1,2-b]pyrrole derivatives in 58 to 93% yields. The reaction was investigated in different aprotic solvents, and the highest reaction yield was obtained in DMF. The structures of the products were confirmed by spectroscopic methods, elemental analysis, and X-ray crystallography.
Collapse
Affiliation(s)
- Forough Nasuhipur
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz Tabriz 5166614766 Iran
| | - Zarrin Ghasemi
- Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, University of Tabriz Tabriz 5166614766 Iran
| | - Morgane Poupon
- Institute of Physics ASCR, v.v.i. Na Slovance 2, 182 21 Praha 8 Czech Republic
| | - Michal Dušek
- Institute of Physics ASCR, v.v.i. Na Slovance 2, 182 21 Praha 8 Czech Republic
| |
Collapse
|
2
|
Masoudi M. An Unprecedented Synthesis of 8b-Hydroxy-3a-(1H-pyrrol-2-yl)/(1H-indol-3-yl)-3a,8b-dihydroindeno[1,2-b]pyrrol-4(1H)-one Derivatives from Pyrrole/Indole with Ninhydrin and β‑Enaminocarbonyls. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Tao Y, Hao X, Ding X, Cherukupalli S, Song Y, Liu X, Zhan P. Medicinal chemistry insights into novel CDC25 inhibitors. Eur J Med Chem 2020; 201:112374. [PMID: 32603979 DOI: 10.1016/j.ejmech.2020.112374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022]
Abstract
Cell division cycle 25 (CDC25) phosphatases, a kind of cell cycle regulators, have become an attractive target for drug discovery, as they have been found to be over-expressed in various human cancer cells. Several CDC25 inhibitors have achieved significant attention in clinical trials with possible mechanistic actions. Prompted by the significance of CDC25 inhibitors with medicinal chemistry prospect, it is an apt time to review the various drug discovery methods involved in CDC25 drug discovery including high throughput screening (HTS), virtual screening (VS), fragment-based drug design, substitution decorating approach, structural simplification approach and scaffold hopping method to seek trends and identify promising new avenues of CDC25 drug discovery.
Collapse
Affiliation(s)
- Yucen Tao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xia Hao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, 250012, Jinan, China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
4
|
Gornostaev LM, Fominykh OI, Lavrikova TI, Khalyavina YG, Gatilov YV, Stashina GA. Peculiarities of the Reaction of 2-Amino-1,4-naphthoquinones with 2,2-Dihydroxy-1H-indene-1,3(2H)-dione. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428019110125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Huang CF, Mrksich M. Profiling Protein Tyrosine Phosphatase Specificity with Self-Assembled Monolayers for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry and Peptide Arrays. ACS COMBINATORIAL SCIENCE 2019; 21:760-769. [PMID: 31553163 PMCID: PMC6848775 DOI: 10.1021/acscombsci.9b00152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The opposing activities of phosphatases and kinases determine the phosphorylation status of proteins, yet kinases have received disproportionate attention in studies of cellular processes, with the roles of phosphatases remaining less understood. This Research Article describes the use of phosphotyrosine-containing peptide arrays together with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to directly profile phosphatase substrate selectivities. Twenty-two protein tyrosine phosphatases were characterized with the arrays to give a profile of their specificities. An analysis of the data revealed that certain residues in the substrates had a conserved effect on activity for all enzymes tested, including the general rule that inclusion of a basic lysine or arginine residue on either side of the phosphotyrosine decreased activity. This insight also provides a new perspective on the role of a R1152Q mutant in the insulin receptor, which is known to exhibit a lower phosphorylation level and which this work suggests may be due to an increased activity toward phosphatase enzymes. The use of self-assembled monolayers for matrix-assisted laser desorption/ionization mass spectrometry (SAMDI-MS) to provide a rapid and quantitative assay of phosphatase enzymes will be important to gaining a more complete understanding of the biochemistry and biology of this important enzyme class.
Collapse
Affiliation(s)
- Che-Fan Huang
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Milan Mrksich
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, United States
| |
Collapse
|
6
|
Goryaeva MV, Kushch SO, Khudina OG, Burgart YV, Kudyakova YS, Ezhikova MA, Kodess MI, Slepukhin PA, Sadretdinova LS, Evstigneeva NP, Gerasimova NA, Saloutin VI. Autocatalyzed three-component cyclization of polyfluoroalkyl-3-oxo esters, methyl ketones and alkyl amines: a novel approach to 3-alkylamino-5-hydroxy-5-polyfluoroalkylcyclohex-2-en-1-ones. Org Biomol Chem 2019; 17:4273-4280. [PMID: 30938405 DOI: 10.1039/c9ob00293f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new one-pot reaction between polyfluoroalkylated 3-oxo esters, methyl ketones and primary or secondary alkyl amines is reported as an efficient approach to 3-alkylamino-5-hydroxy-5-polyfluoroalkylcyclohex-2-en-1-ones. The scope of three-component cyclization and its plausible mechanism are discussed. The described protocol makes it possible to vary the functional substituents in 2, 3 and 5 positions of carbocycles. Anhydrous conditions are necessary for the productive synthesis of aminocyclohexenones, whereas in the presence of water the competitive formation of alkyl ammonium salts of keto hydroxy carboxylates is observed. Dehydration of the aminocyclohexenones was effectively used for the synthesis of 3-alkylamino-5-trifluoromethylphenols, some of which exhibited moderate antifungal activities against eight pathogenic fungal strains.
