1
|
García-Soriano JC, de Lucio H, Elvira-Blázquez D, Alcón-Calderón M, Sanz Del Olmo N, Sánchez-Murcia PA, Ortega P, de la Mata FJ, Jiménez-Ruiz A. The repertoire of iron superoxide dismutases from Leishmania infantum as targets in the search for therapeutic agents against leishmaniasis. J Enzyme Inhib Med Chem 2024; 39:2377586. [PMID: 39037009 DOI: 10.1080/14756366.2024.2377586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
Species of Leishmania and Trypanosoma genera are the causative agents of relevant parasitic diseases. Survival inside their hosts requires the existence of a potent antioxidant enzymatic machinery. Four iron superoxide dismutases have been described in trypanosomatids (FeSODA, FeSODB1, FeSODB2, and FeSODC) that hold a potential as therapeutic targets. Nonetheless, very few studies have been developed that make use of the purified enzymes. Moreover, FeSODC remains uncharacterised in Leishmania. In this work, for the first time, we describe the purification and enzymatic activity of recombinant versions of the four Leishmania FeSOD isoforms and establish an improved strategy for developing inhibitors. We propose a novel parameter [(V*cyt. c - Vcyt. c)/Vcyt. c] which, in contrast to that used in the classical cytochrome c reduction assay, correlates linearly with enzyme concentration. As a proof of concept, we determine the IC50 values of two ruthenium carbosilane metallodendrimers against these isoforms.
Collapse
Affiliation(s)
| | - Héctor de Lucio
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Spain
| | | | | | - Natalia Sanz Del Olmo
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Instituto de Química Andrés Manuel del Río, Alcalá de Henares, Spain
- Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Pedro A Sánchez-Murcia
- Division of Medicinal Chemistry, Laboratory of Computer-Aided Molecular Design, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Paula Ortega
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Instituto de Química Andrés Manuel del Río, Alcalá de Henares, Spain
- Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Francisco Javier de la Mata
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Instituto de Química Andrés Manuel del Río, Alcalá de Henares, Spain
- Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Antonio Jiménez-Ruiz
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
2
|
González-Matos M, Aguado ME, Izquierdo M, Monzote L, González-Bacerio J. Compounds with potentialities as novel chemotherapeutic agents in leishmaniasis at preclinical level. Exp Parasitol 2024; 260:108747. [PMID: 38518969 DOI: 10.1016/j.exppara.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Leishmaniasis are neglected infectious diseases caused by kinetoplastid protozoan parasites from the genus Leishmania. These sicknesses are present mainly in tropical regions and almost 1 million new cases are reported each year. The absence of vaccines, as well as the high cost, toxicity or resistance to the current drugs determines the necessity of new treatments against these pathologies. In this review, several compounds with potentialities as new antileishmanial drugs are presented. The discussion is restricted to the preclinical level and molecules are organized according to their chemical nature, source and molecular targets. In this manner, we present antimicrobial peptides, flavonoids, withanolides, 8-aminoquinolines, compounds from Leish-Box, pyrazolopyrimidines, and inhibitors of tubulin polymerization/depolymerization, topoisomerase IB, proteases, pteridine reductase, N-myristoyltransferase, as well as enzymes involved in polyamine metabolism, response against oxidative stress, signaling pathways, and sterol biosynthesis. This work is a contribution to the general knowledge of these compounds as antileishmanial agents.
Collapse
Affiliation(s)
- Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Lianet Monzote
- Department of Parasitology, Center for Research, Diagnosis and Reference, Tropical Medicine Institute "Pedro Kourí", Autopista Novia Del Mediodía Km 6½, La Lisa, La Habana, Cuba.
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba; Department of Biochemistry, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba.
| |
Collapse
|
3
|
Angeli A, Kartsev V, Petrou A, Lichitsky B, Komogortsev A, Geronikaki A, Supuran CT. Substituted furan sulfonamides as carbonic anhydrase inhibitors: Synthesis, biological and in silico studies. Bioorg Chem 2023; 138:106621. [PMID: 37257407 DOI: 10.1016/j.bioorg.2023.106621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Carbonic Anhydrases (CAs) are a large family of zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide involved in several of biological processes, such as respiration, calcification, acid-base balance, bone resorption, and the formation of aqueous humor, cerebrospinal fluid, saliva, and gastric acid. They show wide diversity in tissue distribution and in their subcellular localization. Fifteen novel furyl sulfonamides were designed, synthesized and evaluated against four human isoforms: hCA I, hCA II, hCA IV and hCA IX. Compounds appeared to be very active mostly against hCAI (8) and hCA IV (11) isoforms being more potent than reference drug acetazolamide (AAZ). It should be mentioned that four compounds were more active than AAZ against hCA IX isoform, with compound 13d to be selective against hCA I (SI 70), hCA II (SI 13.5) and hCA IV (SI 20). Furthermore, docking was performed for some of these compounds on all isoforms I order to understand the possible interactions with the active site. The most active compounds showed good bioavailability and drug likeness scores.
