1
|
Caglayan C, Temel Y, Türkeş C, Ayna A, Ece A, Beydemir Ş. The effects of morin and methotrexate on pentose phosphate pathway enzymes and GR/GST/TrxR enzyme activities: An in vivo and in silico study. Arch Pharm (Weinheim) 2024; 357:e2300497. [PMID: 37972283 DOI: 10.1002/ardp.202300497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
In this study, the mechanisms by which the enzymes glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), glutathione reductase (GR), glutathione-S-transferase (GST), and thioredoxin reductase (TrxR) are inhibited by methotrexate (MTX) were investigated, as well as whether the antioxidant morin can mitigate or prevent these adverse effects in vivo and in silico. For 10 days, rats received oral doses of morin (50 and 100 mg/kg body weight). On the fifth day, a single intraperitoneal injection of MTX (20 mg/kg body weight) was administered to generate toxicity. Decreased activities of G6PD, 6PGD, GR, GST, and TrxR were associated with MTX-related toxicity while morin treatment increased the activity of the enzymes. The docking analysis indicated that H-bonds, pi-pi stacking, and pi-cation interactions were the dominant interactions in these enzyme-binding pockets. Furthermore, the docked poses of morin and MTX against GST were subjected to molecular dynamic simulations for 200 ns, to assess the stability of both complexes and also to predict key amino acid residues in the binding pockets throughout the simulation. The results of this study suggest that morin may be a viable means of alleviating the enzyme activities of important regulatory enzymes against MTX-induced toxicity.
Collapse
Affiliation(s)
- Cuneyt Caglayan
- Department of Medical Biochemistry, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Yusuf Temel
- Department of Solhan School of Health Services, Bingol University, Bingol, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Adnan Ayna
- Department of Chemistry, Faculty of Sciences and Arts, Bingol University, Bingol, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
2
|
Sangeet S, Khan A. An in-silico approach to identify bioactive phytochemicals from Houttuynia cordata Thunb. As potential inhibitors of human glutathione reductase. J Biomol Struct Dyn 2023:1-20. [PMID: 38109166 DOI: 10.1080/07391102.2023.2294181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Cellular infections are central to the etiology of various diseases, notably cancer and malaria. Counteracting cellular oxidative stress via the inhibition of glutathione reductase (GR) has emerged as a promising therapeutic strategy. Houttuynia cordata, a medicinal plant known for its potent antioxidant properties, has been the focus of our investigation. In this study, we conducted comprehensive in silico analyses involving the phytochemical constituents of H. cordata to identify potential natural GR inhibitors. Our methodological approach encompassed multiple in silico techniques, including molecular docking, molecular dynamics simulations, MMPBSA analysis, and dynamic cross-correlation analysis. Out of 13 docked phytochemicals, Quercetin, Quercitrin, and Sesamin emerged as particularly noteworthy due to their exceptional binding affinities for GR. Notably, our investigation demonstrated that Quercetin and Sesamin exhibited promising outcomes compared to the well-established pharmaceutical agent N-acetylcysteine (NAC). Molecular dynamics analyses provided insights into the ability of these phytochemicals to induce structural compaction and stabilization of the GR protein, as evidenced by changes in radius of gyration and solvent-accessible surface area. Moreover, MMPBSA analysis highlighted the crucial roles of specific residues, namely Gly27, Gly28, Ser51, His52, and Val61, in mediating essential interactions with these phytochemicals. Furthermore, an assessment of Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADME-Tox) profiles underscored the favourable drug-like attributes of these phytochemicals. Thus, the current findings underscore the immense potential of Houttuynia cordata phytochemicals as potent antioxidants with the capacity to combat a spectrum of maladies, including malaria and cancer. This study not only unveils novel therapeutic avenues but also underscores the distinctive outcomes and paramount significance of harnessing H. cordata phytochemicals for their efficacious antioxidant properties.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Satyam Sangeet
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, India
- CompObelisk, Mirzapur, India
| | - Arshad Khan
- CompObelisk, Mirzapur, India
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, India
| |
Collapse
|
3
|
Işık K, Soydan E. Purification and characterisation of glutathione reductase from scorpionfish (scorpaena porcus) and investigation of heavy metal ions inhibition. J Enzyme Inhib Med Chem 2023; 38:2167078. [PMID: 36938699 PMCID: PMC10035961 DOI: 10.1080/14756366.2023.2167078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
In the current study, glutathione reductase was purified from Scorpion fish (Scorpaena porcus) liver tissue and the effects of heavy metal ions on the enzyme activity were determined. The purification process consisted of three stages; preparation of the homogenate, ammonium sulphate precipitation and affinity chromatography purification. At the end of these steps, the enzyme was purified 25.9-fold with a specific activity of 10.479 EU/mg and a yield of 28.3%. The optimum pH was found to be 6.5, optimum substrate concentration was 2 mM NADPH and optimum buffer was 300 mM KH2PO4. After purification, inhibition effects of Mn+2, Cd+2, Ni+2, and Cr3+, as heavy metal ions were investigated. IC50 values of the heavy metals were calculated as 2.4 µM, 30 µM, 135 µM and 206 µM, respectively.
