1
|
Bernardoni BL, D'Agostino I, Scianò F, La Motta C. The challenging inhibition of Aldose Reductase for the treatment of diabetic complications: a 2019-2023 update of the patent literature. Expert Opin Ther Pat 2024; 34:1085-1103. [PMID: 39365044 DOI: 10.1080/13543776.2024.2412573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/12/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Aldose reductase (AKR1B1, EC: 1.1.1.21) is a recognized target for the treatment of long-term diabetic complications since its activation in hyperglycemia and role in the polyol pathway. In particular, the tissue-specificity of AKR1B1 expression makes the design of the traditional Aldose Reductase Inhibitors (ARIs) and the more recent Aldose Reductase Differential Inhibitors (ARDIs) exploitable strategies to treat pathologies resulting from diabetic conditions. AREAS COVERED A brief overview of the roles and functions of AKR1B1 along with known ARIs and ARDIs was provided. Then, the design of the latest inhibitors in the scientific scenario was discussed, aiming at introducing the research achievement in the field of intellectual properties. Patents dealing with AKR1B1 and diabetes filed in the 2019-2023 period were collected and analyzed. Reaxys, Espacenet, SciFindern, and Google Patents were surveyed, using 'aldose reductase' and 'inhibitor' as the reference keywords. The search results were then filtered by PRISMA protocol, thus obtaining 16 records to review. EXPERT OPINION Although fewer in number than in the early 2000s, patent applications are still being filed in the field of ARIs, with a large number of Chinese inventors reporting new synthetic ARIs in favor of the repositioning approach.
Collapse
Affiliation(s)
| | | | - Fabio Scianò
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | |
Collapse
|
2
|
Faingold II, Soldatova YV, Poletaeva DA, Klimanova EN, Sanina NA. Influence of Nitrosyl Iron Complex with Thiosulfate Ligands on Therapeutically Important Targets Related to Type 2 Diabetes Mellitus. MEMBRANES 2023; 13:615. [PMID: 37504981 PMCID: PMC10384030 DOI: 10.3390/membranes13070615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The high prevalence of type 2 diabetes mellitus (T2DM), and the lack of effective therapy, determine the need for new treatment options. The present study is focused on the NO-donors drug class as effective antidiabetic agents. Since numerous biological systems are involved in the pathogenesis and progression of T2DM, the most promising approach to the development of effective drugs for the treatment of T2DM is the search for pharmacologically active compounds that are selective for a number of therapeutic targets for T2DM and its complications: oxidative stress, non-enzymatic protein glycation, polyol pathway. The nitrosyl iron complex with thiosulfate ligands was studied in this work. Binuclear iron nitrosyl complexes are synthetic analogues of [2Fe-2S] centers in the regulatory protein natural reservoirs of NO. Due to their ability to release NO without additional activation under physiological conditions, these compounds are of considerable interest for the development of potential drugs. The present study explores the effects of tetranitrosyl iron complex with thiosulfate ligands (TNIC-ThS) on T2DM and its complications regarding therapeutic targets in vitro, as well as its ability to bind liposomal membrane, inhibit lipid peroxidation (LPO), and non-enzymatic glycation of bovine serum albumin (BSA), as well as aldose reductase, the enzyme that catalyzes the reduction in glucose to sorbitol in the polyol pathway. Using the fluorescent probe method, it has been shown that TNIC-ThS molecules interact with both hydrophilic and hydrophobic regions of model membranes. TNIC-ThS inhibits lipid peroxidation, exhibiting antiradical activity due to releasing NO (IC50 = 21.5 ± 3.7 µM). TNIC-ThS was found to show non-competitive inhibition of aldose reductase with Ki value of 5.25 × 10-4 M. In addition, TNIC-ThS was shown to be an effective inhibitor of the process of non-enzymatic protein glycation in vitro (IC50 = 47.4 ± 7.6 µM). Thus, TNIC-ThS may be considered to contribute significantly to the treatment of T2DM and diabetic complications.