Collapse
Affiliation(s)
- Andrea Angeli
- NeuroFarba Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy; Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda, no. 41A, 700487 Iasi, Romania.
| | | | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Boris Lichitsky
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 119991 Moscow, Russia.
| | - Andrey Komogortsev
- Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 119991 Moscow, Russia.
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Claudiu T Supuran
- NeuroFarba Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
4
|
Ugbe FA, Shallangwa GA, Uzairu A, Abdulkadir I. Computational design, molecular properties, ADME, and toxicological analysis of substituted 2,6-diarylidene cyclohexanone analogs as potent pyridoxal kinase inhibitors. In Silico Pharmacol 2023; 11:6. [PMID: 36968686 PMCID: PMC10033787 DOI: 10.1007/s40203-023-00142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 03/12/2023] [Indexed: 03/25/2023] Open
Abstract
Leishmaniasis is one of the tropical diseases which affects over 12 million people mainly in the tropical regions of the world and is caused by the leishmanial parasites transmitted by the female sand fly. The lack of vaccines to prevent leishmaniasis, as well as limitations of existing therapies necessitated this study which was focused on a combined virtual docking screening and 3-D QSAR modeling approach to design some diarylidene cyclohexanone analogs, while also performing pharmacokinetic analysis and Molecular Dynamic (MD) simulation to ascertain their drug-ability. As a result, the built 3-D QSAR model was found to satisfy the requirement of a good model with R2 = 0.9777, SDEC = 0.0593, F-test = 105.028, and Q2 LOO = 0.6592. The template (compound 9, MolDock score = - 161.064) and all seven newly designed analogs were found to possess higher docking scores than the reference drug (Pentamidine, Moldock score = - 137.827). The results of the pharmacokinetic analysis suggest 9 and the new molecules (9a, b, c, e, and f) as orally bioavailable with good ADME and safe toxicological profiles. These molecules also showed good binding interactions with the receptor (pyridoxal kinase). Additionally, the MD simulation result confirmed the stability of the tested protein-ligand complexes, with an estimated ∆G binding (MM/GBSA) of - 65.2177 kcal/mol and - 58.433 kcal/mol for 9_6K91 and 9a_6K91 respectively. Hence, the new compounds, especially 9a could be considered potential anti-leishmanial inhibitors.
Collapse
Affiliation(s)
- Fabian Audu Ugbe
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State Nigeria
| | - Gideon Adamu Shallangwa
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State Nigeria
| | - Ibrahim Abdulkadir
- Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State Nigeria
| |
Collapse
|
5
|
Warda ET, El-Ashmawy MB, Habib ESE, Abdelbaky MSM, Garcia-Granda S, Thamotharan S, El-Emam AA. Synthesis and in vitro antibacterial, antifungal, anti-proliferative activities of novel adamantane-containing thiazole compounds. Sci Rep 2022; 12:21058. [PMID: 36474013 PMCID: PMC9726863 DOI: 10.1038/s41598-022-25390-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
A series of (Z)-N-(adamantan-1-yl)-3,4-diarylthiazol-2(3H)-imines (5a-r) was synthesized via condensation of 1-(adamantan-1-yl)-3-arylthioureas (3a-c) with various aryl bromomethyl ketones (4a-f). The structures of the synthesized compounds were characterized by 1H NMR, 13C NMR and by X-ray crystallography. The in vitro inhibitory activities of the synthesized compounds were assessed against a panel of Gram-positive and Gram-negative bacteria, and pathogenic fungi. Compounds 5c, 5g, 5l, 5m, and 5q displayed potent broad-spectrum antibacterial activity, while compounds 5a and 5o showed activity against the tested Gram-positive bacteria. Compounds 5b, 5l and 5q displayed potent antifungal activity against Candida albicans. In addition, the synthesized compounds were evaluated for anti-proliferative activity towards five human tumor cell lines. The optimal anti-proliferative activity was attained by compounds 5e and 5k which showed potent inhibitory activity against all the tested cell lines. Molecular docking analysis reveals that compounds 5e and 5k can occupy the positions of NAD cofactor and the histone deacetylase inhibitor EX527 at the active site of SIRT1 enzyme.