Collapse
Affiliation(s)
- Kübra Işık
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| | - Ercan Soydan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
4
|
Singh DK, Kumar R. Clauson-Kaas pyrrole synthesis using diverse catalysts: a transition from conventional to greener approach. Beilstein J Org Chem 2023; 19:928-955. [PMID: 37404802 PMCID: PMC10315892 DOI: 10.3762/bjoc.19.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
Pyrrole is an important aromatic heterocyclic scaffold found in many natural products and predominantly used in pharmaceuticals. Continuous efforts are being made to design and synthesize various pyrrole derivatives using different synthetic procedures. Among them, the Clauson-Kaas reaction is a very old and well-known method for synthesizing a large number of N-substituted pyrroles. In recent years, due to global warming and environmental concern, research laboratories and pharmaceutical industries around the world are searching for more environmentally friendly reaction conditions for synthesizing compounds. As a result, this review describes the use of various eco-friendly greener protocols to synthesize N-substituted pyrroles. This synthesis involves the reaction of various aliphatic/aromatic primary amines, and sulfonyl primary amines with 2,5-dimethoxytetrahydrofuran in the presence of numerous acid catalysts and transition metal catalysts. The goal of this review is to summarize the synthesis of various N-substituted pyrrole derivatives using a modified Clauson-Kaas reaction under diverse conventional and greener reaction conditions.
Collapse
Affiliation(s)
- Dileep Kumar Singh
- Department of Chemistry, Bipin Bihari College, Affiliated to Bundelkhand University, Jhansi-284001, Uttar Pradesh, India
| | - Rajesh Kumar
- P.G. Department of Chemistry, R. D. S. College, B. R. A. Bihar University, Muzaffarpur-842002, Bihar, India
| |
Collapse
|
5
|
Xiang D, Zhu L, Yang S, Hou X. Scrutinizing the interaction between metribuzin with glutathione reductase 2 from Arabidopsis thaliana: insight into the molecular toxicity in agriculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11936-11945. [PMID: 36100787 DOI: 10.1007/s11356-022-22808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
As one of the triazine herbicides with widespread usage in agriculture, metribuzin exerted nonnegligible hazardous effects on plants via excessive accumulation of reactive oxygen species and destruction of antioxidant enzymes, but the underlying harmful mechanism of metribuzin-induced oxidative damage to plants has never been exploited. Here, Arabidopsis thaliana glutathione reductase 2 (AtGR2) was employed as the biomarker to evaluate the adverse impacts of metribuzin on plants. The fluorescence intensity of AtGR2 was decreased based on the static quenching mechanism with the prediction of a single binding site toward metribuzin, and the complex formation was presumed to be mainly impelled by hydrogen bonding and van der Waals forces from the negative ΔH and ΔS. In addition, the loosened and unfolded skeleton of AtGR2 along with the increased hydrophilicity around the tryptophan residues were investigated. Besides, the glutathione reductase activity of AtGR2 was also destroyed due to structural and conformational changes. At last, the severe inhibiting growth of Arabidopsis seedling roots was discovered under metribuzin exposure. Hence, the evaluation of the molecular interaction mechanism of AtGR2 with metribuzin will establish valuable assessments of the toxic effects of metribuzin on plants.