Collapse
Affiliation(s)
- Irina I Faingold
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| | - Yuliya V Soldatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| | - Darya A Poletaeva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| | - Elena N Klimanova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| | - Nataliya A Sanina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
- Medicinal Chemistry Research and Education Center, Moscow Region State University, Mytishchy 142432, Russia
| |
Collapse
|
3
|
Tassopoulou VP, Tzara A, Kourounakis AP. Design of Improved Antidiabetic Drugs: A Journey from Single to Multitarget Agents. ChemMedChem 2022; 17:e202200320. [PMID: 36184571 DOI: 10.1002/cmdc.202200320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Indexed: 01/14/2023]
Abstract
Multifactorial diseases exhibit a complex pathophysiology with several factors contributing to their pathogenesis and development. Examples of such disorders are neurodegenerative (e. g. Alzheimer's, Parkinson's) and cardiovascular diseases (e. g. atherosclerosis, metabolic syndrome, diabetes II). Traditional therapeutic approaches with single-target drugs have been proven, in many cases, unsatisfactory for the treatment of multifactorial diseases such as diabetes II. The well-established by now strategy of multitarget drugs is constantly gaining interest and momentum, as a more effective approach. The development of pharmacomolecules able to simultaneously modulate multiple relevant-to-the-disease targets has already several successful examples in various fields and has, as such, inspired the design of multitarget antidiabetic agents; this review highlights the design aspect and efficacy of this approach for improved antidiabetics by presenting several examples of successful pharmacophore combinations in (multitarget) agents that modulate two or more molecular targets involved in diabetes II, resulting in a superior antihyperglycemic profile.
Collapse
Affiliation(s)
- Vassiliki-Panagiota Tassopoulou
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Ariadni Tzara
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Angeliki P Kourounakis
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| |
Collapse
|
4
|
Zhang X, Xu L, Chen H, Zhang X, Lei Y, Liu W, Xu H, Ma B, Zhu C. Novel Hydroxychalcone-Based Dual Inhibitors of Aldose Reductase and α-Glucosidase as Potential Therapeutic Agents against Diabetes Mellitus and Its Complications. J Med Chem 2022; 65:9174-9192. [PMID: 35749671 DOI: 10.1021/acs.jmedchem.2c00380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We designed a novel series of bifunctional inhibitors of α-glucosidase and aldose reductase (ALR2) based on the structure of hydroxychalcone. The two enzymes relate to blood glucose level and anomalously elevated polyol pathway of glucose metabolism under hyperglycemia, respectively. Most compounds in the series exhibited a potent inhibitory activity for both enzymes, and a significant antioxidant property was shown. Further in vivo studies of 11j and 14d using streptozotocin (STZ)-induced diabetic rats as a model found that 11j achieved not only good antihyperglycemic and glucose tolerance effect in a dose-dependent manner (p < 0.01) but also showed effective inhibition of polyol pathway. 14d significantly suppressed the maltose-induced postprandial glucose elevation. Additionally, they effectively improved lipid metabolisms and restored an antioxidant ability. Therefore, the two compounds may be promising agents for the prevention and treatment of diabetic complications.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Long Xu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Huan Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yanqi Lei
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenchao Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hulin Xu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bing Ma
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Changjin Zhu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic; Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Zhang X, Chen H, Zhang X, Xu L, Lei Y, Liu W, Li L, Xu H, Zhu C, Ma B. β-Aldehyde ketones as dual inhibitors of aldose reductase and α-glucosidase with antioxidant properties. NEW J CHEM 2022. [DOI: 10.1039/d1nj03426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesized β-aldehyde ketone compounds have strong biological activity because of their ionizable hydroxyl groups.
