1
|
Yu Y, Poulsen SA, Di Trapani G, Tonissen KF. Exploring the Redox and pH Dimension of Carbonic Anhydrases in Cancer: A Focus on Carbonic Anhydrase 3. Antioxid Redox Signal 2024; 41:957-975. [PMID: 38970427 DOI: 10.1089/ars.2024.0693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Significance: Both redox and pH are important regulatory processes that underpin cell physiological functions, in addition to influencing cancer cell development and tumor progression. The thioredoxin (Trx) and glutathione redox systems and the carbonic anhydrase (CA) proteins are considered key regulators of cellular redox and pH, respectively, with components of the Trx system and CAs regarded as cancer therapeutic targets. However, the redox and pH axis in cancer cells is an underexplored topic of research. Recent Advances: Structural studies of a CA family member, CA3, localized two of its five cysteine residues to the protein surface. Redox-regulated modifications to CA3 have been identified, including glutathionylation. CA3 has been shown to bind to other proteins, including B cell lymphoma-2-associated athanogene 3, and squalene epoxidase, which can modulate autophagy and proinflammatory signaling, respectively, in cancer cells. Critical Issues: CA3 has also been associated with epithelial-mesenchymal transition processes, which promote cancer cell metastasis, whereas CA3 overexpression activates the phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway, which upregulates cell growth and inhibits autophagy. It is not yet known if CA3 modulates cancer progression through its reported antioxidant functions. Future Directions: CA3 is one of the least studied CA isozymes. Further studies are required to assess the cellular antioxidant role of CA3 and its impact on cancer progression. Identification of other binding partners is also required, including whether CA3 binds to Trx in human cells. The development of specific CA3 inhibitors will facilitate these functional studies and allow CA3 to be investigated as a cancer therapeutic target. Antioxid. Redox Signal. 41, 957-975.
Collapse
Affiliation(s)
- Yezhou Yu
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Australia
- School of Environment and Science, Griffith University, Nathan, Australia
| | - Sally-Ann Poulsen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Australia
- School of Environment and Science, Griffith University, Nathan, Australia
| | | | - Kathryn F Tonissen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Australia
- School of Environment and Science, Griffith University, Nathan, Australia
| |
Collapse
|
2
|
Nikitjuka A, Ozola M, Jackevica L, Bobrovs R, Žalubovskis R. Exploration of 3,4-unsubstituted coumarins as thioredoxin reductase 1 inhibitors for cancer therapy. Org Biomol Chem 2023; 21:9630-9639. [PMID: 38018884 DOI: 10.1039/d3ob01522j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Coumarin and its derivatives have emerged as promising candidates in drug discovery. While the activity of coumarins as anticancer agents with different biological targets has been thoroughly investigated, reports on the potential of coumarins in the inhibition of thioredoxin reductase (TrxR) are still scarce. We focus on the design and synthesis of 3,4-unsubstituted coumarin analogues with systematic incorporation of substituents at the fifth to eighth positions of coumarin, which allowed definitive structure-activity relationship analysis to be conducted. In the obtained library, the substitution at the sixth position of the coumarin core with an aromatic or a cyclopropyl group turned out to be more activity enhancing. A bulky aromatic substituent with a large CF3 group encourages ligand alignment in a manner that enables covalent bond formation with the catalytic TrxR1 residue, according to the docking results. Our observations indicate that the activity of a series of coumarin analogues towards thioredoxin reductase 1 (TrxR1) is dependent on the nature (size and electronic effect) and the position of the substituent and more importantly - the accessibility of the Michael acceptor functionality. Several compounds (with at least 90% inhibition of the rat TrxR1 enzyme at 200 μM concentration) were further examined in in vitro cell-based assays to assess the cytotoxic effects on various cancer cell lines. The analogue 6-(4-(trifluoromethyl)phenyl)-2H-chromen-2-one was selected as the lead compound for further optimization. The results presented herein pave the way for the development of the next generation of coumarin-based TrxR1 inhibitors, where modification of the Michael acceptor moiety and incorporation of different aryl substituents at the sixth position of the coumarin core are planned.