Collapse
Affiliation(s)
- Eman T. Warda
- grid.10251.370000000103426662Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Mahmoud B. El-Ashmawy
- grid.10251.370000000103426662Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - El-Sayed E. Habib
- grid.10251.370000000103426662Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Mohammed S. M. Abdelbaky
- grid.10863.3c0000 0001 2164 6351Department of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, 33006 Oviedo, Spain
| | - Santiago Garcia-Granda
- grid.10863.3c0000 0001 2164 6351Department of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, 33006 Oviedo, Spain
| | - Subbiah Thamotharan
- grid.412423.20000 0001 0369 3226Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401 India
| | - Ali A. El-Emam
- grid.10251.370000000103426662Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
6
|
Synthesis and Antimicrobial Activity of New Heteroaryl(aryl) Thiazole Derivatives Molecular Docking Studies. Antibiotics (Basel) 2022; 11:antibiotics11101337. [PMID: 36289995 PMCID: PMC9658463 DOI: 10.3390/antibiotics11101337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Herein, we report the design, synthesis, and evaluation of the antimicrobial activity of new heteroaryl (aryl) thiazole derivatives. The design was based on a molecular hybridization approach. The in vitro evaluation revealed that these compounds demonstrated moderate antibacterial activity. The best activity was achieved for compound 3, with MIC and MBC in the range of 0.23–0.7 and 0.47–0.94 mg/mL, respectively. Three compounds (2, 3, and 4) were tested against three resistant strains, namely methicillin resistant Staphylococcus aureus, P. aeruginosa, and E. coli, which showed higher potential than the reference drug ampicillin. Antifungal activity of the compounds was better with MIC and MFC in the range of 0.06–0.47 and 0.11–0.94 mg/mL, respectively. The best activity was observed for compound 9, with MIC at 0.06–0.23 mg/mL and MFC at 0.11–0.47 mg/mL. According to docking studies, the predicted inhibition of the E. coli MurB enzyme is a putative mechanism of the antibacterial activity of the compounds, while inhibition of 14a-lanosterol demethylase is probably the mechanism of their antifungal activity.
Collapse
|
7
|
Ostapiuk YV, Barabash OV, Ostapiuk MY, Goreshnik E, Obushak MD, Schmidt A. Thiocyanatoarylation of Methyl Vinyl Ketone under Meerwein Conditions for the Synthesis of 2-Aminothiazole-Based Heterocyclic Systems. Org Lett 2022; 24:4575-4579. [PMID: 35735270 DOI: 10.1021/acs.orglett.2c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
4-Aryl-3-thiocyanatobutan-2-ones were prepared by Meerwein reactions from methyl vinyl ketone and aryldiazonium salts under copper(II) catalysis in 35-75% yields. α-Thiocyanato ketones regioselectively react with 1-methyl-3-aminopyrazole forming N-(3-pyrazolyl)-substituted 2-aminothiazoles in 80-91% yields. An ester group in position 3 of the pyrazole induced a regioselective ring-closure reaction followed by an intramolecular cyclization, which gave first representatives of a new heterocyclic system, pyrazolo[4,3-e]thiazolo[3,2-a]pyrimidine, in 74-93% yields. In addition, the preparations of 5-benzyl-4-methylthiazol-2-ones in 84-93% yields are described.