Collapse
Affiliation(s)
- Xiaonan Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Huan Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Long Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Yanqi Lei
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Wenchao Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Lingyun Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Hulin Xu
- Beijing Qintian Science & Technology Development Co., Ltd, China
| | - Changjin Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| | - Bing Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhongguancun South Street, 100081 Beijing, China
| |
Collapse
|
6
|
Sonowal H, Ramana KV. Development of Aldose Reductase Inhibitors for the Treatment of Inflammatory Disorders and Cancer: Current Drug Design Strategies and Future Directions. Curr Med Chem 2021; 28:3683-3712. [PMID: 33109031 DOI: 10.2174/0929867327666201027152737] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Aldose Reductase (AR) is an enzyme that converts glucose to sorbitol during the polyol pathway of glucose metabolism. AR has been shown to be involved in the development of secondary diabetic complications due to its involvement in causing osmotic as well as oxidative stress. Various AR inhibitors have been tested for their use to treat secondary diabetic complications, such as retinopathy, neuropathy, and nephropathy in clinical studies. Recent studies also suggest the potential role of AR in mediating various inflammatory complications. Therefore, the studies on the development and potential use of AR inhibitors to treat inflammatory complications and cancer besides diabetes are currently on the rise. Further, genetic mutagenesis studies, computer modeling, and molecular dynamics studies have helped design novel and potent AR inhibitors. This review discussed the potential new therapeutic use of AR inhibitors in targeting inflammatory disorders and cancer besides diabetic complications. Further, we summarized studies on how AR inhibitors have been designed and developed for therapeutic purposes in the last few decades.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Moores Cancer Center, University of California San Diego, La Jolla, California 92037, United States
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
7
|
Al-Rashood ST, Hamed AR, Hassan GS, Alkahtani HM, Almehizia AA, Alharbi A, Al-Sanea MM, Eldehna WM. Antitumor properties of certain spirooxindoles towards hepatocellular carcinoma endowed with antioxidant activity. J Enzyme Inhib Med Chem 2020; 35:831-839. [PMID: 32208781 PMCID: PMC7144320 DOI: 10.1080/14756366.2020.1743281] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
In the current medical era, spirooxindole motif stands out as a privileged heterospirocyclic scaffold that represents the core for a wide range of bioactive naturally isolated products (such as Strychnofoline and spirotryprostatins A and B) and synthetic compounds. Interestingly, no much attention has been paid to develop spirooxindole derivatives with dual antioxidant and anticancer activities. In this context, a series of spirooxindoles 6a-p was examined for their anticancer effect towards HepG2 hepatocellular carcinoma and PC-3 prostate cancer cell lines. Spirooxindole 6a was found to be an efficient anti-proliferative agent towards both HepG2 and PC-3 cells (IC50 = 6.9 and 11.8 µM, respectively). Afterwards, spirooxindole 6a was assessed for its apoptosis induction potential in HepG2 cells, where its pro-apoptotic impact was approved via the significant elevation in the Bax/Bcl-2 ratio and the expression levels of caspase-3.
Collapse
Affiliation(s)
- Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed R. Hamed
- Department of Chemistry of Medicinal Plants, National Research Centre, Dokki, Egypt
- Biology Unit, Central Laboratory of the Pharmaceutical & Drug Industries Research Division, National Research Centre, Dokki, Egypt
| | - Ghada S. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal Alharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
8
|
Han Z, Qi G, Zhu J, Zhang Y, Xu Y, Yan K, Zhu C, Hao X. Novel 3,4-dihydroquinolin-2(1H)-one derivatives as dual inhibitor targeting AKR1B1/ROS for treatment of diabetic complications: Design, synthesis and biological evaluation. Bioorg Chem 2020; 105:104428. [PMID: 33161249 DOI: 10.1016/j.bioorg.2020.104428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 11/27/2022]
Abstract
AKR1B1 (Aldose reductase) has been used as therapeutic intervention target for treatment of diabetic complications over 50 years, and more recently for inflammation and cancer. However, most developed small molecule inhibitors have the defect of low bioactivity. To address this limitation, novel series of 3,4-dihydroquinolin-2(1H)-one derivatives as dual inhibitor targeting AKR1B1/ROS (Reactive Oxygen Species) were designed and synthesized. Most of these derivatives were found to be potent and selective against AKR1B1, and compound 8a was the most active with an IC50 value of 0.035 μM. Moreover, some prepared derivatives showed strong anti-ROS activity, and among them the phenolic 3,5-dihydroxyl compound 8b was proved to be the most potent, even comparable to that of the well-known antioxidant Trolox at a concentration of 100 μM. Thus the results suggested a success in the construction of potent dual inhibitor for the therapeutic intervention target of AKR1B1/ROS.