Collapse
Affiliation(s)
- Dongmei Xiang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Zhu
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Song Yang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaomin Hou
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
6
|
Demir Y, Türkeş C, Küfrevioğlu Öİ, Beydemir Ş. Molecular Docking Studies and the Effect of Fluorophenylthiourea Derivatives on Glutathione-Dependent Enzymes. Chem Biodivers 2023; 20:e202200656. [PMID: 36538730 DOI: 10.1002/cbdv.202200656] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a serious problem affecting the health of all human societies. Chemotherapy refers to the use of drugs to kill cancer or the origin of cancer. In the past three decades, researchers have studied about proteins and their roles in the production of cancer cells. Glutathione S-transferases (GSTs) are a superfamily of enzymes that play a key role in cellular detoxification, protecting against reactive electrophiles attacks, including chemotherapeutic agents. Glutathione reductase (GR) is an important antioxidant enzyme involved in protecting the cell against oxidative stress. In this current study, GST and GR enzymes were purified from human erythrocytes using affinity chromatography. GR was obtained with a specific activity of 5.95 EU/mg protein and a 52.38 % yield. GST was obtained with a specific activity of 4.88 EU/mg protein and a 74.88 % yield. The effect of fluorophenylthiourea derivatives on the purified enzymes was investigated. Afterward, KI values were found to range from 23.04±4.37 μM-59.97±13.45 μM for GR and 7.22±1.64 μM-41.24±2.55 μM for GST. 1-(2,6-difluorophenyl)thiourea was showed the best inhibition effect for both GST and GR enzymes. The relationships of inhibitors with 3D structures of GST and GR were explained by molecular docking studies.
Collapse
Affiliation(s)
- Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, 75700, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, 24100, Turkey
| | | | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, 26470, Turkey
- The Rectorate of Bilecik Şeyh Edebali University, Bilecik, 11230, Turkey
| |
Collapse
|
7
|
Sun S, Shi T, Peng Y, Zhang H, Zhuo L, Peng X, Li Q, Wang M, Wang S, Wang Z. Discovery of pyrrole derivatives as acetylcholinesterase-sparing butyrylcholinesterase inhibitor. Front Pharmacol 2022; 13:1043397. [PMID: 36561337 PMCID: PMC9763612 DOI: 10.3389/fphar.2022.1043397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Inspired by the crucial roles of (hetero)aryl rings in cholinesterase inhibitors and the pyrrole ring in new drug discovery, we synthesized 19 pyrrole derivatives and investigated their cholinesterase inhibitory activity. As a result, compounds 3o, 3p, and 3s with a 1,3-diaryl-pyrrole skeleton showed high selectivity toward BChE over AChE with a best IC50 value of 1.71 ± 0.087 µM, which were comparable to donepezil. The pharmaceutical potential of these structures was further predicted and compounds 3o and 3p were proved to meet well with the Lipinsky's five rules. In combination of the inhibition kinetic studies with the results of molecular docking, we concluded that compound 3p inhibited BChE in a mixed competitive mode. This research has proved the potential of the 1,3-diaryl-pyrrole skeleton as a kind of selective BChE inhibitor.
Collapse
Affiliation(s)
- Shouyuan Sun
- Lanzhou University Second Hospital, Lanzhou, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Qien Li
- Tibetan Medical College, Qinghai University, Xining, China
| | - Manxia Wang
- Lanzhou University Second Hospital, Lanzhou, China,*Correspondence: Manxia Wang, ; Shuzhi Wang, ; Zhen Wang,
| | - Shuzhi Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China,*Correspondence: Manxia Wang, ; Shuzhi Wang, ; Zhen Wang,
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China,School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China,*Correspondence: Manxia Wang, ; Shuzhi Wang, ; Zhen Wang,
| |
Collapse
|
8
|
Tunc T, Ortaakarsu AB, Hatipoglu SM, Kazancı U, Karabocek S, Karabocek N, Dege N, Karacan N. New Schiff bases with a 2,6-bis(2-aminophenylthio)pyridine moiety acting as glutathione reductase activator and inhibitors: Synthesis and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Moghadam ES, Mireskandari K, Abdel-Jalil R, Amini M. An approach to pharmacological targets of pyrrole family from a medicinal chemistry viewpoint. Mini Rev Med Chem 2022; 22:2486-2561. [PMID: 35339175 DOI: 10.2174/1389557522666220325150531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
Pyrrole is one of the most widely used heterocycles in the pharmaceutical industry. Due to the importance of pyrrole structure in drug design and development, herein, we tried to conduct an extensive review of the bioactive pyrrole based compounds reported recently. The bioactivity of pyrrole derivatives varies, so in the review, we categorized them based on their direct pharmacologic targets. Therefore, readers are able to find the variety of biologic targets for pyrrole containing compounds easily. This review explains around seventy different biologic targets for pyrrole based derivatives, so, it is helpful for medicinal chemists in design and development novel bioactive compounds for different diseases. This review presents an extensive meaningful structure activity relationship for each reported structure as much as possible. The review focuses on papers published between 2018 and 2020.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran14176, Iran.