Collapse
Affiliation(s)
- Marina V Goryaeva
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences, S. Kovalevskoy St. 22, 620990 Ekaterinburg, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Karami H, Hossaini Z, Sabbaghan M, Rostami-Charati F. One-pot three-component reaction of ninhydrin, 1,3-dicarbonyl compounds, and primary amines to afford indeno[1,2-b]pyrrol-4(1H)-ones. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2388-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Schnitzler A, Gratz A, Bollacke A, Weyrich M, Kuckländer U, Wünsch B, Götz C, Niefind K, Jose J. A π-Halogen Bond of Dibenzofuranones with the Gatekeeper Phe113 in Human Protein Kinase CK2 Leads to Potent Tight Binding Inhibitors. Pharmaceuticals (Basel) 2018; 11:ph11010023. [PMID: 29462988 PMCID: PMC5874719 DOI: 10.3390/ph11010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/05/2023] Open
Abstract
Human protein kinase CK2 is an emerging target for neoplastic diseases. Potent lead structures for human CK2 inhibitors are derived from dibenzofuranones. Two new derivatives, 7,9-dichloro-1,2-dihydro-8-hydroxy-4-[(4-methoxyphenylamino)-methylene]dibenzo[b,d]furan-3(2H)-one (4a) and (E)-1,3-dichloro-6-[(4-methoxyphenylimino)-methyl]dibenzo[b,d]furan-2,7-diol (5) were tested for inhibition of CK2 and induction of apoptosis in LNCaP cells. Both turned out to be tight binding inhibitors, with IC50 values of 7 nM (4a) and 5 nM (5) and an apparent Ki value of 0.4 nM for both. Compounds 4a and 5 reduced cellular CK2 activity, indicating cell permeability. Cell viability was substantially impaired in LNCaP cells, as well as apoptosis was induced, which was not appearing in non-neoplastic ARPE-19 cells. Co-crystallization of 4a and 5 revealed an unexpected π-halogen bond of the chloro substituent at C9 with the gatekeeper amino acid Phe113, leading to an inverted binding mode in comparison to parent compound 4b, with the Cl at C6 instead, which was co-crystallized as a control. This indicates that the position of the chloro substituent on ring A of the dibenzofuran scaffold is responsible for an inversion of the binding mode that enhances potency.
Collapse
Affiliation(s)
- Alexander Schnitzler
- Institut für Biochemie, Department für Chemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Andreas Gratz
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Andre Bollacke
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Michael Weyrich
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Kirrberger Str., Geb. 44, D-66421 Homburg, Germany.
| | - Uwe Kuckländer
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Claudia Götz
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Kirrberger Str., Geb. 44, D-66421 Homburg, Germany.
| | - Karsten Niefind
- Institut für Biochemie, Department für Chemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| |
Collapse
|
9
|
Hochscherf J, Lindenblatt D, Witulski B, Birus R, Aichele D, Marminon C, Bouaziz Z, Le Borgne M, Jose J, Niefind K. Unexpected Binding Mode of a Potent Indeno[1,2-b]indole-Type Inhibitor of Protein Kinase CK2 Revealed by Complex Structures with the Catalytic Subunit CK2α and Its Paralog CK2α'. Pharmaceuticals (Basel) 2017; 10:ph10040098. [PMID: 29236079 PMCID: PMC5748653 DOI: 10.3390/ph10040098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Protein kinase CK2, a member of the eukaryotic protein kinase superfamily, is associated with cancer and other human pathologies and thus an attractive drug target. The indeno[1,2-b]indole scaffold is a novel lead structure to develop ATP-competitive CK2 inhibitors. Some indeno[1,2-b]indole-based CK2 inhibitors additionally obstruct ABCG2, an ABC half transporter overexpressed in breast cancer and co-responsible for drug efflux and resistance. Comprehensive derivatization studies revealed substitutions of the indeno[1,2-b]indole framework that boost either the CK2 or the ABCG2 selectivity or even support the dual inhibition potential. The best indeno[1,2-b]indole-based CK2 inhibitor described yet (IC50 = 25 nM) is 5-isopropyl-4-(3-methylbut-2-enyl-oxy)-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4p). Herein, we demonstrate the membrane permeability of 4p and describe co-crystal structures of 4p with CK2α and CK2α′, the paralogs of human CK2 catalytic subunit. As expected, 4p occupies the narrow, hydrophobic ATP site of CK2α/CK2α′, but surprisingly with a unique orientation: its hydrophobic substituents point towards the solvent while its two oxo groups are hydrogen-bonded to a hidden water molecule. An equivalent water molecule was found in many CK2α structures, but never as a critical mediator of ligand binding. This unexpected binding mode is independent of the interdomain hinge/helix αD region conformation and of the salt content in the crystallization medium.
Collapse
Affiliation(s)
- Jennifer Hochscherf
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Dirk Lindenblatt
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Benedict Witulski
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Robin Birus
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Dagmar Aichele
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Christelle Marminon
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Zouhair Bouaziz
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Marc Le Borgne
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Karsten Niefind
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| |
Collapse
|