Collapse
Affiliation(s)
- Yurii V Ostapiuk
- Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str. 6, 79005 Lviv, Ukraine
| | - Oksana V Barabash
- Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str. 6, 79005 Lviv, Ukraine
| | - Mary Y Ostapiuk
- Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str. 6, 79005 Lviv, Ukraine
| | - Evgeny Goreshnik
- Department of Inorganic Chemistry and Technology, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Mykola D Obushak
- Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str. 6, 79005 Lviv, Ukraine
| | - Andreas Schmidt
- Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstrasse 6, D-38678 Clausthal-Zellerfeld, Germany
| |
Collapse
|
8
|
Ostapiuk YV, Schmidt A, Ostapiuk MY, Barabash OV, Kravets M, Herzberger C, Namyslo JC, Obushak MD. One-Pot Syntheses of Substituted 2-Aminothiazoles and 2-Aminoselenazoles via Meerwein Arylation of Alkyl Vinyl Ketones. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0041-1738070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractBoth one-pot and two-step procedures for the synthesis of substituted 2-aminothiazoles and 2-aminoselenazoles are described. Anilines are first converted into arenediazonium bromides, which are then reacted with methyl vinyl ketone or cyclopropyl vinyl ketone in the presence of copper(II) bromide to give 4-aryl-3-bromobutan-2-ones (40–71%) and 3-aryl-2-bromo-1-cyclopropylpropan-1-ones (41–79%), respectively. These products are reacted, without prior isolation, with thiourea or selenourea to prepare 4-methyl- and 4-cyclopropyl-5-(R-benzyl)thiazol-2-amines (14 examples) and their selenium analogs (14 examples). The yields of the one-pot procedure are higher (40–81%) than those of the two-step procedure (32–70%).
Collapse
Affiliation(s)
- Yurii V. Ostapiuk
- Ivan Franko National University of Lviv, Department of Organic Chemistry
| | - Andreas Schmidt
- Clausthal University of Technology, Institute of Organic Chemistry
| | - Mary Y. Ostapiuk
- Ivan Franko National University of Lviv, Department of Organic Chemistry
| | - Oksana V. Barabash
- Ivan Franko National University of Lviv, Department of Organic Chemistry
| | - Mykola Kravets
- Institute of Physical Chemistry of the Polish Academy of Sciences
| | - Colin Herzberger
- Clausthal University of Technology, Institute of Organic Chemistry
| | - Jan C. Namyslo
- Clausthal University of Technology, Institute of Organic Chemistry
| | - Mykola D. Obushak
- Ivan Franko National University of Lviv, Department of Organic Chemistry
| |
Collapse
|
9
|
Facile one-pot three-component strategy for the synthesis of 2-amino-4-arylthiazoles via elemental sulfur source. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Carloto ACM, Bortoleti BTDS, Rodrigues ACJ, Silva TF, Tomiotto-Pellissier F, Bidóia DL, Gonçalves MD, Assolini JP, Dekker RFH, Barbosa-Dekker AM, Costa IN, Conchon-Costa I, Miranda-Sapla MM, Pavanelli WR. Botryosphaeran, [(1 → 3)(1 → 6)-β-D-glucan], induces apoptosis-like death in promastigotes of Leishmania amazonensis, and exerts a leishmanicidal effect on infected macrophages by activating NF-kB and producing pro-inflammatory molecules. Chem Biol Interact 2022; 351:109713. [PMID: 34699765 DOI: 10.1016/j.cbi.2021.109713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is an infectious-parasitic disease caused by the protozoan Leishmania spp. The available treatments are based upon expensive drugs bearing adverse side-effects. The search for new therapeutic alternatives that present a more effective action without causing adverse effects to the patient is therefore important. The objective of this study was to evaluate the in vitro effect of botryosphaeran, a (1 → 3)(1 → 6)-β-D-glucan, on the promastigote and intracellular amastigote forms of Leishmania amazonensis. The direct activity of botryosphaeran on promastigote forms was evaluated in vitro and inhibited proliferation, the IC50 7 μg/mL in 48 h was calculated. After 48 h treatment, botryosphaeran induced nitric oxide production (NO), caused mitochondrial membrane hyperpolarization, increased reactive oxygen species (ROS), and accumulation of lipid vesicles in promastigotes, resulting in apoptosis, necrosis and autophagy, and was accompanied by morphological and ultrastructural changes. The range of concentrations used did not alter the viability of peritoneal macrophages from BALB/c mice and erythrocytes of sheep. Botryosphaeran was able to reduce the number of infected macrophages and the number of amastigotes per macrophage at 12.5 μg/mL (50.75% ± 6.48), 25 μg/mL (55.66% ± 3.93) and 50 μg/mL (72.9% ± 6.98), and IC50 9.3 μg/mL (±0.66) for intracellular amastigotes forms. The leishmanicidal effect was due to activation of NF-κB and promoted an increase in pro-inflammatory cytokines (TNF-α and IL-6), iNOS and microbial-derived ROS and NO, in addition to decreasing the levels of SOD. Based upon the data obtained, we infer that botryosphaeran exerted an active leishmanicidal and immunomodulatory effect, acting on promastigotes through autophagic, apoptotic and necrosis processes, and in the intracellular amastigote form, through the action of ROS and NO.