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, P.O. Box 36, P.C. 123, Sultanate of Oman
| | - Katayoon Mireskandari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Raid Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, P.O. Box 36, P.C. 123, Sultanate of Oman
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran14176, Iran.
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
The In Vitro and In Silico Inhibition Mechanism of Glutathione Reductase by Resorcinol Derivatives: A Molecular Docking Study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Tiwari S, Sharma N, Sharma GP, Mishra N. Redox interactome in malaria parasite Plasmodium falciparum. Parasitol Res 2021; 120:423-434. [PMID: 33459846 DOI: 10.1007/s00436-021-07051-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/08/2021] [Indexed: 11/26/2022]
Abstract
The malaria-causing parasite Plasmodium falciparum is a severe threat to human health across the globe. This parasite alone causes the highest morbidity and mortality than any other species of Plasmodium. The parasites dynamically multiply in the erythrocytes of the vertebrate hosts, a large number of reactive oxygen species that damage biological macromolecules are produced in the cell during parasite growth. To relieve this intense oxidative stress, the parasite employs an NADPH-dependent thioredoxin and glutathione system that acts as an antioxidant and maintains redox status in the parasite. The mutual interaction of both redox proteins is involved in various biological functions and the survival of the erythrocytic stage of the parasite. Since the Plasmodium species is deficient in catalase and classical glutathione peroxidase, so their redox balance relies on a complex set of five peroxiredoxins, differentially positioned in the cytosol, mitochondria, apicoplast, and nucleus with partly overlapping substrate preferences. Moreover, Plasmodium falciparum possesses a set of members belonging to the thioredoxin superfamily, such as three thioredoxins, two thioredoxin-like proteins, one dithiol, three monocysteine glutaredoxins, and one redox-active plasmoredoxin with largely redundant functions. This review paper aims to discuss and encapsulate the biological function and current knowledge of the functional redox network of Plasmodium falciparum.
Collapse
Affiliation(s)
- Savitri Tiwari
- Parasite-Host Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi, 110077, India
| | - Nivedita Sharma
- Parasite-Host Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi, 110077, India
| | | | - Neelima Mishra
- Parasite-Host Biology Group, National Institute of Malaria Research, Indian Council of Medical Research, Sector-8, Dwarka, New Delhi, 110077, India.
| |
Collapse
|
12
|
Guven N, Soydan E. Characterization of glutathione S-transferase enzyme from brown meagre (Sciaena umbra) and inhibitory effects of heavy metals. Biotechnol Appl Biochem 2020; 69:145-148. [PMID: 33368716 DOI: 10.1002/bab.2090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/13/2020] [Indexed: 11/12/2022]
Abstract
Glutathione S-transferase (GST) detoxifies a broad spectrum of xenobiotics, especially in chemotherapeutic drugs, endogenous molecules, and environmental pollutants. Since the enzyme metabolizes toxic compounds, it has been extensively studied in many living things including aquatic organisms. In the current study, the GST enzyme was purified from brown meagre (Sciaena umbra) muscle tissue for the first time. Then, kinetic parameters of the enzyme were determined as optimum ionic strength: 20 mM Tris/HCl, optimum pH: 7.0 (Tris/HCl), and optimum substrate concentration: 3.125 mM. Eventually, inhibitory effects of the heavy metals were evaluated. IC50 values of the tested metal ions were calculated to be 0.1112, 0.6113, 0.727, and 0.7774 mM for Cd2+ , Fe3+ , Ag+ , and Cu2+ , respectively. Our results show that these heavy metals inhibit GST at very low concentrations which could cause dangerous results for aquatic systems.