Collapse
Affiliation(s)
- A Nikitjuka
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia.
| | - M Ozola
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia.
| | - L Jackevica
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia.
| | - R Bobrovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia.
| | - R Žalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia.
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena iela 3, LV-1048 Riga, Latvia.
| |
Collapse
|
3
|
Abdoli M, Bonardi A, Supuran CT, Žalubovskis R. Investigation of novel alkyl/benzyl (4-sulphamoylphenyl)carbamimidothioates as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2023; 38:2152811. [PMID: 36629134 PMCID: PMC9848269 DOI: 10.1080/14756366.2022.2152811] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A library of novel alkyl/benzyl (4-sulphamoylphenyl)carbamimidothioates was synthesised by selective S-alkylation of the easily accessible 4-thioureidobenzenesulphonamide. The compounds were assayed as inhibitors of four human (h) carbonic anhydrase isoforms hCA I, II, VII, and XIII, as well as three bacterial enzymes belonging to the β-CA class, MscCA from Mammaliicoccus (Staphylococcus) sciuri and StCA1 and StCA2, from Salmonella enterica (serovar Typhimurium). Most compounds investigated here exhibited moderate to low nanomolar inhibition constants against hCA I, II, and VII. The cytosolic hCA XIII was also inhibited by these compounds, but not as effective as hCA I, II, and VII. Several compounds were very effective against MscCA and StCA1. StCA2 was less inhibited compared to MscCA and StCA1. Some compounds showed considerable selectivity for inhibiting some CA isoforms. They may thus be considered as interesting starting points for the discovery and development of novel therapeutic agents belonging to this class of enzyme inhibitors.
Collapse
Affiliation(s)
- Morteza Abdoli
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Alessandro Bonardi
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy,Claudiu T. Supuran Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Raivis Žalubovskis
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia,Latvian Institute of Organic Synthesis, Riga, Latvia,CONTACT Raivis Žalubovskis Latvian Institute of Organic Synthesis, 21 Aizkraukles Str, Riga, LV-1006, Latvia
| |
Collapse
|
4
|
Abdoli M, Bonardi A, Paoletti N, Aspatwar A, Parkkila S, Gratteri P, Supuran CT, Žalubovskis R. Inhibition Studies on Human and Mycobacterial Carbonic Anhydrases with N-((4-Sulfamoylphenyl)carbamothioyl) Amides. Molecules 2023; 28:molecules28104020. [PMID: 37241761 DOI: 10.3390/molecules28104020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
A library of structurally diverse N-((4-sulfamoylphenyl)carbamothioyl) amides was synthesized by selective acylation of easily accessible 4-thioureidobenzenesulfonamide with various aliphatic, benzylic, vinylic and aromatic acyl chlorides under mild conditions. Inhibition of three α-class cytosolic human (h) carbonic anhydrases (CAs) (EC 4.2.1.1); that is, hCA I, hCA II and hCA VII and three bacterial β-CAs from Mycobacterium tuberculosis (MtCA1-MtCA3) with these sulfonamides was thereafter investigated in vitro and in silico. Many of the evaluated compounds displayed better inhibition against hCA I (KI = 13.3-87.6 nM), hCA II (KI = 5.3-384.3 nM), and hCA VII (KI = 1.1-13.5 nM) compared with acetazolamide (AAZ) as the control drug (KI values of 250, 12.5 and 2.5 nM, respectively, against hCA I, hCA II and hCA VII). The mycobacterial enzymes MtCA1 and MtCA2 were also effectively inhibited by these compounds. MtCA3 was, on the other hand, poorly inhibited by the sulfonamides reported here. The most sensitive mycobacterial enzyme to these inhibitors was MtCA2 in which 10 of the 12 evaluated compounds showed KIs (KI, the inhibitor constant) in the low nanomolar range.