Collapse
Affiliation(s)
- Zhongfei Han
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China; Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| | - Gang Qi
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Junkai Zhu
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yundong Zhang
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yin Xu
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Kang Yan
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Changjin Zhu
- Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| | - Xin Hao
- Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China.
| |
Collapse
|
9
|
Chen H, Zhang X, Zhang X, Liu W, Lei Y, Zhu C, Ma B. (5-Hydroxy-4-oxo-2-styryl-4 H-pyridin-1-yl)-acetic Acid Derivatives as Multifunctional Aldose Reductase Inhibitors. Molecules 2020; 25:E5135. [PMID: 33158254 PMCID: PMC7663616 DOI: 10.3390/molecules25215135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 01/11/2023] Open
Abstract
As rate-limited enzyme of polyol pathway, aldose reductase (ALR2) is one of the key inhibitory targets for alleviating diabetic complications. To reduce the toxic side effects of the inhibitors and to decrease the level of oxidative stress, the inhibitory selectivity towards ALR2 against detoxicating aldehyde reductase (ALR1) and antioxidant activity are included in the design of multifunctional ALR2 inhibitors. Hydroxypyridinone derivatives were designed, synthesized and evaluated their inhibitory behavior and antioxidant activity. Notably, {2-[2-(3,4-dihydroxy-phenyl)-vinyl]-5-hydroxy-4-oxo-4H-pyridin-1-yl}-acetic acid (7l) was the most potent, with IC50 values of 0.789 μM. Moreover, 7l showed excellent selectivity towards ALR2 with selectivity index 25.23, which was much higher than that of eparlestat (17.37), the positive control. More significantly, 7l performed powerful antioxidative action. At a concentration of 1 μM, phenolic compounds 7l scavenged DPPH radical with an inhibitory rate of 41.48%, which was much higher than that of the well-known antioxidant Trolox, at 11.89%. Besides, 7l remarkably suppressed lipid peroxidation with a rate of 88.76% at a concentration of 100 μM. The binding mode derived from molecular docking proved that the derivatives were tightly bound to the activate site, suggesting strongly inhibitory action of derivatives against ALR2. Therefore, these results provided an achievement of multifunctional ALR2 inhibitors capable with potency for both selective ALR2 inhibition and as antioxidants.
Collapse
Affiliation(s)
| | | | | | | | | | - Changjin Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.C.); (X.Z.); (X.Z.); (W.L.); (Y.L.)
| | - Bing Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (H.C.); (X.Z.); (X.Z.); (W.L.); (Y.L.)
| |
Collapse
|
10
|
Addressing selectivity issues of aldose reductase 2 inhibitors for the management of diabetic complications. Future Med Chem 2020; 12:1327-1358. [PMID: 32602375 DOI: 10.4155/fmc-2020-0032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aldose Reductase 2 (ALR2), the rate-limiting enzyme of the polyol pathway, plays an important role in detoxification of some toxic aldehydes. Under hyperglycemia, this enzyme overactivates and causes diabetic complications (DC). Therefore, ALR2 inhibition has been established as a potential approach to manage these complications. Several ALR2 inhibitors have been reported, but none of them could reach US FDA approval. One of the main reasons is their poor selectivity over ALR1, which leads to the toxicity. The current review underlines the molecular connectivity of ALR2 with DC and comparative analysis of the catalytic domains of ALR2 and ALR1, to better understand the selectivity issues. This report also discusses the key features required for ALR2 inhibition and to limit toxicity due to off-target activity.
Collapse
|
11
|
Novel quinolin-4(1H)-one derivatives as multi-effective aldose reductase inhibitors for treatment of diabetic complications: Synthesis, biological evaluation, and molecular modeling studies. Bioorg Med Chem Lett 2020; 30:127101. [PMID: 32192796 DOI: 10.1016/j.bmcl.2020.127101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 10/24/2022]
|