Collapse
Affiliation(s)
- Amanda Cristina Machado Carloto
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil.
| | - Bruna Taciane da Silva Bortoleti
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil; Gonçalo Moniz Institute (FIOCRUZ/Bahia), 40296-710, Salvador, Bahia, Brazil
| | - Ana Carolina Jacob Rodrigues
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil; Carlos Chagas Institute (ICC/FIOCRUZ/Paraná), 81310-020, Curitiba, Paraná, Brazil
| | - Taylon Felipe Silva
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Fernanda Tomiotto-Pellissier
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil; Department of Medical Pathology, Health Sciences Sector, Federal University of Paraná, 80060-240, Curitiba, Paraná, Brazil
| | - Danielle Lazarin Bidóia
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Manoela Daiele Gonçalves
- Biotransformation and Phytochemistry Laboratory, Chemistry Department, Exact Sciences Center, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - João Paulo Assolini
- Alto Vale University of Rio Do Peixe, 89500-000, Caçador, Santa Catarina, Brazil
| | - Robert F H Dekker
- Postgradute Program in Environmental Engineering, Paraná Technological University, Londrina Campus, 86036-370, Londrina, Paraná, Brazil; Beta-Glucan Pharmaceuticals EIRELI, Lote 24A, Zirconia Block, Paraná Technological University, Londrina Campus, Avenue João Miguel Caram 731, 86036-700, Londrina, Paraná, Brazil
| | - Aneli M Barbosa-Dekker
- Postgradute Program in Environmental Engineering, Paraná Technological University, Londrina Campus, 86036-370, Londrina, Paraná, Brazil; Beta-Glucan Pharmaceuticals EIRELI, Lote 24A, Zirconia Block, Paraná Technological University, Londrina Campus, Avenue João Miguel Caram 731, 86036-700, Londrina, Paraná, Brazil
| | - Idessania Nazareth Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Milena Menegazzo Miranda-Sapla
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Wander Rogério Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
11
|
Petrou A, Fesatidou M, Geronikaki A. Thiazole Ring-A Biologically Active Scaffold. Molecules 2021; 26:3166. [PMID: 34070661 PMCID: PMC8198555 DOI: 10.3390/molecules26113166] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Thiazole is a good pharmacophore nucleus due to its various pharmaceutical applications. Its derivatives have a wide range of biological activities such as antioxidant, analgesic, and antimicrobial including antibacterial, antifungal, antimalarial, anticancer, antiallergic, antihypertensive, anti-inflammatory, and antipsychotic. Indeed, the thiazole scaffold is contained in more than 18 FDA-approved drugs as well as in numerous experimental drugs. OBJECTIVE To summarize recent literature on the biological activities of thiazole ring-containing compounds Methods: A literature survey regarding the topics from the year 2015 up to now was carried out. Older publications were not included, since they were previously analyzed in available peer reviews. RESULTS Nearly 124 research articles were found, critically analyzed, and arranged regarding the synthesis and biological activities of thiazoles derivatives in the last 5 years.
Collapse
Affiliation(s)
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (M.F.)
| |
Collapse
|
12
|
Mena-Rejón G, Pérez-Navarro Y, Torres-Romero JC, Vázquez-Carrillo L, Carballo RM, Arreola R, Herrera-España Á, Arana-Argáez V, Quijano-Quiñones R, Fernández-Sánchez JM, Alvarez-Sánchez ME. Antitrichomonal activity and docking analysis of thiazole derivatives as TvMP50 protease inhibitors. Parasitol Res 2020; 120:233-241. [PMID: 33073325 DOI: 10.1007/s00436-020-06931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/11/2020] [Indexed: 11/28/2022]
Abstract
Trichomoniasis, caused by the protozoan Trichomonas vaginalis, is the most prevalent non-viral sexually transmitted infection that affects over 170 million people worldwide. The only type of drug recommended for the therapeutic control of trichomoniasis is the 5-nitroimidazoles, although there have been reports of some undesirable side effects and clinical resistance. Hence, the need for the search for new tricomonicidal agents is necessary. In a previous work, we demonstrated that two 2-amino-4-aryl thiazole derivatives (ATZ-1 and ATZ-2) possess a portent antigiardial effect. In the current paper, we investigated the in vitro antitrichomonal activity of these thiazole compounds. Both ATZ-1 and ATZ-2 reduced the viability and growth of parasites in a dose-dependent manner, with an IC50 value of 0.15 μg/mL and 0.18 μg/mL, respectively. Furthermore, both thiazole compounds were able to decrease the proteolytic activity in T. vaginalis trophozoites compared with untreated parasites. Interestingly, a full proteolytic inhibition profile was observed in the 50-kDa region which was associated with the decreased expression of the gene that codes for the trichomonad protease TvMP50. The docking simulations predicted strong interactions of the thiazole compounds in the TvMP50 protease's active site, suggesting a possible role as protease inhibitors. Our results demonstrate the potential of 2-amino-4-aryl thiazole derivatives as trichomonicidal compounds and could be, mechanistically, involved in the inhibition of key trichomonad proteases.