Collapse
Affiliation(s)
- Morteza Abdoli
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia
| | - Alessandro Bonardi
- Neurofarba Department, Universitàdegli Studi di Firenze, 50019 Florence, Italy
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Neurofarba Department, Università degli Studi di Firenze, 50019 Florence, Italy
| | - Niccolò Paoletti
- Neurofarba Department, Universitàdegli Studi di Firenze, 50019 Florence, Italy
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Neurofarba Department, Università degli Studi di Firenze, 50019 Florence, Italy
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, 33520 Tampere, Finland
| | - Paola Gratteri
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Neurofarba Department, Università degli Studi di Firenze, 50019 Florence, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Universitàdegli Studi di Firenze, 50019 Florence, Italy
| | - Raivis Žalubovskis
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia
- Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia
| |
Collapse
|
5
|
Ivanova J, Abdoli M, Nocentini A, Žalubovskis R, Supuran CT. 1,2,3-Benzoxathiazine-2,2-dioxides – effective inhibitors of human carbonic anhydrases. J Enzyme Inhib Med Chem 2023; 38:225-238. [DOI: 10.1080/14756366.2022.2142787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Morteza Abdoli
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| | - Alessio Nocentini
- Neurofarba Department, Università degli Studi di Firenze, Florence, Italy
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| | - Claudiu T. Supuran
- Neurofarba Department, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
6
|
Benzenesulfonamides Incorporating Hydantoin Moieties Effectively Inhibit Eukaryoticand Human Carbonic Anhydrases. Int J Mol Sci 2022; 23:ijms232214115. [PMID: 36430592 PMCID: PMC9696710 DOI: 10.3390/ijms232214115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
A series of novel 1-(4-benzenesulfonamide)-3-alkyl/benzyl-hydantoin derivatives were synthesized and evaluated for the inhibition of eukaryotic and human carbonic anhydrases (CAs, EC 4.2.1.1). The prepared compounds were screened for their hCA inhibitory activities against three cytosolic isoforms as well as two β-CAs from fungal pathogens. The best inhibition was observed against hCA II and VII as well as Candida glabrata enzyme CgNce103. hCA I and Malassezia globosa MgCA enzymes were, on the other hand, less effectively inhibited by these compounds. The inhibitory potency of these compounds against CAs was found to be dependent on the electronic and steric effects of substituent groups on the N3-position of the hydantoin ring, which included alkyl, alkenyl and substituted benzyl moieties. The interesting results against CgNce103 make the compounds of interest for investigations in vivo as potential antifungals.
Collapse
|
7
|
NO news: S-(de)nitrosylation of cathepsins and their relationship with cancer. Anal Biochem 2022; 655:114872. [PMID: 36027970 DOI: 10.1016/j.ab.2022.114872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Tumor formation and progression have been much of a study over the last two centuries. Recent studies have seen different developments for the early diagnosis and treatment of the disease; some of which even promise survival of the patient. Cysteine proteases, mainly cathepsins have been unequivocally identified as putative worthy players of redox imbalance that contribute to the premonition and further progression of cancer by interfering in the normal extracellular and intracellular proteolysis and initiating a proteolytic cascade. The present review article focuses on the study of cancer so far, while establishing facts on how future studies focused on the cellular interrelation between nitric oxide (NO) and cancer, can direct their focus on cathepsins. For a tumor cell to thrive and synergize a cancerous environment, different mutations in the proteolytic and signaling pathways and the proto-oncogenes, oncogenes, and the tumor suppressor genes are made possible through cellular biochemistry and some cancer-stimulating environmental factors. The accumulated findings show that S-nitrosylation of cathepsins under the influence of NO-donors can prevent the invasion of cancer and cause cancer cell death by blocking the activity of cathepsins as well as the major denitrosylase systems using a multi-way approach. Faced with a conundrum of how to fill the gap between the dodging of established cancer hallmarks with cathepsin activity and gaining appropriate research/clinical accreditation using our hypothesis, the scope of this review also explores the interplay and crosstalk between S-nitrosylation and S-(de)nitrosylation of this protease and highlights the utility of charging thioredoxin (Trx) reductase inhibitors, low-molecular-weight dithiols, and Trx mimetics using efficient drug delivery system to prevent the denitrosylation or regaining of cathepsin activity in vivo. In foresight, this raises the prospect that drugs or novel compounds that target cathepsins taking all these factors into consideration could be deployed as alternative or even better treatments for cancer, though further research is needed to ascertain the safety, efficiency and effectiveness of this approach.