Collapse
Affiliation(s)
- Neslihan Guven
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| | - Ercan Soydan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
13
|
ŞENTÜRK E, ŞENTÜRK M. Investigation of Some Corticosteroids as Glutathione Reductase Inhibitor. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2020. [DOI: 10.21448/ijsm.693816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Chen Z, Liu J, Tian L, Zhang Q, Guan Y, Chen L, Liu G, Yu HQ, Tian Y, Huang Q. Raman micro-spectroscopy monitoring of cytochrome c redox state in Candida utilis during cell death under low-temperature plasma-induced oxidative stress. Analyst 2020; 145:3922-3930. [PMID: 32307505 DOI: 10.1039/d0an00507j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress may result in different modes of cell death, such as necrosis, apoptosis and necroptosis. Currently, researchers are still striving to develop efficient tools/methods to distinguish the cell death modes in direct and label-free ways. In this study, we attempted to employ Raman micro-spectroscopy to observe the molecular changes in Candida utilis cells under oxidative stress induced by low-temperature plasma (LTP) and explore the spectroscopic biomarkers for the modes of cell death under oxidative stress. In this research, we confirmed that LTP could impose oxidative stress on the yeast cells, and recorded the changes of Raman signals of cytochrome c in the cells under LTP oxidative stress. Subsequently, we identified the biochemical and morphological characteristic features corresponding to different modes of cell death. Interestingly, we found that LTP under certain conditions could induce oxidative stress which caused the yeast cell death mainly by means of necroptosis, which was verified by Annexin V/PI, HMGB1 location assay and immunoprecipitation assay of the RIP1/RIP3 necrosome. Correspondingly, we also showed that the LTP induced necroptosis, associated with the increase of cytoplasmic Ca2+ and mitochondrial ROS, the decrease of mitochondrial membrane potential, the release of oxidized cytochrome c from the mitochondrion to the cytoplasm, and the destruction of mitochondria in yeast cells. This work has therefore demonstrated that monitoring the redox state of cytochrome c using Raman micro-spectroscopy is very useful for distinguishing the modes of cell death and particularly may unveil the unique necroptosis process of cells under extrinsic oxidative stress.
Collapse
Affiliation(s)
- Zhu Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Güller P, Karaman M, Güller U, Aksoy M, Küfrevioğlu Öİ. A study on the effects of inhibition mechanism of curcumin, quercetin, and resveratrol on human glutathione reductase through in vitro and in silico approaches. J Biomol Struct Dyn 2020; 39:1744-1753. [DOI: 10.1080/07391102.2020.1738962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Pınar Güller
- Chemistry Department, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Muhammet Karaman
- Molecular Biology and Genetics Department, Faculty of Arts and Science, Kilis 7 Aralık University, Kilis, Turkey
| | - Uğur Güller
- Food Engineering Department, Faculty of Engineering, Iğdır University, IĞDIR, Turkey
| | - Mine Aksoy
- Chemistry Department, Faculty of Science, Atatürk University, Erzurum, Turkey
| | | |
Collapse
|
16
|
Kıvanç MR, Türkoglu V. Investigation of the effects of natural compounds isolated fromArum rupicolavar.rupicolaon glutathione reductase enzyme purified from bovine liver. Biomed Chromatogr 2019; 33:e4560. [DOI: 10.1002/bmc.4560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/08/2019] [Accepted: 04/18/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Mehmet Rıza Kıvanç
- Department of Chemistry, Faculty of EducationVan Yüzüncü Yıl University Van Turkey
- Department of Chemistry, Faculty of ScienceVan Yüzüncü Yıl University Van Turkey
| | - Vedat Türkoglu
- Department of Chemistry, Faculty of ScienceVan Yüzüncü Yıl University Van Turkey
| |
Collapse
|