Collapse
Affiliation(s)
- Gonzalo Mena-Rejón
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40, Colonia Inalámbrica, C.P. 97069, Mérida, Yucatán, México
| | - Yussel Pérez-Navarro
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100, México City, México
| | - Julio César Torres-Romero
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40, Colonia Inalámbrica, C.P. 97069, Mérida, Yucatán, México
| | - Laura Vázquez-Carrillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100, México City, México
| | - Rubén M Carballo
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40, Colonia Inalámbrica, C.P. 97069, Mérida, Yucatán, México
| | - Rodrigo Arreola
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, México City, DF, México
| | - Ángel Herrera-España
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40, Colonia Inalámbrica, C.P. 97069, Mérida, Yucatán, México
| | - Victor Arana-Argáez
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40, Colonia Inalámbrica, C.P. 97069, Mérida, Yucatán, México
| | - Ramiro Quijano-Quiñones
- Facultad de Química, Universidad Autónoma de Yucatán (UADY), Calle 43 S/N entre calle 96 y calle 40, Colonia Inalámbrica, C.P. 97069, Mérida, Yucatán, México
| | - Jose Manuel Fernández-Sánchez
- División de Ingeniería en Gestión Empresarial, Tecnológico de Estudios Superiores de Ecatepec, Avenida Tecnológico S/N, Colonia Valle de Anahuac, Ecatepec de Morelos, Estado de México, Mexico
| | - María Elizbeth Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100, México City, México.
| |
Collapse
|
13
|
Dan WJ, Zhang Q, Zhang F, Wang WW, Gao JM. Benzonate derivatives of acetophenone as potent α-glucosidase inhibitors: synthesis, structure-activity relationship and mechanism. J Enzyme Inhib Med Chem 2019; 34:937-945. [PMID: 31072245 PMCID: PMC6522914 DOI: 10.1080/14756366.2019.1604519] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In this article, 23 compounds (6 and 7a–7v) were prepared and evaluated for their in vitro α-glucosidase inhibitory activity. The compounds 7d, 7f, 7i, 7n, 7o, 7r, 7s, 7u, and 7v displayed the α-glucosidase inhibition activity with IC50 values ranging from 1.68 to 7.88 µM. Among all tested compounds, 7u was found to be the most efficient, being 32-fold more active than the standard drug acarbose, which significantly attenuated postprandial blood glucose in mice. In addition, the compound 7u also induced the fluorescence quenching and conformational changes of enzyme, by forming α-glucosidase–7u complex in a mixed inhibition type. The thermodynamic constants recognised the interaction between 7u and α-glucosidase and was an enthalpy-driven spontaneous exothermic reaction. The synchronous fluorescence and CD spectra also indicate that the compound 7u changed the enzyme conformation. The findings identify the binding interactions between new ligands and α-glucosidase and reveal the compound 7u as a potent α-glucosidase inhibitor.
Collapse
Affiliation(s)
- Wen-Jia Dan
- a Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi , China
| | - Qiang Zhang
- a Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi , China
| | - Fan Zhang
- a Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi , China
| | - Wei-Wei Wang
- a Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi , China
| | - Jin-Ming Gao
- a Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi , China
| |
Collapse
|
14
|
Alizadeh-Bami F, Mehrabi H, Ranjbar-Karimi R. One-pot three-component reaction of arylglyoxals with acetylthiourea and Meldrum’s acid or barbituric acid for synthesis of new 2-acetamido-4-arylthiazol-5-yl derivatives. J Sulphur Chem 2019. [DOI: 10.1080/17415993.2019.1602127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Hossein Mehrabi
- Department of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Reza Ranjbar-Karimi
- Department of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|