Collapse
|
8
|
Ferguson LT, Hood ED, Shuvaeva T, Shuvaev VV, Basil MC, Wang Z, Nong J, Ma X, Wu J, Myerson JW, Marcos-Contreras OA, Katzen J, Carl JM, Morrisey EE, Cantu E, Villa CH, Mitragotri S, Muzykantov VR, Brenner JS. Dual Affinity to RBCs and Target Cells (DART) Enhances Both Organ- and Cell Type-Targeting of Intravascular Nanocarriers. ACS NANO 2022; 16:4666-4683. [PMID: 35266686 PMCID: PMC9339245 DOI: 10.1021/acsnano.1c11374] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A long-standing goal of nanomedicine is to improve a drug's benefit by loading it into a nanocarrier that homes solely to a specific target cell and organ. Unfortunately, nanocarriers usually end up with only a small percentage of the injected dose (% ID) in the target organ, due largely to clearance by the liver and spleen. Further, cell-type-specific targeting is rarely achieved without reducing target organ accumulation. To solve these problems, we introduce DART (dual affinity to RBCs and target cells), in which nanocarriers are conjugated to two affinity ligands, one binding red blood cells and one binding a target cell (here, pulmonary endothelial cells). DART nanocarriers first bind red blood cells and then transfer to the target organ's endothelial cells as the bound red blood cells squeeze through capillaries. We show that within minutes after intravascular injection in mice nearly 70% ID of DART nanocarriers accumulate in the target organ (lungs), more than doubling the % ID ceiling achieved by a multitude of prior technologies, finally achieving a majority % ID in a target organ. Humanized DART nanocarriers in ex vivo perfused human lungs recapitulate this phenomenon. Furthermore, DART enhances the selectivity of delivery to target endothelial cells over local phagocytes within the target organ by 6-fold. DART's marked improvement in both organ- and cell-type targeting may thus be helpful in localizing drugs for a multitude of medical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Samir Mitragotri
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, United States
| | | | | |
Collapse
|
9
|
(E)-3-Arylidene-4-diazopyrrolidine-2,5-diones conveniently elaborated into cytotoxic compounds bearing primary sulfonamide and Michael acceptor moieties. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Xu Q, Zhang J. Novel strategies for targeting the thioredoxin system for cancer therapy. Expert Opin Drug Discov 2022; 17:437-442. [PMID: 35193453 DOI: 10.1080/17460441.2022.2045270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION : The thioredoxin system is increasingly recognized as an important executor for maintaining cell redox homeostasis and regulating multiple cell signaling pathways. Targeting this system for cancer treatment has therefore attracted much attention. AREAS COVERED : The authors focus on providing coverage and emphasizing the strategy of targeting the thioredoxin system to develop anticancer therapeutics in the past five years, especially from the perspective of discovering novel protein functions or new downstream regulatory pathways, and designing new therapeutic reagents. The authors also provide the readers with their expert perspectives for future development. EXPERT OPINION : The limited pharmacophore of inhibitors and the slow progress of clinical research partially restrict the development of anticancer drugs targeting the thioredoxin system, necessitating thus novel strategies to accelerate the system for treating cancer. Nevertheless, the synergistic targeting of thioredoxin system for cancer therapy is a promising strategy, particularly with regards to chemotherapy resistance and/or sensitization immunotherapy.
Collapse
Affiliation(s)
- Qianhe Xu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
11
|
Supuran CT. Carbonic anhydrase inhibitors: an update on experimental agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 2021; 30:1197-1208. [PMID: 34865569 DOI: 10.1080/13543784.2021.2014813] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Hypoxic tumors, unlike normal tissues, overexpress proteins involved in oxygen sensing, metabolism, pH regulation, angiogenesis, immunological response, and other survival mechanisms, which are under investigation as antitumor drug targets. AREAS COVERED Carbonic anhydrase (CA) isoforms CA IX and XII are among these validated antitumor/antimetastatic drug targets, with several of their inhibitors undergoing preclinical or clinical-stage investigations. Alone or in combination with other chemotherapeutic agents or radiotherapy, CA IX/XII inhibitors, such as SLC-0111, SLC-149, S4, 6A10, etc., were shown to inhibit the growth of the primary tumor, metastases, and invasiveness of many tumor types, being also amenable for the development of imaging agents. EXPERT OPINION SLC-0111 is the most investigated agent, being in Phase Ib/II clinical trials. In addition to its interference with extracellular acidifications, it has been shown to promote ferroptosis in cancer cells, another antitumor mechanism of this compound and the entire class. A large number sulfonamide and non-sulfonamide inhibitors have been developed using SLC-0111 as lead in the last three years, together with hybrid agents incorporating CA inhibitors and other anticancer chemotypes, including cytotoxins, telomerase, thioredoxin or P-glycoprotein inhibitors, adenosine A2A receptor antagonists, pyrophosphatase/phosphodiesterase-3 inhibitors or antimetabolites. All of them showed significant antitumor activity.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Università Degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
12
|
Supuran CT. Multitargeting approaches involving carbonic anhydrase inhibitors: hybrid drugs against a variety of disorders. J Enzyme Inhib Med Chem 2021; 36:1702-1714. [PMID: 34325588 PMCID: PMC8330743 DOI: 10.1080/14756366.2021.1945049] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are enzymes involved in a multitude of diseases, and their inhibitors are in clinical use as drugs for the management of glaucoma, epilepsy, obesity, and tumours. In the last decade, multitargeting approaches have been proposed by hybridisation of CA inhibitors (CAIs) of sulphonamide, coumarin, and sulphocoumarin types with NO donors, CO donors, prostaglandin analogs, β-adrenergic blockers, non-steroidal anti-inflammatory drugs, and a variety of anticancer agents (cytotoxic drugs, kinase/telomerase inhibitors, P-gp and thioredoxin inhibitors). Many of the obtained hybrids showed enhanced efficacy compared to the parent drugs, making multitargeting an effective and innovative approach for various pharmacological applications.
Collapse
Affiliation(s)
- Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
13
|
Ren S, Chen R, Wu Z, Su S, Hou J, Yuan Y. Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO 2 conversion. Colloids Surf B Biointerfaces 2021; 204:111779. [PMID: 33901810 DOI: 10.1016/j.colsurfb.2021.111779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 01/01/2023]
Abstract
Native carbonic anhydrase (CA) has been widely used in several different applications due to its catalytic function in the interconversion of carbon dioxide (CO2) and carbonic acid. However, subject to its stability and recyclability, native CA often deactivates when in harsh environments, which restricts its applications in the commercial market. Maintaining the stability and high catalytic activity of CA is challenging. Immobilization provides an effective route that can improve enzymatic stability. Through the interaction of covalent bonds and van der Waals forces, water-soluble CA can be combined with various insoluble supports to form water-insoluble immobilized CA so that CA stability and utilization can be greatly improved. However, if the immobilization method or immobilization condition is not suitable, it often leads to a decrease in CA activity, reducing the application effects on CO2 conversion. In this review, we discuss existing immobilization methods and applications of immobilized CA in the environmental field, such as the mineralization of carbon dioxide and multienzyme cascade catalysis based on CA. Additionally, prospects in current development are outlined. Because of the many outstanding and superior properties after immobilization, CA is likely to be used in a wide variety of scientific and technical areas in the future.
Collapse
Affiliation(s)
- Sizhu Ren
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China; Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, PR China; Edible and Medicinal Fungi Research and Development Center of Hebei Universities, PR China.
| | - Ruixue Chen
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin, No 29, 13th, Avenue, 300457, Tianjin, PR China
| | - Zhangfei Wu
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China; Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, PR China; Edible and Medicinal Fungi Research and Development Center of Hebei Universities, PR China
| | - Shan Su
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China
| | - Jiaxi Hou
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China
| | - Yanlin Yuan
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China.
| |
Collapse
|
14
|
Chupakhin E, Krasavin M. Thioredoxin reductase inhibitors: updated patent review (2017-present). Expert Opin Ther Pat 2021; 31:745-758. [PMID: 33666133 DOI: 10.1080/13543776.2021.1899160] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Thioredoxin reductase (TrxR) is a selenocysteine-containing enzyme which is responsible - as a part of the thioredoxin system - for maintaining redox homeostasis in cells. It is upregulated in cancerous state as a defense against oxidative stress. TrxR has been mostly considered an anticancer drug target although it has applications in other therapeutic areas such as neurodegeneration, inflammation, microbial infections, and neonatal hyperoxic lung injury.Areas covered: The present review covers the patent literature that appeared in the period 2017-2020, i.e. since the publication of the previous expert opinion patent review on TrxR inhibitors. The recent additions to the following traditional classes of inhibitors are discussed: metal complexes, Michael acceptors as well as arsenic and selenium compounds. At the same time, a novel group of nitro (hetero)aromatic compounds have emerged which likely acts via covalent inhibition mechanism. Several miscellaneous chemotypes are grouped under Miscellaneous subsection.Expert opinion: While specificity over glutathione reductase is achieved easily, TrxR is still moving toward the later stages of development at a very slow rate. Michael acceptors, particularly based on TRXR substrate-mimicking scaffolds, are gaining impetus and so are dual and hybrid compounds. The development prospects of the emerging nitro (hetero)aromatic chemotypes remain uncertain.
Collapse
Affiliation(s)
- Evgeny Chupakhin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg Russian Federation.,Institute for Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad Russian Federation
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg Russian Federation.,Institute for Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad Russian Federation
| |
Collapse
|
15
|
Abstract
One of the systems responsible for maintaining cellular redox homeostasis is the thioredoxin-dependent system. An equally important function of this system is the regulation of the expression of many proteins by the transcription factor NF-κB or the apoptosis regulating kinase (ASK-1). Since it has been shown that the Trx-dependent system can contribute to both the enhancement of tumour angiogenesis and growth as well as apoptosis of neoplastic cells, the search for compounds that inhibit the level/activity of Trx and/or TrxR and thus modulate the course of the neoplastic process is ongoing. It has been shown that many naturally occurring polyphenolic compounds inactivate elements of the thioredoxin system. In addition, the effectiveness of Trx is inhibited by imidazole derivatives, while the activity of TrxR is reduced by transition metal ions complexes, dinitrohalobenzene derivatives, Michael acceptors, nitrosourea and ebselen. In addition, research is ongoing to identify new selective Trx/TrxR inhibitors.
Collapse
Affiliation(s)
- Anna Jastrząb
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
16
|
Supuran CT. Exploring the multiple binding modes of inhibitors to carbonic anhydrases for novel drug discovery. Expert Opin Drug Discov 2020; 15:671-686. [PMID: 32208982 DOI: 10.1080/17460441.2020.1743676] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The spacious active site cavity of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) shows a great versatility for a variety of binding modes for modulators of activity, inhibitors, and activators, some of which are clinically used drugs. AREAS COVERED There are at least four well-documented CA inhibition mechanisms and the same number of binding modes for CA inhibitors (CAIs), one of which superposes with the binding of activators (CAAs). They include (i) coordination to the catalytic metal ion; (ii) anchoring to the water molecule coordinated to the metal ion; (iii) occlusion of the active site entrance; and (iv) binding outside the active site. A large number of chemical classes of CAIs show these binding modes explored in detail by kinetic, crystallographic, and other techniques. The tail approach was applied to all of them and allowed many classes of highly isoform-selective inhibitors. This is the subject of our review. EXPERT OPINION All active site regions of CAs accommodate inhibitors to bind, which is reflected in very different inhibition profiles for such compounds and the possibility to design drugs with effective action and new applications, such as for the management of hypoxic tumors, neuropathic pain, cerebral ischemia, arthritis, and degenerative disorders.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence , Florence, Italy
| |
Collapse
|